用户名: 密码: 验证码:
一种艾滋病病毒潜在抑制剂的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类免疫缺陷病毒(HIV-1)跨膜蛋白gp41在病毒侵染靶细胞的膜融合过程中发挥了关键作用,是膜融合抑制剂研究中的重要靶点。此外,gp41还能够通过与靶细胞内某些蛋白发生相互作用,调控细胞的某些生理功能。在前期的研究中,我们通过酵母双杂交技术从人骨髓cDNA文库中筛选到一个HIV-1gp41的潜在结合蛋白POB1。基于POB1具有抑制HIV-1病毒介导的膜融合活性,本论文将POB1作为潜在的病毒抑制剂进行了相关研究,实验证明POB1具有抑制病毒感染的能力。
     在酵母双杂交实验的基础上,我们采用多种生化技术手段验证了HIV-1gp41和POB1的结合能力。结果表明,POB1通过C端螺旋区(C60)与gp41相互作用,而gp41的六螺旋结构及其包含的N末端七重复序列(NHR)与POB1均有较强的结合能力。我们将C60作为潜在的膜融合抑制剂进行了一系列研究。C60不能抑制gp41融合活性六螺旋结构的形成,但是在合胞体实验和病毒感染实验中均显示出一定的抑制活性,对X4嗜性株HIV-1IIIB和R5嗜性株HIV-1Bal的半抑制浓度在微摩尔级。这些结果表明,C60的抑制机理可能与已知膜融合抑制剂的抑制机理不尽相同,这两者的异同有待进一步阐明。对C60抑制机理的深入研究,有助于我们进一步揭示病毒介导的膜融合过程的细节。
     我们对gp41与POB1相互作用的生理意义进行了进一步的研究。POB1蛋白在细胞内参与了EGF介导的内吞信号通路,目前已经报导存在POB1(1-521)和POB1(1-659)两种同源蛋白。我们克隆出了一个新的同源蛋白POB1(1-460)。实验结果表明gp41与POB1(1-460)在真核细胞内依然能够发生相互作用。HIV-1gp41的存在能够显著增强A431细胞和CHO细胞的内吞作用,而且增强的内吞作用能够促进不表达CD4受体的A431细胞对HIV-1假病毒颗粒的摄入,这可能导致HIV-1病毒感染的增强。一个可能的推测是gp41所起的作用与EGF介导的信号类似,能够作为一个骨架蛋白招募参与内吞过程的POB1、epsin等蛋白,持续激活内吞通路。以上推测还需要后续实验证实。
The HIV-1envelope glycoprotein gp41plays a crucial role in the retroviral fusionprocess, and it is a very important target for membrane fusion inhibitor. Gp41can alsoregulate some cellular functions by interacting with host proteins. In the previous study,we screened human bone marrow cDNA library by a yeast-two-hybrid system, andidentified POB1as a potential binding protein to gp41. Considering the finding thatPOB1could inhibit the HIV-1mediated membrane fusion, we investigated the functionof POB1as being a potential membrane fusion inhibitor. The results showed that POB1exhibited inhibitory activity against HIV-1infection.
     We used a variety of biochemical techniques to verify the binding capacitybetween HIV-1gp41and POB1. The experimental results showed that the C-terminalhelical region (C60) of POB1bound strongly to the gp41six-helix bundle (6-HB), or tobe more precise, the N-terminal heptad repeat (NHR) of gp41. C60exhibited inhibitoryactivity against the HIV-1Env-mediated syncytium formation and virus infection, andthe half maximal inhibitory concentration (IC50) values were in the micromolar range.Unlike traditional membrane fusion inhibitors, C60did not block the gp416-HBformation, which implied that the inhibition mechanism of C60might not be the sameas other fusion inhibitors. The differences between these two inhibition mechanismsneed to be further explained and the further study on the mechanisms will be helpful toimprove our understanding of the viral membrane fusion process.
     It was reported that POB1was involved in the EGF/insulin-induced endocyticpathway. We cloned a new POB1homology, POB1(1-460), and HIV-1gp41could stillbe able to interact with POB1(1-460) in293T cells. We also observed significantenhancement of EGF internalization in A431cells and CHO cells expressing gp41, andthe uptake of HIV-1virions in the CD4-negative A431cells was also increased, whichmight help more HIV-1virions to enter into target cells to establish effective infection.HIV-1gp41could play a role in EGF signaling and recruit proteins in the endocyticpathway, such as POB1, epsin, to activate the process of endocytosis. The hypothesisneeds further experiments to confirm.
引文
[1] CDC. Pneumocystis pneumonia--Los Angeles. MMWR Morb Mortal Wkly Rep,1981,30(21):250-2.
    [2] UNAIDS. UNAIDS report on the global AIDS epidemic2010. Geneva: WHO,2010.
    [3] UNAIDS.2012UNAIDS Report on the Global AIDS Epidemic. Geneva: WHO,2012.
    [4]中国卫生部.2011年中国艾滋病疫情估计.北京:中华人民共和国卫生部,2011.
    [5] Friedman-Kien A E. Disseminated Kaposi's sarcoma syndrome in young homosexualmen. J Am Acad Dermatol,1981,5(4):468-71.
    [6] Hymes K B, Cheung T, Greene J B, et al. Kaposi's sarcoma in homosexual men-areport of eight cases. Lancet,1981,2(8247):598-600.
    [7] CDC. Update on acquired immune deficiency syndrome (AIDS)--United States.MMWR Morb Mortal Wkly Rep,1982,31(37):507-8,513-4.
    [8] Barre-Sinoussi F, Chermann J C, Rey F, et al. Isolation of a T-lymphotropicretrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS).Science,1983,220(4599):868-71.
    [9] Gallo R C, Salahuddin S Z, Popovic M, et al. Frequent detection and isolation ofcytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS.Science,1984,224(4648):500-3.
    [10] Levy J A, Hoffman A D, Kramer S M, et al. Isolation of lymphocytopathicretroviruses from San Francisco patients with AIDS. Science,1984,225(4664):840-2.
    [11] Clavel F, Guetard D, Brun-Vezinet F, et al. Isolation of a new human retrovirus fromWest African patients with AIDS. Science,1986,233(4761):343-6.
    [12] Sharp P M, Hahn B H. Origins of HIV and the AIDS pandemic. Cold Spring HarbPerspect Med,2011,1(1):a006841.
    [13] Simon F, Mauclere P, Roques P, et al. Identification of a new humanimmunodeficiency virus type1distinct from group M and group O. Nat Med,1998,4(9):1032-7.
    [14] Plantier J C, Leoz M, Dickerson J E, et al. A new human immunodeficiency virusderived from gorillas. Nat Med,2009,15(8):871-2.
    [15] Robertson D L, Anderson J P, Bradac J A, et al. HIV-1nomenclature proposal.Science,2000,288(5463):55-6.
    [16] McCune J M, Rabin L B, Feinberg M B, et al. Endoproteolytic cleavage of gp160isrequired for the activation of human immunodeficiency virus. Cell,1988,53(1):55-67.
    [17] Turner B G, Summers M F. Structural biology of HIV. J Mol Biol,1999,285(1):1-32.
    [18] NIAID. How HIV Causes AIDS.[2005-05-31]. http://web.archive.org/web/20050531012945/http://www.niaid.nih.gov/factsheets/howhiv.htm.
    [19] Frankel A D, Young J A T. HIV-1: Fifteen proteins and an RNA. Annual Review ofBiochemistry,1998,67:1-25.
    [20] University Stanford. Human Immunodeficiency Virus (HIV).[2005-04-06]. http://www.stanford.edu/group/virus/retro/2005gongishmail/HIV.html.
    [21] AIDSinfo. The HIV Life Cycle.[2005-12-21]. http://www.thebody.com/content/art40989.html.
    [22] U.S. Department of Health&Human Services. STAGES OF HIV.[2009-08-06].http://aids.gov/hiv-aids-basics/just-diagnosed-with-hiv-aids/hiv-in-your-body/stages-of-hiv/.
    [23] Ezzell C. Troublesome trials for AIDS vaccines. Nature,1987,330(6150):687.
    [24] Buonaguro L, Tagliamonte M, Visciano M L, et al. Developments in virus-likeparticle-based vaccines for HIV. Expert Rev Vaccines,2013,12(2):119-27.
    [25] Esparza J, Osmanov S. HIV vaccines: a global perspective. Curr Mol Med,2003,3(3):183-93.
    [26] Lu S. Heterologous prime-boost vaccination. Curr Opin Immunol,2009,21(3):346-51.
    [27] Ross A L, Brave A, Scarlatti G, et al. Progress towards development of an HIVvaccine: report of the AIDS Vaccine2009Conference. Lancet Infect Dis,2010,10(5):305-16.
    [28] Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, et al. Vaccination with ALVAC andAIDSVAX to prevent HIV-1infection in Thailand. N Engl J Med,2009,361(23):2209-20.
    [29] Haynes B F, Gilbert P B, McElrath M J, et al. Immune-correlates analysis of anHIV-1vaccine efficacy trial. N Engl J Med,2012,366(14):1275-86.
    [30] Karasavvas N, Billings E, Rao M, et al. The Thai Phase III HIV Type1Vaccine trial(RV144) regimen induces antibodies that target conserved regions within the V2loop of gp120. AIDS Res Hum Retroviruses,2012,28(11):1444-57.
    [31] FDA. Antiretroviral drugs used in the treatment of HIV infection.2013.
    [32] Mitsuya H, Weinhold K J, Furman P A, et al.3'-Azido-3'-deoxythymidine (BWA509U): an antiviral agent that inhibits the infectivity and cytopathic effect ofhuman T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro.Proc Natl Acad Sci U S A,1985,82(20):7096-100.
    [33] Wright K. AIDS therapy. First tentative signs of therapeutic promise. Nature,1986,323(6086):283.
    [34] Miller V, Staszewski S, Boucher C A, et al. Clinical experience with non-nucleosidereverse transcriptase inhibitors. AIDS,1997,11Suppl A:S157-64.
    [35] Sluis-Cremer N, Temiz N A, Bahar I. Conformational changes in HIV-1reversetranscriptase induced by nonnucleoside reverse transcriptase inhibitor binding. CurrHIV Res,2004,2(4):323-32.
    [36] Deeks S G, Smith M, Holodniy M, et al. HIV-1protease inhibitors. A review forclinicians. JAMA,1997,277(2):145-53.
    [37] Savarino A. A historical sketch of the discovery and development of HIV-1integrase inhibitors. Expert Opin Investig Drugs,2006,15(12):1507-22.
    [38] Grobler J A, Stillmock K, Hu B, et al. Diketo acid inhibitor mechanism and HIV-1integrase: implications for metal binding in the active site of phosphotransferaseenzymes. Proc Natl Acad Sci U S A,2002,99(10):6661-6.
    [39] Jiang S, Lin K, Strick N, et al. HIV-1inhibition by a peptide. Nature,1993,365(6442):113.
    [40] Lalezari J P, Eron J J, Carlson M, et al. A phase II clinical study of the long-termsafety and antiviral activity of enfuvirtide-based antiretroviral therapy. AIDS,2003,17(5):691-8.
    [41] Dorr P, Westby M, Dobbs S, et al. Maraviroc (UK-427,857), a potent, orallybioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5with broad-spectrum anti-human immunodeficiency virus type1activity.Antimicrob Agents Chemother,2005,49(11):4721-32.
    [42] Fatkenheuer G, Pozniak A L, Johnson M A, et al. Efficacy of short-termmonotherapy with maraviroc, a new CCR5antagonist, in patients infected withHIV-1. Nat Med,2005,11(11):1170-2.
    [43] Hammer S M, Katzenstein D A, Hughes M D, et al. A trial comparing nucleosidemonotherapy with combination therapy in HIV-infected adults with CD4cell countsfrom200to500per cubic millimeter. AIDS Clinical Trials Group Study175StudyTeam. N Engl J Med,1996,335(15):1081-90.
    [44] Egger M, May M, Chene G, et al. Prognosis of HIV-1-infected patients startinghighly active antiretroviral therapy: a collaborative analysis of prospective studies.Lancet,2002,360(9327):119-29.
    [45] IMS. Top20Global Therapeutic Classes,2011.[2012-03-05]. http://www.imshealth.com/portal/site/ims/menuitem.5ad1c081663fdf9b41d84b903208c22a/?vgnextoid=fbc65890d33ee210VgnVCM10000071812ca2RCRD&vgnextfmt=default.
    [46] Sattentau Q J, Weiss R A. The CD4antigen: physiological ligand and HIV receptor.Cell,1988,52(5):631-3.
    [47] Alkhatib G, Combadiere C, Broder C C, et al. CC CKR5: a RANTES, MIP-1alpha,MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science,1996,272(5270):1955-8.
    [48] Jacobs A, Garg H, Viard M, et al. HIV-1envelope glycoprotein-mediated fusion andpathogenesis: implications for therapy and vaccine development. Vaccine,2008,26(24):3026-35.
    [49] Munoz-Barroso I, Salzwedel K, Hunter E, et al. Role of the membrane-proximaldomain in the initial stages of human immunodeficiency virus type1envelopeglycoprotein-mediated membrane fusion. J Virol,1999,73(7):6089-92.
    [50] Zhu Y, Lu L, Chao L, et al. Important changes in biochemical properties andfunction of mutated LLP12domain of HIV-1gp41. Chem Biol Drug Des,2007,70(4):311-8.
    [51] Bhakta S J, Shang L, Prince J L, et al. Mutagenesis of tyrosine and di-leucine motifsin the HIV-1envelope cytoplasmic domain results in a loss of Env-mediated fusionand infectivity. Retrovirology,2011,8:37.
    [52] Chan D C, Fass D, Berger J M, et al. Core structure of gp41from the HIV envelopeglycoprotein. Cell,1997,89(2):263-73.
    [53] Furuta R A, Wild C T, Weng Y, et al. Capture of an early fusion-active conformationof HIV-1gp41. Nat Struct Biol,1998,5(4):276-9.
    [54] Weissenhorn W, Dessen A, Harrison S C, et al. Atomic structure of the ectodomainfrom HIV-1gp41. Nature,1997,387(6631):426-30.
    [55] Miyauchi K, Kim Y, Latinovic O, et al. HIV enters cells via endocytosis anddynamin-dependent fusion with endosomes. Cell,2009,137(3):433-44.
    [56] de la Vega M, Marin M, Kondo N, et al. Inhibition of HIV-1endocytosis allows lipidmixing at the plasma membrane, but not complete fusion. Retrovirology,2011,8:99.
    [57] Uchil P D, Mothes W. HIV Entry Revisited. Cell,2009,137(3):402-4.
    [58] Marechal V, Prevost M C, Petit C, et al. Human immunodeficiency virus type1entryinto macrophages mediated by macropinocytosis. J Virol,2001,75(22):11166-77.
    [59] Daecke J, Fackler O T, Dittmar M T, et al. Involvement of clathrin-mediatedendocytosis in human immunodeficiency virus type1entry. J Virol,2005,79(3):1581-94.
    [60] von Kleist L, Stahlschmidt W, Bulut H, et al. Role of the clathrin terminal domain inregulating coated pit dynamics revealed by small molecule inhibition. Cell,2011,146(3):471-84.
    [61] Carter G C, Bernstone L, Baskaran D, et al. HIV-1infects macrophages byexploiting an endocytic route dependent on dynamin, Rac1and Pak1. Virology,2011,409(2):234-50.
    [62] Wild C T, Shugars D C, Greenwell T K, et al. Peptides corresponding to a predictivealpha-helical domain of human immunodeficiency virus type1gp41are potentinhibitors of virus infection. Proc Natl Acad Sci U S A,1994,91(21):9770-4.
    [63] Kilby J M, Hopkins S, Venetta T M, et al. Potent suppression of HIV-1replication inhumans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med,1998,4(11):1302-7.
    [64] Armand-Ugon M, Gutierrez A, Clotet B, et al. HIV-1resistance to thegp41-dependent fusion inhibitor C-34. Antiviral Res,2003,59(2):137-42.
    [65] Jiang S, Debnath A K. Development of HIV entry inhibitors targeted to thecoiled-coil regions of gp41. Biochem Biophys Res Commun,2000,269(3):641-6.
    [66] Martin N, Welsch S, Jolly C, et al. Virological synapse-mediated spread of humanimmunodeficiency virus type1between T cells is sensitive to entry inhibition. JVirol,2010,84(7):3516-27.
    [67] Kilby J M, Lalezari J P, Eron J J, et al. The safety, plasma pharmacokinetics, andantiviral activity of subcutaneous enfuvirtide (T-20), a peptide inhibitor ofgp41-mediated virus fusion, in HIV-infected adults. AIDS Res Hum Retroviruses,2002,18(10):685-93.
    [68] Stocker H, Kloft C, Plock N, et al. Pharmacokinetics of enfuvirtide in patientstreated in typical routine clinical settings. Antimicrob Agents Chemother,2006,50(2):667-73.
    [69] Zhang X, Nieforth K, Lang J M, et al. Pharmacokinetics of plasma enfuvirtide aftersubcutaneous administration to patients with human immunodeficiency virus:Inverse Gaussian density absorption and2-compartment disposition. Clin PharmacolTher,2002,72(1):10-9.
    [70] Berkhout B, Eggink D, Sanders R W. Is there a future for antiviral fusion inhibitors?Curr Opin Virol,2012,2(1):50-9.
    [71] Eron J J, Gulick R M, Bartlett J A, et al. Short-term safety and antiretroviral activityof T-1249, a second-generation fusion inhibitor of HIV. J Infect Dis,2004,189(6):1075-83.
    [72] Lalezari J P, Bellos N C, Sathasivam K, et al. T-1249retains potent antiretroviralactivity in patients who had experienced virological failure while on anenfuvirtide-containing treatment regimen. J Infect Dis,2005,191(7):1155-63.
    [73] Martins Do Canto A M, Palace Carvalho A J, Prates Ramalho J P, et al. T-20andT-1249HIV fusion inhibitors' structure and conformation in solution: a moleculardynamics study. J Pept Sci,2008,14(4):442-7.
    [74] Jin B S, Ryu J R, Ahn K, et al. Design of a peptide inhibitor that blocks the cellfusion mediated by glycoprotein41of human immunodeficiency virus type1. AIDSRes Hum Retroviruses,2000,16(17):1797-804.
    [75] He Y, Cheng J, Lu H, et al. Potent HIV fusion inhibitors againstEnfuvirtide-resistant HIV-1strains. Proc Natl Acad Sci U S A,2008,105(42):16332-7.
    [76] He Y, Xiao Y, Song H, et al. Design and evaluation of sifuvirtide, a novel HIV-1fusion inhibitor. J Biol Chem,2008,283(17):11126-34.
    [77] Dwyer J J, Wilson K L, Davison D K, et al. Design of helical, oligomeric HIV-1fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus. ProcNatl Acad Sci U S A,2007,104(31):12772-7.
    [78] Eggink D, Bontjer I, Langedijk J P, et al. Resistance of human immunodeficiencyvirus type1to a third-generation fusion inhibitor requires multiple mutations ingp41and is accompanied by a dramatic loss of gp41function. J Virol,2011,85(20):10785-97.
    [79] Kajiwara K, Watanabe K, Tokiwa R, et al. Bioorganic synthesis of a recombinantHIV-1fusion inhibitor, SC35EK, with an N-terminal pyroglutamate capping group.Bioorg Med Chem,2009,17(23):7964-70.
    [80] Huang W, Groothuys S, Heredia A, et al. Enzymatic glycosylation of triazole-linkedGlcNAc/Glc-peptides: synthesis, stability and anti-HIV activity of triazole-linkedHIV-1gp41glycopeptide C34analogues. Chembiochem,2009,10(7):1234-42.
    [81] Stoddart C A, Nault G, Galkina S A, et al. Albumin-conjugated C34peptide HIV-1fusion inhibitor: equipotent to C34and T-20in vitro with sustained activity inSCID-hu Thy/Liv mice. J Biol Chem,2008,283(49):34045-52.
    [82] Ingallinella P, Bianchi E, Ladwa N A, et al. Addition of a cholesterol group to anHIV-1peptide fusion inhibitor dramatically increases its antiviral potency. Proc NatlAcad Sci U S A,2009,106(14):5801-6.
    [83] Huet T, Kerbarh O, Schols D, et al. Long-lasting enfuvirtide carrier pentasaccharideconjugates with potent anti-human immunodeficiency virus type1activity.Antimicrob Agents Chemother,2010,54(1):134-42.
    [84] Root M J, Kay M S, Kim P S. Protein design of an HIV-1entry inhibitor. Science,2001,291(5505):884-8.
    [85] Eckert D M, Kim P S. Design of potent inhibitors of HIV-1entry from the gp41N-peptide region. Proc Natl Acad Sci U S A,2001,98(20):11187-92.
    [86] Eckert D M, Malashkevich V N, Hong L H, et al. Inhibiting HIV-1entry: discoveryof D-peptide inhibitors that target the gp41coiled-coil pocket. Cell,1999,99(1):103-15.
    [87] Louis J M, Bewley C A, Clore G M. Design and properties of N(CCG)-gp41, achimeric gp41molecule with nanomolar HIV fusion inhibitory activity. J Biol Chem,2001,276(31):29485-9.
    [88] Bewley C A, Louis J M, Ghirlando R, et al. Design of a novel peptide inhibitor ofHIV fusion that disrupts the internal trimeric coiled-coil of gp41. J Biol Chem,2002,277(16):14238-45.
    [89] Debnath A K, Radigan L, Jiang S. Structure-based identification of small moleculeantiviral compounds targeted to the gp41core structure of the humanimmunodeficiency virus type1. J Med Chem,1999,42(17):3203-9.
    [90] Jiang S, Debnath A K. A salt bridge between an N-terminal coiled coil of gp41andan antiviral agent targeted to the gp41core is important for anti-HIV-1activity.Biochem Biophys Res Commun,2000,270(1):153-7.
    [91] Wang H, Qi Z, Guo A, et al. ADS-J1inhibits human immunodeficiency virus type1entry by interacting with the gp41pocket region and blocking fusion-active gp41core formation. Antimicrob Agents Chemother,2009,53(12):4987-98.
    [92] Frey G, Rits-Volloch S, Zhang X Q, et al. Small molecules that bind the inner coreof gp41and inhibit HIV envelope-mediated fusion. Proc Natl Acad Sci U S A,2006,103(38):13938-43.
    [93] Jiang S, Lu H, Liu S, et al. N-substituted pyrrole derivatives as novel humanimmunodeficiency virus type1entry inhibitors that interfere with the gp41six-helixbundle formation and block virus fusion. Antimicrob Agents Chemother,2004,48(11):4349-59.
    [94] Liu K, Lu H, Hou L, et al. Design, synthesis, and biological evaluation ofN-carboxyphenylpyrrole derivatives as potent HIV fusion inhibitors targeting gp41.J Med Chem,2008,51(24):7843-54.
    [95] Katritzky A R, Tala S R, Lu H, et al. Design, synthesis, and structure-activityrelationship of a novel series of2-aryl5-(4-oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl)furans as HIV-1entry inhibitors. J Med Chem,2009,52(23):7631-9.
    [96] He Y, Cheng J, Li J, et al. Identification of a critical motif for the humanimmunodeficiency virus type1(HIV-1) gp41core structure: implications fordesigning novel anti-HIV fusion inhibitors. J Virol,2008,82(13):6349-58.
    [97] He Y, Liu S, Jing W, et al. Conserved residue Lys574in the cavity of HIV-1Gp41coiled-coil domain is critical for six-helix bundle stability and virus entry. J BiolChem,2007,282(35):25631-9.
    [98] Murray E J, Leaman D P, Pawa N, et al. A low-molecular-weight entry inhibitor ofboth CCR5-and CXCR4-tropic strains of human immunodeficiency virus type1targets a novel site on gp41. J Virol,2010,84(14):7288-99.
    [99] Mayaux J F, Bousseau A, Pauwels R, et al. Triterpene derivatives that block entryof human immunodeficiency virus type1into cells. Proc Natl Acad Sci U S A,1994,91(9):3564-8.
    [100] Labrosse B, Pleskoff O, Sol N, et al. Resistance to a drug blocking humanimmunodeficiency virus type1entry (RPR103611) is conferred by mutations ingp41. J Virol,1997,71(11):8230-6.
    [101] Buchacher A, Predl R, Strutzenberger K, et al. Generation of human monoclonalantibodies against HIV-1proteins; electrofusion and Epstein-Barr virustransformation for peripheral blood lymphocyte immortalization. AIDS Res HumRetroviruses,1994,10(4):359-69.
    [102] Muster T, Steindl F, Purtscher M, et al. A conserved neutralizing epitope on gp41of human immunodeficiency virus type1. J Virol,1993,67(11):6642-7.
    [103] Stiegler G, Kunert R, Purtscher M, et al. A potent cross-clade neutralizing humanmonoclonal antibody against a novel epitope on gp41of human immunodeficiencyvirus type1. AIDS Res Hum Retroviruses,2001,17(18):1757-65.
    [104] Zwick M B, Labrijn A F, Wang M, et al. Broadly neutralizing antibodies targeted tothe membrane-proximal external region of human immunodeficiency virus type1glycoprotein gp41. J Virol,2001,75(22):10892-905.
    [105] Verkoczy L, Kelsoe G, Moody M A, et al. Role of immune mechanisms ininduction of HIV-1broadly neutralizing antibodies. Curr Opin Immunol,2011,23(3):383-90.
    [106] Ofek G, Tang M, Sambor A, et al. Structure and mechanistic analysis of theanti-human immunodeficiency virus type1antibody2F5in complex with its gp41epitope. J Virol,2004,78(19):10724-37.
    [107] Collis A V, Brouwer A P, Martin A C. Analysis of the antigen combining site:correlations between length and sequence composition of the hypervariable loopsand the nature of the antigen. J Mol Biol,2003,325(2):337-54.
    [108] Cardoso R M, Zwick M B, Stanfield R L, et al. Broadly neutralizing anti-HIVantibody4E10recognizes a helical conformation of a highly conservedfusion-associated motif in gp41. Immunity,2005,22(2):163-73.
    [109] Scherer E M, Leaman D P, Zwick M B, et al. Aromatic residues at the edge of theantibody combining site facilitate viral glycoprotein recognition through membraneinteractions. Proc Natl Acad Sci U S A,2010,107(4):1529-34.
    [110] Sanchez-Martinez S, Lorizate M, Katinger H, et al. Membrane association andepitope recognition by HIV-1neutralizing anti-gp412F5and4E10antibodies.AIDS Res Hum Retroviruses,2006,22(10):998-1006.
    [111] Alam S M, Morelli M, Dennison S M, et al. Role of HIV membrane inneutralization by two broadly neutralizing antibodies. Proc Natl Acad Sci U S A,2009,106(48):20234-9.
    [112] Ofek G, McKee K, Yang Y, et al. Relationship between antibody2F5neutralizationof HIV-1and hydrophobicity of its heavy chain third complementarity-determiningregion. J Virol,2010,84(6):2955-62.
    [113] Haynes B F, Fleming J, St Clair E W, et al. Cardiolipin polyspecific autoreactivityin two broadly neutralizing HIV-1antibodies. Science,2005,308(5730):1906-8.
    [114] Huang J, Ofek G, Laub L, et al. Broad and potent neutralization of HIV-1by agp41-specific human antibody. Nature,2012,491(7424):406-12.
    [115] Frechet D, Guitton J D, Herman F, et al. Solution structure of RP71955, a new21amino acid tricyclic peptide active against HIV-1virus. Biochemistry,1994,33(1):42-50.
    [116] Constantine K L, Friedrichs M S, Detlefsen D, et al. High-resolution solutionstructure of siamycin II: novel amphipathic character of a21-residue peptide thatinhibits HIV fusion. J Biomol NMR,1995,5(3):271-86.
    [117] Chokekijchai S, Kojima E, Anderson S, et al. NP-06: a novel anti-humanimmunodeficiency virus polypeptide produced by a Streptomyces species.Antimicrob Agents Chemother,1995,39(10):2345-7.
    [118] Nakashima H, Ichiyama K, Inazawa K, et al. FR901724, a novel anti-humanimmunodeficiency virus (HIV) peptide produced by Streptomyces, showssynergistic antiviral activities with HIV protease inhibitor and2',3'-dideoxynucleosides. Biol Pharm Bull,1996,19(3):405-12.
    [119] Lin P F, Samanta H, Bechtold C M, et al. Characterization of siamycin I, a humanimmunodeficiency virus fusion inhibitor. Antimicrob Agents Chemother,1996,40(1):133-8.
    [120] Munch J, Standker L, Adermann K, et al. Discovery and optimization of a naturalHIV-1entry inhibitor targeting the gp41fusion peptide. Cell,2007,129(2):263-75.
    [121] Forssmann W G, The Y H, Stoll M, et al. Short-term monotherapy in HIV-infectedpatients with a virus entry inhibitor against the gp41fusion peptide. Sci Transl Med,2010,2(63):63re3.
    [122] Zhu Y, Lu L, Xu L, et al. Identification of a gp41core-binding molecule withhomologous sequence of human TNNI3K-like protein as a novel humanimmunodeficiency virus type1entry inhibitor. J Virol,2010,84(18):9359-68.
    [123] Rimsky L T, Shugars D C, Matthews T J. Determinants of humanimmunodeficiency virus type1resistance to gp41-derived inhibitory peptides. JVirol,1998,72(2):986-93.
    [124] Wei X, Decker J M, Liu H, et al. Emergence of resistant human immunodeficiencyvirus type1in patients receiving fusion inhibitor (T-20) monotherapy. AntimicrobAgents Chemother,2002,46(6):1896-905.
    [125] Menzo S, Castagna A, Monachetti A, et al. Genotype and phenotype patterns ofhuman immunodeficiency virus type1resistance to enfuvirtide during long-termtreatment. Antimicrob Agents Chemother,2004,48(9):3253-9.
    [126] Melby T, Sista P, DeMasi R, et al. Characterization of envelope glycoprotein gp41genotype and phenotypic susceptibility to enfuvirtide at baseline and on treatmentin the phase III clinical trials TORO-1and TORO-2. AIDS Res Hum Retroviruses,2006,22(5):375-85.
    [127] Xu L, Pozniak A, Wildfire A, et al. Emergence and evolution of enfuvirtideresistance following long-term therapy involves heptad repeat2mutations withingp41. Antimicrob Agents Chemother,2005,49(3):1113-9.
    [128] Jenwitheesuk E, Samudrala R. Heptad-repeat-2mutations enhance the stability ofthe enfuvirtide-resistant HIV-1gp41hairpin structure. Antivir Ther,2005,10(8):893-900.
    [129] Ray N, Blackburn L A, Doms R W. HR-2mutations in human immunodeficiencyvirus type1gp41restore fusion kinetics delayed by HR-1mutations that causeclinical resistance to enfuvirtide. J Virol,2009,83(7):2989-95.
    [130] Derdeyn C A, Decker J M, Sfakianos J N, et al. Sensitivity of humanimmunodeficiency virus type1to the fusion inhibitor T-20is modulated bycoreceptor specificity defined by the V3loop of gp120. J Virol,2000,74(18):8358-67.
    [131] Derdeyn C A, Decker J M, Sfakianos J N, et al. Sensitivity of humanimmunodeficiency virus type1to fusion inhibitors targeted to the gp41first heptadrepeat involves distinct regions of gp41and is consistently modulated by gp120interactions with the coreceptor. J Virol,2001,75(18):8605-14.
    [132] Hermann F G, Egerer L, Brauer F, et al. Mutations in gp120contribute to theresistance of human immunodeficiency virus type1to membrane-anchoredC-peptide maC46. J Virol,2009,83(10):4844-53.
    [133] Reeves J D, Gallo S A, Ahmad N, et al. Sensitivity of HIV-1to entry inhibitorscorrelates with envelope/coreceptor affinity, receptor density, and fusion kinetics.Proc Natl Acad Sci U S A,2002,99(25):16249-54.
    [134] Chinnadurai R, Rajan D, Munch J, et al. Human immunodeficiency virus type1variants resistant to first-and second-version fusion inhibitors and cytopathic in exvivo human lymphoid tissue. J Virol,2007,81(12):6563-72.
    [135] Eggink D, Baldwin C E, Deng Y, et al. Selection of T1249-resistant humanimmunodeficiency virus type1variants. J Virol,2008,82(13):6678-88.
    [136] Eggink D, Langedijk J P, Bonvin A M, et al. Detailed mechanistic insights intoHIV-1sensitivity to three generations of fusion inhibitors. J Biol Chem,2009,284(39):26941-50.
    [137] Gonzalez E, Ballana E, Clotet B, et al. Development of resistance to VIR-353withcross-resistance to the natural HIV-1entry virus inhibitory peptide (VIRIP). AIDS,2011,25(13):1557-83.
    [138] Ruegg C L, Monell C R, Strand M. Inhibition of lymphoproliferation by a syntheticpeptide with sequence identity to gp41of human immunodeficiency virus type1. JVirol,1989,63(8):3257-60.
    [139] Ruegg C L, Strand M. Inhibition of protein kinase C and anti-CD3-induced Ca2+influx in Jurkat T cells by a synthetic peptide with sequence identity to HIV-1gp41.J Immunol,1990,144(10):3928-35.
    [140] Ruegg C L, Strand M. A synthetic peptide with sequence identity to thetransmembrane protein GP41of HIV-1inhibits distinct lymphocyte activationpathways dependent on protein kinase C and intracellular calcium influx. CellImmunol,1991,137(1):1-13.
    [141] Denner J, Persin C, Vogel T, et al. The immunosuppressive peptide of HIV-1inhibits T and B lymphocyte stimulation. J Acquir Immune Defic Syndr HumRetrovirol,1996,12(5):442-50.
    [142] Qureshi N M, Coy D H, Garry R F, et al. Characterization of a putative cellularreceptor for HIV-1transmembrane glycoprotein using synthetic peptides. AIDS,1990,4(6):553-8.
    [143] Henderson L A, Qureshi M N. A peptide inhibitor of human immunodeficiencyvirus infection binds to novel human cell surface polypeptides. J Biol Chem,1993,268(20):15291-7.
    [144] Chen Y H, Ebenbichler C, Vornhagen R, et al. HIV-1gp41contains two sites forinteraction with several proteins on the helper T-lymphoid cell line, H9. AIDS,1992,6(6):533-9.
    [145] Chen Y H, Bock G, Vornhagen R, et al. The human monocyte cell line U937bindsHIV-1gp41by proteins of37,45,49,62and92kDa. Immunol Lett,1993,37(1):41-5.
    [146] Chen Y H, Bock G, Steindl F, et al. HIV-1gp41binds to two proteins in cellculture supernatant of human B cell line Raji and monocyte cell line U937.Immunobiology,1994,190(3):255-62.
    [147] Chen Y H, Bock G, Vornhagen R, et al. HIV-1gp41binds to several proteins on thehuman B-cell line, Raji. Mol Immunol,1993,30(13):1159-63.
    [148] Bartz S R, Pauza C D, Ivanyi J, et al. An Hsp60related protein is associated withpurified HIV and SIV. J Med Primatol,1994,23(2-3):151-4.
    [149] Speth C, Prohaszka Z, Mair M, et al. A60kD heat-shock protein-like moleculeinteracts with the HIV transmembrane glycoprotein gp41. Mol Immunol,1999,36(9):619-28.
    [150] Chen Y H, Opitz S, Bock G, et al. Enhancement of HIV-1gp41binding to Rajicells by PWM, LPS, interferon-gamma and interleukin-6. Mol Immunol,1993,30(17):1583-6.
    [151] Chen Y H, Christiansen A, Dierich M P. HIV-1gp41binding to human T-andB-lymphocytes and monocytes is modulated by phorbol myristate acetate (PMA).Immunol Lett,1996,50(3):161-6.
    [152] Chen Y H, Bock G, Vornhagen R, et al. HIV-1gp41binding proteins andantibodies to gp41could inhibit enhancement of human Raji cell MHC class I andII expression by gp41. Mol Immunol,1994,31(13):977-82.
    [153] Chen Y H, Bock G, Vornhagen R, et al. HIV-1gp41enhances majorhistocompatibility complex class I and ICAM-1expression on H9and U937cells.Int Arch Allergy Immunol,1994,104(3):227-31.
    [154] Chen Y H, Christiansen A, Dierich M P. HIV-1gp41selectively inhibitsspontaneous cell proliferation of human cell lines and mitogen-and recallantigen-induced lymphocyte proliferation. Immunol Lett,1995,48(1):39-44.
    [155] Chen Y H, Dierich M P. A common immunological epitope existing between HIV-1gp41and human interferon-alpha and-beta. Immunobiology,1998,198(4):333-42.
    [156] Chen Y H, Stoiber H, Dierich M P. Increased levels of antibodies againstinterferon-alpha in HIV-1positive individuals may be explained by a commonimmunological epitope on the human interferon-alpha and HIV-1gp41. ImmunolLett,1997,55(1):15-8.
    [157] Chen Y H, Feng J N, Stockl G, et al. HIV-1gp41by a common immunologicalepitope induces increased levels of antibodies against human interferon-beta inHIV-1positive individuals. Mol Immunol,1997,34(18):1259-62.
    [158] Chen Y H, Wu W, Yang J, et al. Antibodies against human IFN-alpha and-betarecognized the immunosuppressive domain of HIV-1gp41and inhibit gp41-bindingto the putative cellular receptor protein p45. Immunol Lett,1999,69(2):253-7.
    [159] Chen Y H, Dierich M P. A common epitope on gp41, IFN-alpha and IFN-betainduces protective activity. Immunol Today,1998,19(12):586-7.
    [160] Ueda H, Howard O M, Grimm M C, et al. HIV-1envelope gp41is a potent inhibitorof chemoattractant receptor expression and function in monocytes. J Clin Invest,1998,102(4):804-12.
    [161] Su S B, Gao J, Gong W, et al. T21/DP107, A synthetic leucine zipper-like domainof the HIV-1envelope gp41, attracts and activates human phagocytes by usingG-protein-coupled formyl peptide receptors. J Immunol,1999,162(10):5924-30.
    [162] Su S B, Gong W H, Gao J L, et al. T20/DP178, an ectodomain peptide of humanimmunodeficiency virus type1gp41, is an activator of human phagocyte N-formylpeptide receptor. Blood,1999,93(11):3885-92.
    [163] Ebenbichler C F, Thielens N M, Vornhagen R, et al. Human immunodeficiencyvirus type1activates the classical pathway of complement by direct C1bindingthrough specific sites in the transmembrane glycoprotein gp41. J Exp Med,1991,174(6):1417-24.
    [164] Stoiber H, Ebenbichler C, Schneider R, et al. Interaction of several complementproteins with gp120and gp41, the two envelope glycoproteins of HIV-1. AIDS,1995,9(1):19-26.
    [165] Stoiber H, Schneider R, Janatova J, et al. Human complement proteins C3b, C4b,factor H and properdin react with specific sites in gp120and gp41, the envelopeproteins of HIV-1. Immunobiology,1995,193(1):98-113.
    [166] Stoiber H, Thielens N M, Ebenbichler C, et al. The envelope glycoprotein of HIV-1gp120and human complement protein C1q bind to the same peptides derived fromthree different regions of gp41, the transmembrane glycoprotein of HIV-1, andshare antigenic homology. Eur J Immunol,1994,24(2):294-300.
    [167] el Jarrah F, Hidvegi T, Ujhelyi E, et al. Complement activation decreases theability of HIV transmembrane envelope protein to bind to specific antibody. AIDS,1992,6(9):1050-1.
    [168] Hidvegi T, Prohaszka Z, Ujhelyi E, et al. Studies on the mechanism ofcomplement-mediated inhibition of antibody binding to HIV gp41. Clin ExpImmunol,1993,94(3):490-3.
    [169] Marschang P, Ebenbichler C F, Dierich M P. HIV and complement: role of thecomplement system in HIV infection. Int Arch Allergy Immunol,1994,103(2):113-7.
    [170] Kliger Y, Peisajovich S G, Blumenthal R, et al. Membrane-induced conformationalchange during the activation of HIV-1gp41. J Mol Biol,2000,301(4):905-14.
    [171] Bomsel M. Transcytosis of infectious human immunodeficiency virus across a tighthuman epithelial cell line barrier. Nat Med,1997,3(1):42-7.
    [172] Alfsen A, Bomsel M. HIV-1gp41envelope residues650-685exposed on nativevirus act as a lectin to bind epithelial cell galactosyl ceramide. J Biol Chem,2002,277(28):25649-59.
    [173] Alfsen A, Iniguez P, Bouguyon E, et al. Secretory IgA specific for a conservedepitope on gp41envelope glycoprotein inhibits epithelial transcytosis of HIV-1. JImmunol,2001,166(10):6257-65.
    [174] Wang J, Xu L, Tong P, et al. Mucosal antibodies induced by tandem repeat of2F5epitope block transcytosis of HIV-1. Vaccine,2011,29(47):8542-8.
    [175] Bristow C L, Fiscus S A, Flood P M, et al. Inhibition of HIV-1by modification of ahost membrane protease. Int Immunol,1995,7(2):239-49.
    [176] Hart M J, Sharma S, elMasry N, et al. Identification of a novel guanine nucleotideexchange factor for the Rho GTPase. J Biol Chem,1996,271(41):25452-8.
    [177] Zhang H, Wang L, Kao S, et al. Functional interaction between the cytoplasmicleucine-zipper domain of HIV-1gp41and p115-RhoGEF. Curr Biol,1999,9(21):1271-4.
    [178] Hovanessian A G, Briand J P, Said E A, et al. The caveolin-1binding domain ofHIV-1glycoprotein gp41is an efficient B cell epitope vaccine candidate againstvirus infection. Immunity,2004,21(5):617-27.
    [179] Perfettini J L, Castedo M, Roumier T, et al. Mechanisms of apoptosis induction bythe HIV-1envelope. Cell Death Differ,2005,12Suppl1:916-23.
    [180] Wang X M, Nadeau P E, Lo Y T, et al. Caveolin-1modulates HIV-1envelope-induced bystander apoptosis through gp41. J Virol,2010,84(13):6515-26.
    [181] Huang J H, Lu L, Lu H, et al. Identification of the HIV-1gp41core-binding motifin the scaffolding domain of caveolin-1. J Biol Chem,2007,282(9):6143-52.
    [182] Huang J H, Qi Z, Wu F, et al. Interaction of HIV-1gp41core with NPF motif inEpsin: implication in endocytosis of HIV. J Biol Chem,2008,283(22):14994-5002.
    [183] Zhou C, Lu L, Tan S, et al. HIV-1glycoprotein41ectodomain induces activationof the CD74protein-mediated extracellular signal-regulatedkinase/mitogen-activated protein kinase pathway to enhance viral infection. J BiolChem,2011,286(52):44869-77.
    [184]杨恒文. HIV-1Gp41结合蛋白POB1的筛选及性质研究[博士学位论文].北京:清华大学生物科学与技术系,2006.
    [185] Ikeda M, Ishida O, Hinoi T, et al. Identification and characterization of a novelprotein interacting with Ral-binding protein1, a putative effector protein of Ral. JBiol Chem,1998,273(2):814-21.
    [186] Nakashima S, Morinaka K, Koyama S, et al. Small G protein Ral and itsdownstream molecules regulate endocytosis of EGF and insulin receptors. EMBO J,1999,18(13):3629-42.
    [187] Oosterhoff J K, Penninkhof F, Brinkmann A O, et al. REPS2/POB1isdownregulated during human prostate cancer progression and inhibits growth factorsignalling in prostate cancer cells. Oncogene,2003,22(19):2920-5.
    [188] Weiss C D, White J M. Characterization of stable Chinese hamster ovary cellsexpressing wild-type, secreted, and glycosylphosphatidylinositol-anchored humanimmunodeficiency virus type1envelope glycoprotein. J Virol,1993,67(12):7060-6.
    [189] Jiang S, Lin K, Lu M. A conformation-specific monoclonal antibody reacting withfusion-active gp41from the human immunodeficiency virus type1envelopeglycoprotein. J Virol,1998,72(12):10213-7.
    [190] Huang J H, Liu Z Q, Liu S, et al. Identification of the HIV-1gp41core-bindingmotif--HXXNPF. FEBS Lett,2006,580(20):4807-14.
    [191] Qiao Z S, Kim M, Reinhold B, et al. Design, expression, and immunogenicity of asoluble HIV trimeric envelope fragment adopting a prefusion gp41configuration. JBiol Chem,2005,280(24):23138-46.
    [192] Moore J P, McKeating J A, Huang Y X, et al. Virions of primary humanimmunodeficiency virus type1isolates resistant to soluble CD4(sCD4)neutralization differ in sCD4binding and glycoprotein gp120retention fromsCD4-sensitive isolates. J Virol,1992,66(1):235-43.
    [193] Lu M, Blacklow S C, Kim P S. A trimeric structural domain of the HIV-1transmembrane glycoprotein. Nat Struct Biol,1995,2(12):1075-82.
    [194] Lawless M K, Barney S, Guthrie K I, et al. HIV-1membrane fusion mechanism:structural studies of the interactions between biologically-active peptides fromgp41. Biochemistry,1996,35(42):13697-708.
    [195] Judice J K, Tom J Y, Huang W, et al. Inhibition of HIV type1infectivity byconstrained alpha-helical peptides: implications for the viral fusion mechanism.Proc Natl Acad Sci U S A,1997,94(25):13426-30.
    [196] Otaka A, Nakamura M, Nameki D, et al. Remodeling of gp41-C34peptide leads tohighly effective inhibitors of the fusion of HIV-1with target cells. Angew ChemInt Ed Engl,2002,41(16):2937-40.
    [197] Lazzarin A, Clotet B, Cooper D, et al. Efficacy of enfuvirtide in patients infectedwith drug-resistant HIV-1in Europe and Australia. N Engl J Med,2003,348(22):2186-95.
    [198] Walmsley S, Henry K, Katlama C, et al. Enfuvirtide (T-20) cross-reactiveglycoprotein41antibody does not impair the efficacy or safety of enfuvirtide. JInfect Dis,2003,188(12):1827-33.
    [199] Vincent N, Tardy J C, Livrozet J M, et al. Depletion in antibodies targeted to theHR2region of HIV-1glycoprotein gp41in sera of HIV-1-seropositive patientstreated with T20. J Acquir Immune Defic Syndr,2005,38(3):254-62.
    [200] Kariya K, Koyama S, Nakashima S, et al. Regulation of complex formation ofPOB1/epsin/adaptor protein complex2by mitotic phosphorylation. J Biol Chem,2000,275(24):18399-406.
    [201] Yadav S, Zajac E, Singhal S S, et al. POB1over-expression inhibitsRLIP76-mediated transport of glutathione-conjugates, drugs and promotesapoptosis. Biochem Biophys Res Commun,2005,328(4):1003-9.
    [202] Penninkhof F, Grootegoed J A, Blok L J. Identification of REPS2as a putativemodulator of NF-kappaB activity in prostate cancer cells. Oncogene,2004,23(33):5607-15.
    [203] Qi Z, Shi W, Xue N, et al. Rationally designed anti-HIV peptides containingmultifunctional domains as molecule probes for studying the mechanisms of actionof the first and second generation HIV fusion inhibitors. J Biol Chem,2008,283(44):30376-84.
    [204] Liu S, Zhao Q, Jiang S. Determination of the HIV-1gp41fusogenic coreconformation modeled by synthetic peptides: applicable for identification of HIV-1fusion inhibitors. Peptides,2003,24(9):1303-13.
    [205] Neurath A R, Strick N, Jiang S, et al. Anti-HIV-1activity of cellulose acetatephthalate: synergy with soluble CD4and induction of "dead-end" gp41six-helixbundles. BMC Infect Dis,2002,2:6.
    [206] Li L, He L, Tan S, et al.3-hydroxyphthalic anhydride-modified chicken ovalbuminexhibits potent and broad anti-HIV-1activity: a potential microbicide forpreventing sexual transmission of HIV-1. Antimicrob Agents Chemother,2010,54(5):1700-11.
    [207] Jiang S, Lin K, Zhang L, et al. A screening assay for antiviral compounds targetedto the HIV-1gp41core structure using a conformation-specific monoclonalantibody. J Virol Methods,1999,80(1):85-96.
    [208] Sun X, Yau V K, Briggs B J, et al. Role of clathrin-mediated endocytosis duringvesicular stomatitis virus entry into host cells. Virology,2005,338(1):53-60.
    [209] Johannsdottir H K, Mancini R, Kartenbeck J, et al. Host cell factors and functionsinvolved in vesicular stomatitis virus entry. J Virol,2009,83(1):440-53.
    [210] Dong X N, Xiao Y, Dierich M P, et al. N-and C-domains of HIV-1gp41: mutation,structure and functions. Immunol Lett,2001,75(3):215-20.
    [211] Dubay J W, Roberts S J, Brody B, et al. Mutations in the leucine zipper of thehuman immunodeficiency virus type1transmembrane glycoprotein affect fusionand infectivity. J Virol,1992,66(8):4748-56.
    [212] Poumbourios P, Wilson K A, Center R J, et al. Human immunodeficiency virus type1envelope glycoprotein oligomerization requires the gp41amphipathicalpha-helical/leucine zipper-like sequence. J Virol,1997,71(3):2041-9.
    [213] Weng Y, Weiss C D. Mutational analysis of residues in the coiled-coil domain ofhuman immunodeficiency virus type1transmembrane protein gp41. J Virol,1998,72(12):9676-82.
    [214] Wild C, Greenwell T, Shugars D, et al. The inhibitory activity of an HIV type1peptide correlates with its ability to interact with a leucine zipper structure. AIDSRes Hum Retroviruses,1995,11(3):323-5.
    [215] Greenberg M L, Cammack N. Resistance to enfuvirtide, the first HIV fusioninhibitor. J Antimicrob Chemother,2004,54(2):333-40.
    [216] Salzwedel K, West J T, Hunter E. A conserved tryptophan-rich motif in themembrane-proximal region of the human immunodeficiency virus type1gp41ectodomain is important for Env-mediated fusion and virus infectivity. J Virol,1999,73(3):2469-80.
    [217] Liu S, Lu H, Niu J, et al. Different from the HIV fusion inhibitor C34, the anti-HIVdrug Fuzeon (T-20) inhibits HIV-1entry by targeting multiple sites in gp41andgp120. J Biol Chem,2005,280(12):11259-73.
    [218] Liu S, Wu S, Jiang S. HIV entry inhibitors targeting gp41: from polypeptides tosmall-molecule compounds. Curr Pharm Des,2007,13(2):143-62.
    [219] Roymans D, De Bondt H L, Arnoult E, et al. Binding of a potent small-moleculeinhibitor of six-helix bundle formation requires interactions with bothheptad-repeats of the RSV fusion protein. Proc Natl Acad Sci U S A,2010,107(1):308-13.
    [220] Li J, Chen X, Huang J, et al. Identification of critical antibody-binding sites in theHIV-1gp41six-helix bundle core as potential targets for HIV-1fusion inhibitors.Immunobiology,2009,214(1):51-60.
    [221] Koshiba S, Kigawa T, Iwahara J, et al. Solution structure of the Eps15homologydomain of a human POB1(partner of RalBP1). FEBS Lett,1999,442(2-3):138-42.
    [222] Morinaka K, Koyama S, Nakashima S, et al. Epsin binds to the EH domain of POB1and regulates receptor-mediated endocytosis. Oncogene,1999,18(43):5915-22.
    [223] Han K, Kim M H, Seeburg D, et al. Regulated RalBP1binding to RalA and PSD-95controls AMPA receptor endocytosis and LTD. PLoS Biol,2009,7(9):e1000187.
    [224] Oshiro T, Koyama S, Sugiyama S, et al. Interaction of POB1, a downstreammolecule of small G protein Ral, with PAG2, a paxillin-binding protein, is involvedin cell migration. J Biol Chem,2002,277(41):38618-26.
    [225] Singhal S S, Yadav S, Drake K, et al. Hsf-1and POB1induce drug sensitivity andapoptosis by inhibiting Ralbp1. J Biol Chem,2008,283(28):19714-29.
    [226] Rodriguez-Rocha H, Garcia Garcia A, Zavala-Flores L, et al. Glutaredoxin1protects dopaminergic cells by increased protein glutathionylation in experimentalParkinson's disease. Antioxid Redox Signal,2012,17(12):1676-93.
    [227] Badway J A, Baleja J D. Reps2: a cellular signaling and molecular traffickingnexus. Int J Biochem Cell Biol,2011,43(12):1660-3.
    [228] Schaeffer E, Soros V B, Greene W C. Compensatory link between fusion andendocytosis of human immunodeficiency virus type1in human CD4Tlymphocytes. J Virol,2004,78(3):1375-83.
    [229] Mo H, Konstantinidis A K, Stewart K D, et al. Conserved residues in thecoiled-coil pocket of human immunodeficiency virus type1gp41are essential forviral replication and interhelical interaction. Virology,2004,329(2):319-27.
    [230] Sheehy A M, Gaddis N C, Choi J D, et al. Isolation of a human gene that inhibitsHIV-1infection and is suppressed by the viral Vif protein. Nature,2002,418(6898):646-50.
    [231] Lecossier D, Bouchonnet F, Clavel F, et al. Hypermutation of HIV-1DNA in theabsence of the Vif protein. Science,2003,300(5622):1112.
    [232] Yu X, Yu Y, Liu B, et al. Induction of APOBEC3G ubiquitination and degradationby an HIV-1Vif-Cul5-SCF complex. Science,2003,302(5647):1056-60.
    [233] Wiegand H L, Doehle B P, Bogerd H P, et al. A second human antiretroviral factor,APOBEC3F, is suppressed by the HIV-1and HIV-2Vif proteins. EMBO J,2004,23(12):2451-8.
    [234] Peng G, Greenwell-Wild T, Nares S, et al. Myeloid differentiation andsusceptibility to HIV-1are linked to APOBEC3expression. Blood,2007,110(1):393-400.
    [235] Van Damme N, Goff D, Katsura C, et al. The interferon-induced protein BST-2restricts HIV-1release and is downregulated from the cell surface by the viral Vpuprotein. Cell Host Microbe,2008,3(4):245-52.
    [236] Muthumani K, Choo A Y, Zong W X, et al. The HIV-1Vpr and glucocorticoidreceptor complex is a gain-of-function interaction that prevents the nuclearlocalization of PARP-1. Nat Cell Biol,2006,8(2):170-9.
    [237] Selliah N, Zhang M, DeSimone D, et al. The gammac-cytokine regulatedtranscription factor, STAT5, increases HIV-1production in primary CD4T cells.Virology,2006,344(2):283-91.
    [238] Willey R L, Bonifacino J S, Potts B J, et al. Biosynthesis, cleavage, anddegradation of the human immunodeficiency virus1envelope glycoprotein gp160.Proc Natl Acad Sci U S A,1988,85(24):9580-4.
    [239] Pelchen-Matthews A, Clapham P, Marsh M. Role of CD4endocytosis in humanimmunodeficiency virus infection. J Virol,1995,69(12):8164-8.
    [240] Blauvelt A, Asada H, Saville M W, et al. Productive infection of dendritic cells byHIV-1and their ability to capture virus are mediated through separate pathways. JClin Invest,1997,100(8):2043-53.
    [241] Harouse J M, Kunsch C, Hartle H T, et al. CD4-independent infection of humanneural cells by human immunodeficiency virus type1. J Virol,1989,63(6):2527-33.
    [242] Teo I, Veryard C, Barnes H, et al. Circular forms of unintegrated humanimmunodeficiency virus type1DNA and high levels of viral protein expression:association with dementia and multinucleated giant cells in the brains of patientswith AIDS. J Virol,1997,71(4):2928-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700