用户名: 密码: 验证码:
岷江上游两种典型森林群落生态水文特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选择岷江上游山地两种典型森林植被类型——岷江冷杉( Abies faxoniana)林和川滇高山栎(Quercus aquifolioides)林为研究对象,采用野外定位和半定位观测及室内模拟试验相结合的方法,研究了两种森林类型的林冠层、枯落物层和土壤层等三个主要层次的生态水文特征。
     研究结果表明,岷江冷杉林的林冠截留率为49.4%,大于川滇高山栎林林冠截留率(16.5%)。两种林分的穿透雨量和林外降雨量之间均呈显著线性关系(p<0.01)。川滇高山栎林林冠截留率(%)随降雨量(mm)的增加呈双曲线递减。应用修正的Gash模型可用于估测该地区川滇高山栎林的林冠截留量。
     川滇高山栎林枯落物未分解层、半分解层和已分解层现存量分别为4.00 t/hm2、6.77 t/hm2和14.43 t/hm2;岷江冷杉林分别为1.14 t/hm2、7.40 t/hm2、11.99 t/hm2。枯落物持水量(mm)与浸水时间(h)之间呈较好的对数函数关系。
     川滇高山栎林和岷江冷杉林土壤层有效贮水能力总和分别为69.95mm和90.40mm。两种类型森林土壤大孔隙均在60-80cm土层中数量最多,土壤入渗特征均表现出较一致的规律性。采用Kostiakov公式和Horton公式这两种经验方程可以模拟两种森林类型土壤的水分入渗过程。
     川滇高山栎树干液流速率与空气饱和水汽压亏缺、太阳辐射强度、空气温度均呈极显著正相关(p<0.01),与空气相对湿度呈极显著负相关(p<0.01),对太阳辐射强度的时滞长度为40-60min。建立了不同地径的川滇高山栎树干液流速率、日蒸腾量与环境因子的回归关系模型,并以林分叶面积量作为空间纯量估算林分样地日蒸腾量变化在0.84-5.54mm(2007.7.23-7.31)。
This study chose two typical forests (Abies faxoniana forest and Quercus aquifolioides forest) in upper reaches of Minjiang River. The experiment studied the eco-hydrological features of the three main layers, such as canopy, litter and soil in the two typical forests by the method of the positioning and semi-positioning observation in the field and indoor simulation.
     The results showed canopy interception rate of A. faxoniana forest was 49.4 % which was more than that of Q. aquifolioides forest (16.5 %). There both were significant linear relationship between throughfall and gross rainfall in A. faxoniana forest and Q. aquifolioides forest (P<0.01). Canopy interception rate (%) reduced with the increase of rainfall (mm) by hyperbolic in Q. aquifolioides forest. And the results also proved that the revised Gash model could be used to estimate the canopy interception of Q. aquifolioides in the region.
     The amount of undecomposition, semi-decomposition and decomposition of litter in Q. aquifolioides forest were 4.00, 6.77, 14.43 t/hm2, respectively, and that in A. faxoniana forest were 1.14, 7.40, 11.99 t/hm2, respectively. There existed better logarithmic relationship between water-holding (mm) amount of litter and immersing time (h).
     The sum of the water storage capacity of the soil in Q. aquifolioides forest and A. faxoniana forest was 69.95 mm, 90.40 mm, respectively. The soil macroporosity size in Q. aquifolioides forest and A. faxoniana forest both were maximal in 60-80 cm. The soil infiltration characteristics of the two typical forests appeared consistent regularity. The water infiltration process of soil in the two typical forests was simulated based on the experienced formula of Kostiakov and Horton. The analysis showed that the relation of the sap flow with air vapor pressure deficit, solar radiation and air temperature was highly significant positive correlation in Q. aquifolioides (p<0.01). And there was a significant negative correlation between the sap flow velocity and the air relative humidity (p<0.01). The 40-60 min time lag of sap flow velocity to solar radiation intensity in Q. aquifolioides was presented. This paper set up the regression model for the sap flow velocity, daily transpiration, and environment factors in different basal diameter of Q. aquifolioides. Stand daily transpiration changes was 0.84-5.54 mm which estimated for scaling-up from sap flow of the single tree trunks on leaf area as a space quantity (2007.7.23-7.31).
引文
[1] Allen RG, Peteira LS, Raes D, et al. Crop evapotraspiration-guidelines for computing crop water requirements [M]. FAO Irrigation and Drainage Paper 56, Rome : FAO, 1998
    [2] Arnold JG, Srinivasan R, Muttiah RS, et al. Large area hydrologic modeling and assessment-part I: model development [J]. Journal of the American Water Resources Association, 1998, 34: 73-89
    [3] Asdak C, Jarvis PG, Gardingen PV, et al. Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia [J]. Journal of Hydrology, 1998a, 206: 237-244
    [4] Asdak C, Jarvis PG, Gardingen PV. Evaporation of intercepted precipitation based on an energy balance in unlogged and logged forest areas of central Kalimantan, Indonesia [J]. Agricultural and Forest Meteorology, 1998b, 92: 173-180
    [5] Berndtsson R, Nodomi K, Yasuda H, et al. Soil water and temperature patterns in an arid desert dune sand [J]. Journal of Hydrology, 1996, 185: 221-240
    [6] Beven K, Germann P. Macropores and water flow in soils [J]. Water Resources Research, 1982, 18: 1311-1325
    [7] Beven K. How far can we go in distributed hydrological modeling [J]. Hydrology and Earth System Sciences, 2001, 5(1): 1-12
    [8] Beven K. Micro- , meso- , macroporosity and channeling fliow phenomena in soil [J]. Soil Science Society of America Journal, 1981, 45: 1245
    [9] Blanken PD, Black TA. The canopy conductance of a boreal aspen forest, Prince Albert National Park, Canada [J]. Hydrological Processes, 2004, 18: 1561-1578
    [10] Bomell M. Selected challenges in runoff generation research in forests from the hill slope to headwater drainage basin scale [J]. Journal of the American Water Resources Association, 1998, 34: 765-785
    [11] Bosch JM, Hewlett JD. A review of catchment experiments to determine the effect of vegetation changes on water yield and evaportranspiration [J]. Journal of Hydrology, 1982, 55: 3-23
    [12] Bronstert A, Plate EJ. Modelling of runoff generation and soil moisture dynamics for hillslopes and micro-catchments [J]. Journal of Hydrology, 1997, 198: 177-195
    [13] Brown AE. Zhang L. McMahon TA. et al. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation [J]. Journal of Hydrology. 2005, 310: 28-61
    [14] Bruijnzeel LA. Hydrology of tropical montane cloud forests: a reassessment [J]. Land Use and Water Resources Research, 2001, 1: 1-18
    [15] Buttle JM, McDonald DJ. Soil macroporosity and infiltration characteristics of a forestpodzol [J]. Hydrological Processes, 2000, 14: 831-848
    [16] Carlyle-Moses DE, Laureano JSF, Price AG. Throughfall and throughfall spatial variability in Madrean oak forest communities of northeastern Mexico [J]. Journal of Hydrology, 2004a, 297: 124-135
    [17] Carlyle-Moses DE. Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community [J]. Journal of Arid Environments, 2004b, 58: 181-202
    [18] Carlyle-Moses DE, Priceb AG. An evaluation of the Gash interception model in a northern hardwood stand [J]. Journal of Hydrology, 1999, 214: 103-110
    [19] Celik I. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey [J]. Soil & Tillage Research, 2005, 83: 270-277
    [20] Chuang YL, Oren R, Bertozzi AL, et al. The porous media model for the hydraulic system of a conifer tree: linking 1 sap flux data to transpiration rate [J]. Ecological Modelling, 2006, 191: 447-468
    [21] Copeland HRA, Kittel T. Potential impacts of vegetation change: A regional modeling study [J]. Journal of Geophysical Research, 1996, 101 (D3): 7409-7418.
    [22] Crockford RH, Richardson DP. Partitioning of rainfall into throughfall, stemow and interception: effect of forest type, ground cover and climate [J]. Hydrological Processes, 2000, 14: 2903-2920
    [23] David TS, Gash JHC, Valente F, et al. Rainfall interception by an isolated evergreen oak tree in a Mediterranean savannah [J]. Hydrological Processes, 2006, 20: 2713-2726
    [24] Deguchi A, Hattori S, Park H. The influence of seasonal changes in canopy structure on interception loss: Application of the revised Gash model [J]. Journal of Hydrology, 2006, 318: 80-102.
    [25] Dietz J, H?lscher D, Leuschner C, et al. Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia [J]. Forest Ecology and Management, 2006, 237: 170-178
    [26] Dunkerley D. Measuring interception loss and canopy storage in dryland vegetation. A brief review and evaluation of available research strategies [J]. Hydrological Processes, 2000, 14: 669-678
    [27] Dunne T, Zhang W, Aubry BF. Effects of rainfall, vegetation and microtopography on infiltration and runoff [J]. Water Resources Research, 1991, 27(9): 2271-2285
    [28] Dykes AP. Rainfall interception from a lowland tropical rainforest in Brunei [J]. Journal of Hydrology, 1997, 200: 260-279
    [29] Facelli JM, Pickett STA. Plant litter: Its dynamics and effects on plant community structure [J]. The Botanical Review, 1991, 57: 1-32
    [30] Flügel WA, Smith RE. Integrated process studies and modelling simulations of hillslope hydrology and interflow dynamics using the HILLS model [J]. Environmental Modellingand Software, 1998, 14: 153-160
    [31] Ford CR, Goranson CE, Mitchell RJ, et al. Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees [J] Tree Physiology, 2004, 24: 951-960
    [32] Garcia-Pausas J, Casals P, RomanyàJ. Litter decomposition and faunal activity in Mediterranean forest soils: effects of N content and the moss layer [J]. Soil Biology and Biochemistry, 2004, 36: 989-997
    [33] Gash JHC, Valente F, David JS. Estimates and measurements of evaporation from wet, sparse pine forest in Portugal [J]. Agricultural and Forest Meteorology, 1999,94: 149-158
    [34] Gash JHC, Lloyd CR, Lachaud G. Estimation sparse forest rainfall interception with an analytical model [J]. Journal of Hydrology, 1995, 170: 78-86
    [35] Gash JHC, Wright IR, Lloyd CR. Comparative estimates of interception loss from three coniferous forests in Great Britain [J]. Journal of Hydrology, 1980, 48: 89-105
    [36] Gash JHC. An analytical model of rainfall interception in forests [J]. Quarterly Journal of the Royal Meteorological Society, 1979, 105: 43-55
    [37] Germann PF, Beven K. Kinematic wave approximation to infiltration into soils with sorbing macropores [J]. Water Resources Research, 1985, 21: 990-996
    [38] Germann PF, Edwards WM, Owens LB. Profiles of bromide and increased soil moisture after infiltration into soils with macropores [J]. Soil Science Society of America Journal, 1984, 48: 237-244
    [39] Giertz S. Diekkrüger B.Analysis of the hydrological processes in a small headwater catchment in Benin (West Africa) [J]. Physics and Chemistry of the Earth. 2003, 28: 1333-1341
    [40] Gómez JA, Giráldez JV, Fereres E. Rainfall interception by olive trees in relation to leaf area [J]. Agricultural Water Management, 2001, 49: 65-76
    [41] Gómez JA, Vanderlinden K, GiráldezRainfall JV, et al. concentration under olive trees [J]. Agricultural Water Managemen, 2002, 55: 53-70
    [42] Granier A, Biron P, K?stner B, et al. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine [J]. Theoretical and Applied Climatology, 1996, 53: 115-122
    [43] Granier A, Biron P, Lemoine D. Water balance, transpiration and canopy conductance in two beech stands [J]. Agricultural and Forest Meteorology, 2000, 100: 291-308
    [44] Grant SA, Jabro JD, Fritton DD et al. A stochastic model of infiltration which simulates“macropore”soil water flow [J]. Water Resources Research, 1991, 27: 1439-1446
    [45] Guevara-Escobar A, González-Sosa E, Véliz-Chávez C, et al. Rainfall interception and distribution patterns of gross precipitation around an isolated Ficus benjamina tree in an urban area [J]. Journal of Hydrology, 2007, 333: 532-541
    [46] Hamada S, Ohta T, Hiyama T, et al. Hydrometeorological behaviour of pine and larchforests in eastern Siberia [J]. Hydrological Processes, 2004, 18: 23-39
    [47] Hanchi A, Rapp M. Stemflow determination in forest stands [J]. Forest Ecology and Management, 1997, 97: 231-235
    [48] Harmon ME, Franklin JF, Swanson FJ, et al. Ecology of coarse woody debris in Temperate Ecosystem [C]. Advances in Ecological Research, 1986, 15 :133-1761
    [49] Hatton TJ, Wu HI. Scaling theory to extrapolate individual tree water use to stand water use [J]. Hydrological processes, 1995, 9: 527-540
    [50] Herbst M, Roberts JM, Rosier PTW, et al. Measuring and modelling the rainfall interception loss by hedgerows in southern England [J]. Agricultural and Forest Meteorology, 2006, 141: 244-256
    [51] Herbst M, Roberts JM, Rosier PTW. et al. Seasonal and interannual variability of canopy transpiration of a hedgerow in southern England [J]. Tree Physiology, 2007, 27: 321-333
    [52] Herbst M, Rosier PTW, McNeil DD, et al. Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest [J]. Agricultural and Forest Meteorology, 2008, 148: 1655-1667
    [53] Hinckley TM, Brooks JR, Cermak J, et al. Water flux in a hybrid poplar stand [J]. Tree Physiology, 1994,
    [54] Iida S, Tanaka T, Sugita M. Change of interception process due to the succession from Japanese red pine to evergreen oak [J]. Journal of Hydrology, 2005, 315: 154-166
    [55] IrouméA, Huber A. Comparison of interception losses in a broadleaved native forest and a Pseudotsuga menziesii (Douglas fir) plantation in the Andes Mountains of southern Chile [J]. Hydrological Processes, 2002, 16:2347-2361
    [56] Keim, RF, Skaugset AE, Weiler M. Temporal persistence of spatial patterns in throughfall [J]. Journal of Hydrology, 2005, 314: 263-274
    [57] Klaassen W, Bosveld F, de Water E. Water storage and evaporation as constituents of rainfall interception [J]. Journal of Hydrology, 1998, 212-213: 36-50
    [58] Kluitenberg GJ, Horton R. Effect of solute application method on preferential transport of solutes in soil [J]. Geoderma, 1990, 46: 283-297
    [59] Koichiro K, Yuri T, Nobuaki T, et al. Generation of stemflow volume and chemistry in a mature Japanese cypress forest [J]. Hydrological Processes, 2001, 15: 1967-1978
    [60] Kondo J, Saigusa N, Sato T. A parameterization of evaporation from bare soil surfaces [J]. Journal of Applied Meteorology, 1990, 29: 385-389
    [61] K?stner B, Biron P, Siegwolf R, et al., Estimates of water vapor flux and canopy conductance of Scots pine at the tree level utilizing different xylem sap flow methods [J]. Theoretical and Applied Climatology, 1996, 53: 105-113
    [62] Kumagai T, Aoki S, Nagasawa H, et al. Effects of tree-to-tree and radial variations on sap flow estimates of transpiration in Japanese cedar [J]. Agricultural and Forest Meteorology, 2005c, 135: 110-116
    [63] Kumagai T, Aoki S, Shimizu T, et al. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed [J], Tree Physiology, 2007, 27: 161-168
    [64] Kumagai T, Nagasawa H, Mabuchi T, et al. S Sources of error in estimating stand transpiration using allometric relationships between stem diameter and sapwood area for Cryptomeria japonica and Chamaecyparis obtusa [J]. Forest Ecology and Management, 2005b, 206:191-195
    [65] Wullschleger SD, Hanson PJ, Todd DE. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques [J]. Forest Ecology and Management, 2001, 143: 205-213
    [66] Kumagai T, Saitoh TM, Sato Y, et al. Annual water balance and seasonality of evapotranspiration in a Bornean tropical rainforest [J]. Agricultural and Forest Meteorology, 2005a, 128: 81-92
    [67] Kung KJS. Preferential flow in a sandy vadose zone. 1: Field observation [J]. Geoderma, 1990a, 46: 51-58
    [68] Kung KJS. Preferential Flow in a Sandy Vadose Zone: 2. Mechanism and Implications [J]. Geoderma, 1990b, 46: 59-71
    [69] Leopoldo PR, Franken WK, Villa Nova NA. Real evapotranspiration and transpiration through a tropical rain forest in central Amazonia as estimated by the water balance method [J]. Forest Ecology and Management, 1995, 73: 185-195
    [70] Levia DF, Frost EE. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems [J]. Journal of Hydrology, 2003, 274: 1-29
    [71] Limousin JM, Rambal S, Ourcival JM, et al. Modelling rainfall interception in a mediterranean Quercus ilex ecosystem: Lesson from a throughfall exclusion experiment [J]. Journal of Hydrology, 2008, 357: 57-66
    [72] Link TE, Unsworth M, Marks D. The dynamics of rainfall interception by a seasonal temperate rainforest [J]. Agricultural and Forest Meteorology, 2004, 124: 171-191
    [73] Liu J. Theoretical model of the process of rainfall interception in forest canopy [J]. Ecological Modelling, 1988, 42: 111-123
    [74] Liu S. Estimation of rainfall storage capacity in the canopies of cypress wetlands and slash pine uplands in North-Central Florida [J]. Journal of Environmental Hydrology, 1998, 207: 32-41
    [75] Llorens P, Domingo F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe [J]. Journal of Hydrology, 2007, 335: 37-54
    [76] Llorens P, Gallart F. A simplified method for forest water storage capacity measurement [J]. Journal of Hydrology, 2000, 240: 131-144
    [77] Lloyd CR, Marques AO. Spatial variability of throughfall and stemflow measurements in Amazonian rainforest [J]. Agricultural and Forest Meteorology, 1988, 42: 63-73
    [78] Loustau D, Berbigier P, Granier A, et al. Interception loss, throughfall and stemflow in a maritime pine stand. I. Variability of throughfall and stemflow beneath the pine canopy [J]. Journal of Hydrology, 1992, 138 :449 467
    [79] Lundberg A, Halldin S. Snow interception evaporation. Review of measurementtechniques, processes, and models [J]. Theoretical and Applied Climatology, 2001, 70: 117-133
    [80] Manfroi OJ, Koichiro K, Nobuaki T, et al. The stemflow of trees in a Bornean lowland tropical forest [J]. Hydrological Processes. 2004, 18: 2455-2474
    [81] Marimon-Junior BH, Hay JD. A new instrument for measurement and collection of quantitative samples of the litter layer in forests [J]. Forest Ecology and Management, 2008, 255: 2244-2250
    [82] Marin CT, Bouten W, Sevink J. Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia [J]. Journal of Hydrology, 2000, 237: 40-57
    [83] Mcculloch JSG, Robinson M. History of forest hydrology [J]. Journal of Hydrology, 1993, 150: 189-216
    [84] Mehta VK, Sullivan PJ, Walter MT, et al. Impacts of disturbance on soil properties in a dry tropical forest in Southern India [J]. Ecohydrology, 2008, 1: 161-175
    [85] Mo XG, Liu SX, Lin ZH, et al. Simulating temporal and spatial variation of evapotranspiration over the Lushi basin [J]. Journal of Hydrology, 2004, 285: 125-142
    [86] Moreira MZ, Sternberg L da SL, Martinelli LA, et al. Contribution of transpiration to forest ambient vapour based on isotopic measurements [J]. Global Change Biology, 1997, 3: 439-450
    [87] O’Brien JJ, Oberbauer SF, Clark DB. Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest [J]. Plant, Cell and Environment, 2004, 27: 551-567
    [88] O’Grady AP, Worledge D, Battaglia M. Constraints on transpiration of Eucalyptus globulus in southern Tasmania, Australia [J]. Agricultural and Forest Meteorology, 2008, 148: 453-465
    [89] Oren B, Pataki DE. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous [J]. Oecologia, 2001, 127: 549-559
    [90] Phillips N, Oren R, Zimmermann R, et al. Temporal patterns of water flux in trees and lianas in a Panamanian moist forest [J]. Trees, 1999, 14: 116-123
    [91] Pielke RA, Avissar R. Influence of landscape structure on local and regional climate [J]. Landscape Ecology, 1990, 4: 133-155
    [92] Putuhena WM, Cordery I. Estimation of interception capacity of the forest floor. [J]. Journal of Hydrology, 1996, 180: 283-299
    [93] Qin YS, Yu XX, Wang SY. Water interception and retarding characteristics of forest litters in the upper streams of Miyun Reservior [J]. Foesrtry Sutdies in China, 2000, 2(l): 58-62
    [94] Rodrigo A, ?vila A. Influence of sampling size in the estimation of mean throughfall in two Mediterranean holm forest [J]. Journal of Hydrology, 2001, 243: 216-227
    [95] Rutter AJ, Kershaw KA, Robins PC, et al. A predictive model of rainfall interception in forests. I. Derivation of the model from observations in forests. I. Derivation of the model from observations in a plantation of Corsican pine [J]. Agricultural Meteorology, 1971, 9: 367-384
    [96] Scott RL, Watts C, Payan JG, et al. The understory and overstory partitioning of energy and water fluxes in an open canopy, semiarid woodland [J]. Agricultural and Forest Meteorology, 2003, 114: 127-139
    [97] Shaman J, Stieglitz M, Burns D. Are big basins just the sum of small catchments? [J]. Hydrological Processes, 2004, 18: 3195-3206
    [98] Silva IC, Okumura T. Rainfall partitioning in a mixed white oak forest with dwarf bamboo undergrowth [J]. Journal of Environmental Hydrology, 1996, 4:1-16
    [99] ?im?nek J, Jarvis NJ, van Genuchten MT, et al. Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone [J]. Journal of Hydrology, 2003, 272: 14-35
    [100] Singh KP , Singh PK , Tripathi SK. Litterfall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli, India [J]. Biology and Fertility of Soils, 1999, 29: 371-378
    [101] Sinun W, Meng WW, Douglas I, et al. Throughfall, Stemflow, Overland Flow and Throughflow in the Ulu Segama Rain Forest, Sabah, Malaysia [J]. Philosophical Transactions of the Royal Society B, 1992, 335: 389-395
    [102] Sloan PG, Moore ID. Modeling subsurface stormflow on steeply sloping forested watersheds [J]. Water Resources Research, 1984, 20(12): 1815-1822
    [103] ?raj M, Brilly M, Miko? M. Rainfall interception by two deciduous Mediterranean forests of contrasting stature in Slovenia [J]. Agricultural and Forest Meteorology, 2008, 148: 121-134
    [104] St?elcováK, Min?á? J, ?kvarenina J. Influence of tree transpiration on mass water balance of mixed mountain forests of the West Carpathians [J]. Biologia, 2006, 61: 305-310
    [105] Swanson RH. Significant historical developments in thermal methods for measuring sap flow in trees [J]. Agricultural and forest meteorology, 1994, 72: 113-132
    [106] Swartzendruber D. Derivation of a two-term infiltration equation from the Green-Ampt model [J]. Journal of Hydrology, 2000, 236: 247-251
    [107] Teklehaimanot Z, Jarvis PG, Ledger DC. Rainfall interception and boundary layer conductance in relation to tree spacing [J]. Journal of Hydrology, 1991, 123: 261-278
    [108] Teskey RO, Sheriff DW. Water use by Pinus radiata trees in a plantation [J]. Tree Physiology, 1996, 16: 273-279
    [109] Toba T, Ohta T. An observational study of the factors that influence interception loss in boreal and temperate forests [J]. Journal of Hydrology, 2005, 313: 208-220
    [110] Tsujimura M, Tanaka T. Evaluation of evaporation rate from forested soil surface using stable isotopic composition of soil water in a headwater basin [J]. Hydrological Processes, 1998, 12: 2093-2103
    [111] Unsworth MH, Phillips N, Link T, et al. Components and controls of water flux in an old-growth Douglas-fir-western hemlock ecosystem [J]. Ecosystems, 2004, 7: 468-481
    [112] Vernimmen RRE, Bruijnzeel LA, Romdoni A, Rainfall interception in three contrasting lowland rain forest types in Central Kalimantan, Indonesia [J]. Journal of Hydrology, 2007, 340: 217- 232
    [113] Vertessy RA, Benyon RG, O'sullivan SK, et al. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest [J]. Tree Physiology, 1996, 15: 559-567
    [114] Viville D, Biron P, Granier A, et al. Interception in a mountainous declining spruce stand in the Strengbach catchment(Vosges, France) [J]. Journal of hydrology, 1993, 273-282
    [115] Wallace J, Mcjannet D. On interception modelling of a lowland coastal rainforest in northern Queensland, Australia [J]. Journal of Hydrology, 2006, 329: 477-488
    [116] Weiler M, Naef F. Simulating surface and subsurface initiation of macropore flow [J]. Journal of Hydrology, 2003, 273: 139-154
    [117] Whitehead PG, Robinson M. Experimental basin studies- an international and historical perspective of forest impacts [J]. Journal of Hydrology, 1993, 145: 217-230
    [118] Williams DG, Cable W, Hultine K, et al. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques [J]. Agricultural and Forest Meteorology, 2004, 125: 241-258
    [119] Wood PJ, Hannah DM, Sadler JP. Hydroecology and Ecohydrology: Past, Present and Future [M]. UK: Joha Wiley & Sons, Ltd, 2007
    [120] Wu JB, Guan DX, Han SJ, et al. Ecological functions of coarse woody debris in forest ecosystem [J]. Journal of Forestry Research, 2005, 16(3): 247-252
    [121] Xiao Q, McPherson EG, Ustin SL, et al. Winter rainfall interception by two mature open-grown trees in Davis, California [J]. Hydrological Processes, 2000, 14: 763-784
    [122] Yamanaka T, Takeda A, Shimada J. Evaporation beneath the soil surface: some observational evidence and numerical experiments [J]. Hydrological Processes, 1998, 12: 2193-2203
    [123] Yepez EA, Williams DG, Scott RL, et al. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor [J]. Agricultural and Forest Meteorology, 2003, 119: 53-68
    [124] Zeppel MJB, Macinnis-Ng CMO, Yunusa IAM, et al. Long term trends of stand transpiration in a remnant forest during wet and dry years [J]. Journal of Hydrology, 2008,349: 200-213
    [125] Ziegler AD, Giambelluca TW, Nullet MA, et al. Throughfall in an evergreen-dominated forest stand in northern Thailand: Comparison of mobile and stationary methods [J]. Agricultural and Forest Meteorology, 2009, 149: 373-384
    [126]鲍文,包维楷,何丙辉,等.岷江上游油松人工林对降水的截留分配效应[J].北京林业大学学报, 2004b, 26 (5): 10-16
    [127]鲍文,包维楷,何丙辉,等.森林生态系统对降水的分配与拦截效应[J].山地学报, 2004a, 22 (4): 483-491
    [128]曹成有,朱丽辉,韩春声,等.辽宁东部山区森林枯落物层的水文作用[J].沈阳农业大学学报, 1997, 28 (1): 44-48
    [129]常学向,赵文智.荒漠绿洲农田防护树种二白杨生长季节树干液流的变化[J].生态学报, 2004, 24 (7): 1436-1441
    [130]常志勇,包维楷,何丙辉,等.岷江上游油松与华山松人工混交林对降雨的截留分配效应[J].水土保持学报, 2006, 20 (6): 37-40
    [131]陈奇伯,张洪江,解明曙.森林枯落物及其苔藓层阻延径流速度研究[J].北京林业大学学报, 1996, 18 (l): l-5
    [132]陈引珍,何凡,张洪江,等.缙云山区影响林冠截留量因素的初步分析[J].中国水土保持科学, 2005, 3 (3): 69-72
    [133]陈云明,刘国彬,焦锋,等.黄土丘陵半干旱区人工沙棘林水文特性及效益[J].山地学报, 2004, 22 (4): 400-405
    [134]程根伟,余新晓,赵玉涛,等.山地森林生态系统水文循环与数学模拟[M].北京:科学出版社, 2004
    [135]程金花,张洪江,史玉虎,等.三峡库区几种林下枯落物的水文作用[J].北京林业大学学报, 2003, 25 (2): 8-13
    [136]仇才楼,梁珍海,康立新,等.苏北沿海防护林对土壤渗透性的影响[J].生态学杂志, 1997,16 (2): 13-16
    [137]党宏忠,周择福,赵雨森.青海云杉林冠截留特征研究[J].水土保持学报, 2005, 19 (4): 60-64
    [138]党宏忠.祁连山水源涵养林水文特征研究[D].东北林业大学博士学位论文, 2004
    [139]刁一伟,裴铁璠.森林流域生态水文过程动力学机制与模拟研究进展[J].应用生态学报, 2004, 15 (12): 2369-2376
    [140]范世香,蒋德明,阿拉木萨,等.林内穿透雨量模型研究[J].生态学报, 2003, 23 (7): 1403-1407
    [141]范世香,裴铁璠,迟振文.树干径流及林冠截留规律分析[J].辽宁林业科技, 1992, 1: 54-57
    [142]范世香,裴铁璠,蒋徳明,等.两种不同林分截留能力的比较研究[J].应用生态学报, 2000, 11 (5): 671-674
    [143]冯杰,郝振纯. CT扫描确定土壤大孔隙分布[J].水科学进展, 2002, 13 (5): 611-617
    [144]高甲荣,王敏,毕利东,等.贡嘎山不同年龄结构峨眉冷杉林粗木质残体的贮存量及其特征[J].中国水土保持科学, 2003, 1 (2): 47-51
    [145]高甲荣,肖斌,张东升,等.国外森林水文研究进展述评[J].水土保持学报, 2001, 15 (5): 60-64
    [146]高人,周广柱.辽东山区不同森林植被类型枯落物层截留降雨行为研究[J].辽宁林业科技, 2002, (5): 1-4
    [147]高雁,范世香,程银才.蓄满产流理论在林冠截留降雨中的应用[J].山东农业大学学报(自然科学版) , 2006, 37 (2): 211-214
    [148]巩合德,王开运,杨万勤,等.川西亚高山白桦林穿透雨和茎流特征观测研究[J].生态学杂志, 2004, 23 (4): 17-20
    [149]巩合德,王开运,杨万勤,等.川西亚高山原始云杉林内降雨分配研究[J].林业科学, 2005, 41 (1): 198-201
    [150]官丽莉,周国逸,张德强,等.鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究[J].植物生态学报, 2004, 28 (4): 449-456
    [151]郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展[J].林业科学, 2006, 42 (4): 93-100
    [152]郭明春,于澎涛,王彦辉,等.林冠截持降雨模型的初步研究[J].应用生态学报, 2005, 16 (9): 1633-1637
    [153]何常清,于澎涛,管伟,等.华北落叶松枯落物覆盖对地表径流的拦阻效应[J].林业科学研究, 2006, 19 (5): 595-599
    [154]何飞,刘兴良,郑少伟,等.四川卧龙自然保护区川滇高山栎矮林在海拔梯度上的植物种_面积研究[J].成都大学学报(自然科学版), 2006, 25 (1): 31-34
    [155]胡淑萍,余新晓,岳永杰.北京百花山森林枯落物层和土壤层水文效应研究[J].水土保持学报, 2008, 22 (1): 146-150
    [156]黄礼隆,杨玉波.试论四川西部高山原始林的水源涵养效能.见:潘维俦.全国森林水文学术讨论会文集[C].北京:测绘出版社, 1989
    [157]黄沛,张秋文.几种典型流域水文模型类比分析[J].水资源与水工程学报, 2006, 17 (5): 27-30
    [158]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践[M.北京:中国水利水电出版社, 2005
    [159]康尔泗,陈仁升,张智慧,等.内陆河流域水文过程研究的一些科学问题[J].地球科学进展, 2007, 22 (9): 940-953
    [160]李德生,张萍,张水龙,等.黄前库区森林地表径流水移动现律的研究[J].水土保持学报, 2004, 18 (1): 78-81
    [161]李红云,杨吉华,鲍玉海,等.山东省石灰岩山区灌木林枯落物持水性能的研究[J].水土保持学报, 2005, 19 (1): 44-48
    [162]李凌浩,王其兵,邢雪荣,等.森林生态系统研究中几个重要方面的进展[J].植物学通报, 1998, 15 (1): 17-26
    [163]李凌浩,邢雪荣,黄大明,等.武夷山甜槠林粗死木质残体的贮量、动态及其功能评述[J].植物生态学报, 1996, 20 (2): 132-143
    [164]李王成,王为,冯绍元,等.不同类型微型蒸发器测定土壤蒸发的田间试验研究[J].农业工程学报, 2007, 23 (10): 6-13
    [165]李伟莉,金昌杰,王安志,等.长白山北坡两种类型森林土壤的大孔隙特征[J].应用生态学报, 2007b, 18 (6): 1213-1218
    [166]李伟莉,金昌杰,王安志,等.土壤大孔隙流研究进展[J].应用生态学报, 2007a, 18 (4): 888-894
    [167]李延成,程传民,杨吉华,等.新泰市土门林场不同混交林枯落物层持水性能的研究[J].山东大学学报(理学版), 2007, 42 (1): 69-75
    [168]李振新,欧阳志云,郑华,等.岷江上游两种生态系统降雨分配的比较[J].植物生态学报, 2006, 30 (5): 723-731
    [169]李振新,郑华,欧阳志云,等.岷江冷杉针叶林下穿透雨空间分布特征[J].生态学报, 2004, 24 (5): 1015-1021
    [170]李志,刘文兆,王秋贤.黄土塬区不同地形部位和土地利用方式对土壤物理性质的影响[J].应用生态学报, 2008, 19 (6): 1303-1308
    [171]李志安,林永标,彭少麟.华南人工林凋落物养分及其转移[J].应用生态学报, 2000, 11(3): 321-326
    [172]李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志, 2004, 23 (6): 77-83
    [173]林平,李吉跃,马达.北京山区油松林蒸腾耗水特性研究[J].北京林业大学学报, 2006, 28 (增刊1): 47-50
    [174]林业部科技司.森林生态系统定位研究方法[M].北京:中国科学技术出版社
    [175]刘德良,李吉跃,马达.侧柏树干边材液流空间变化规律[J].生态学杂志, 2008, 27 (8): 1262-1268
    [176]刘家冈,万国良,张学培,等.林冠对降雨截留的半理论模型[J].林业科学, 2000, 36 (2): 2-5
    [177]刘丽霞,王辉,孙栋元,等.绿洲农田防护林系统土壤蒸发特征研究[J].干旱区资源与环境, 2008, 22 (1): 162-166
    [178]刘伦辉,刘文耀.滇中山地主要植物群落水土保持效益比较[J].水土保持学报, 1990, 4 (1): 36-42
    [179]刘世海,余新晓,胡春宏,等.密云水库北京集水区人工水源保护林降水化学性质研究[J].水土保持学报, 2002, 16 (1): 100-103
    [180]刘世海,余新晓.北京密云水库库区水源涵养林冠层水文特征研究[J].林业科学, 2005, 41 (1): 194-197
    [181]刘世荣,常建国,孙鹏森.森林水文学:全球变化背景下的森林与水的关系[J].植物生态学报, 2007, 31 (5): 753-756
    [182]刘世荣,孙鹏森,王金锡,等.长江上游森林植被水文功能研究[J].自然资源学报,2001, 16 (5): 451-456
    [183]刘世荣,孙鹏森,温远光.中国主要森林生态系统水文功能的比较研究[J].植物生态学报, 2003, 27 (1): 16-22
    [184]刘世荣,王兵,温远光,等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社, 1996
    [185]刘文杰,李鹏菊,李红梅,等.西双版纳热带季节雨林林下土壤蒸发的稳定性同位素分析[J].生态学报, 2006, 26 (5): 1303-1311
    [186]刘向东,吴钦孝,赵鸿雁.森林植被垂直截留作用与水土保持[J].水土保持研究, 1994, 1 (1): 8-13
    [187]卢俊峰,马钦彦,刘世海,等.北京密云油松人工林林冠降水截留特征研究[J].北京林业大学学报, 2005, 27 (增刊2): 129-132
    [188]卢立华,贾宏炎,何日明,等.南亚热带6种人工林凋落物的初步研究[J].林业科学研究, 2008, 21 (3): 346-352
    [189]陆象豫,唐凯军.台灣中部地區天然闊葉林降雨截留量之探討.林业试验所研究报告季刊[J], 1995, 10 (4): 447-457
    [190]陆耀东,薛立,曹鹤,等.去除地面枯落物对加勒比松(Pinus caribaea)林土壤特性的影响[J].生态学报, 2008, 28 (7): 3205-3211
    [191]逯军峰,王辉,曹靖,等.油松人工林凋落物对土壤理化性质的影响[J].西北林学院学报, 2007, 22 (3): 25-28
    [192]罗辑,程根伟,宋孟强,等.贡嘎山峨眉冷杉林凋落物的特征[J].植物生态学报, 2003, 27 (1): 59-65
    [193]骆宗诗,向成华,慕长龙.绵阳官司河流域主要森林类型凋落物含量及动态变化[J].生态学报, 2007, 27 (5): 1772-1781
    [194]马玲,饶兴权,赵平,等.马占相思整树蒸腾的日变化和季节变化特征[J].北京林业大学学报, 2007, 29 (1): 67-73
    [195]马玲,赵平,饶兴权,等.马占相思树干液流特征及其与环境因子的关系[J].生态学报, 2005, 25 (9): 2145-2151
    [196]马雪华.森林水文学[M].北京:中国林业出版社, 1993
    [197]马雪华.四川米亚罗地区高山冷杉林水文作用的研究[J].林业科学, 1987, 23 (3): 253-265
    [198]孟春雷.土壤蒸发及水热传输研究综述[J].土壤通报, 2007, 38 (2): 374-378
    [199]莫江明,方运霆,冯肇年,等.鼎湖山人为干扰下马尾松林水文生态功能[J].热带亚热带植物学报, 2002, 10 (2): 99-104
    [200]牛健植,余新晓,张志强.优先流研究现状及发展趋势[J].生态学报, 2006, 26 (1): 231-243
    [201]潘开文,何静,吴宁.森林凋落物对林地微生境的影响[J].应用生态学报, 2004, 15 (1): 153-158
    [202]潘紫文,刘强,佟得海.黑龙江省东部山区主要森林类型土壤水分的入渗速率[J].东北林业大学学报, 2002, 30 (5): 24-26
    [203]潘紫重,杨文化,曲银鹏.不同林分类型凋落物的蓄水功能[J].东北林业大学学报, 2002, 30 (5): 19-21
    [204]裴铁璠,李金中.壤中流模型研究的现状及存在问题[J].应用生态学报, 1998, 9 (5): 543-548
    [205]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应[J].生态学报, 2002, 22 (9): 1534-1544
    [206]彭云,丁贵杰.不同林龄马尾松林枯落物储量及其持水性能[J].南京林业大学学报(自然科学版), 2008, 32 (4): 43-46
    [207]齐登红,靳孟贵,刘延锋.降水入渗补给过程中优先流的确定[J].地球科学——中国地质大学学报, 2007, 32 (3): 420-424
    [208]秦耀东,任理,王济.土壤中大孔隙流研究进展与现状[J].水科学进展, 2000, 11 (2): 203-207
    [209]秦耀东.土壤物理学[M].北京:高等教育出版社, 2003
    [210]饶良懿,朱金兆,毕华兴.重庆四面山森林枯落物和土壤水文效应[J].北京林业大学学报, 2005, 27 (1): 33-37
    [211]任海,彭少麟,刘鸿先,等.小良热带人工混交林的凋落物及其生态效益研究[J].应用生态学报, 1998, 9 (5): 458-462
    [212]任泳红,曹敏,唐建维,等.西双版纳季节雨林与橡胶多层林凋落物动态的比较研究[J].植物生态学报, 1999, 23 (5): 418-425
    [213]芮孝芳,黄国如.分布式水文模型的现状与未来[J].水利水电科技进展, 2004, 24 (2): 55-58
    [214]申卫军,彭少麟,周国逸,等.马占相思(Acacia mangium)与湿地松(Pinus elliotii)人工林枯落物层的水文生态功能[J].生态学报, 2001, 21 (5): 846-850
    [215]石辉,陈凤琴,刘世荣.岷江上游森林土壤大孔隙特征及其对水分出流速率的影响[J].生态学报, 2005b, 25 (3): 507-512
    [216]石辉,刘世荣.森林土壤大孔隙特征及其生态水文学意义[J].山地学报, 2005a, 23 (5): 533-539
    [217]石辉,王峰,李秧秧.黄土丘陵区人工油松林地土壤大孔隙定量研究[J].中国生态农业学报, 2007, 15 (1): 28-32
    [218]石辉.森林土壤大孔隙特征及其土壤结构稳定性研究[D].中国林业科学研究院博士后研究工作出站报告, 2004
    [219]时忠杰,王彦辉,熊伟,等.单株华北落叶松树冠穿透降雨的空间异质性[J].生态学报, 2006b, 26 (9): 2877-2886
    [220]时忠杰,王彦辉,熊伟,等.六盘山典型植被类型土壤中石砾对大孔隙形成的影响[J].山地学报, 2007, 25 (5): 541-547
    [221]时忠杰.六盘山香水河小流域森林植被的坡面生态水文影响[D].中国林业科学研究院博士学位论文, 2006a
    [222]司建华,冯起,张小由,等.热脉冲技术测定树干液流研究进展[J].冰川冻土, 2007, 29 (3): 475-481
    [223]孙阁,张志强,周国逸,等.森林流域水文模拟模型的概念、作用及其在中国的应用[J].北京林业大学学报, 2007, 29 (3): 178-184
    [224]孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展[J].应用生态学报, 2004, 15 (6): 1074-1078
    [225]孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究[J].生态学报, 2002, 22 (9): 1387-1391
    [226]张小由,康尔泗,张智慧,等.黑河下游天然胡杨树干液流特征的试验研究[J]. 2005, 27 (5): 742-746
    [227]孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科学技术出版社, 1995
    [228]孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究[J].北京林业大学学报, 2000, 22 (5): 1-6
    [229]孙志虎,牟长城,张彦东.地统计学方法在长白落叶松人工林凋落物现存量估测中的应用[J].生物数学学报, 2007, 22 (4): 703-710
    [230]田大伦,陈书军.樟树人工林土壤水文—物理性质特征分析[J].中南林学院学报, 2005, 25 (4): 1-6
    [231]田大伦,杨晚华,方海波.第二代杉木幼林中降雨对养分的淋溶作用[J].湖北民族学院学报(自然科学版), 1999, 17 (1): 1-5
    [232]田晶会.黄土半干旱区水土保持林主要树种耗水特性研究[D].北京林业大学博士学位论文, 2005
    [233]万师强,陈灵芝.东灵山地区大气降水特征及森林树干茎流[J].生态学报, 2000, 20 (1): 61-67
    [234]万师强,陈灵芝.暖温带落叶阔叶林冠层对降水的分配作用[J].植物生态学报, 1999, 23 (6): 557-561
    [235]王华,赵平,蔡锡安,等.马占相思树干液流与光合有效辐射和水汽压亏缺间的时滞效应[J].应用生态学报, 2008, 19 (2): 225-230
    [236]王华田,马履一,孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究[J].林业科学, 2002a, 38 (5): 31-37.
    [237]王华田,马履一.利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究[J].植物生态学报, 2002b, 26 (6): 661-667
    [238]王金叶,于澎涛,王彦辉,等.森林生态水文过程研究——以甘肃祁连山水源涵养林为例[M].北京:科学出版社, 2008
    [239]王进鑫,黄宝龙,王明春,等.不同供水条件下侧柏和刺槐幼树的蒸腾耗水与土壤水分应力订正[J].应用生态学报, 2005, 16 (3): 419-425
    [240]王礼先,孙宝平.森林水文研究及流域治理综述[J].水土保持科技情报, 1990, (2): 10-15
    [241]王礼先,谢明曙.山地防护林水土保持水文生态效益及其信息系统[M].北京:中国林业出版社, 1998
    [242]王力,邵明安,王全九.林地土壤水分运动研究述评[J].林业科学, 2005, 41 (2): 147-153
    [243]王其兵,李凌浩,白永飞,等.模拟气候变化对3种草原植物群落混合凋落物分解的影响[J].植物生态学报, 2000, 24 (6): 674-679
    [244]王书功,康尔泗,李新.分布式水文模型的进展及展望[J].冰川冻土, 2004, 26 (1): 61-65
    [245]王新平,康尔泗,张景光,等.荒漠地区主要固沙灌木的降水截留特征[J].冰川冻土, 2004, 26 (1): 89-94
    [246]王馨,张一平,刘文杰. Gash模型在热带季节雨林林冠截留研究中的应用[J].生态学报, 2006, 26 (3): 722-729
    [247]王彦辉,于澎涛,徐德应,等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报, 1998, 20 (6): 25-30
    [248]王燕,王兵,赵广东,等.江西大岗山3种林型土壤水分物理性质研究[J].水土保持学报, 2008, 22(1): 151-153
    [249]王佑民,刘秉正.黄土高原防护林生态特征[M].北京:中国林业出版社, 1994
    [250]王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报, 2000, 14 (4): 108-113
    [251]王云琦,王玉杰,张洪江,等.重庆缙云山几种典型植被枯落物水文特性研究[J].水土保持学报, 2004, 18 (3): 41-44
    [252]魏晓华,李文华,周国逸,等.森林与径流关系——一致性和复杂性[J].自然资源学报, 2005, 20 (5): 761-770
    [253]温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析[J].林业科学, 1995, 31 (4): 289-298
    [254]吴华山,陈效,陈粲.利用CT扫描技术对太湖地区主要水稻土中大孔隙的研究[J].水土保持学报, 2007, 21 (2): 175-178
    [255]吴永波,薛建辉.岷江流域冷杉树干液流的动态变化规律[J].南京林业大学学报(自然科学版), 2005, 29 (6): 61-64
    [256]鲜骏仁,张远彬,胡庭兴,等.四川王朗自然保护区地被物水源涵养能力评价[J].水土保持学报, 2008, 22 (3): 47-51
    [257]谢春华,关文彬,吴建安,等.贡嘎山暗针叶林生态系统林冠截留特征研究[J].北京林业大学学报, 2002, 24 (4): 68-71
    [258]熊伟,王彦辉,于澎涛,等.华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推[J].林业科学, 2008,44 (1): 34-40
    [259]薛立,何跃君,屈明,等.华南典型人工林凋落物的持水特性[J].植物生态学报, 2005, 29 (3): 415-421
    [260]薛立,梁丽丽,任向荣,等.华南典型人工林的土壤物理性质及其水源涵养功能[J].土壤通报, 2008, 39 (5): 986-989
    [261]闫俊华,周国逸,唐旭利,等.鼎湖山3种演替群落枯落物及其水分特征对比研究[J].应用生态学报, 2001, 12 (4): 509-512
    [262]闫文德,张学龙,王金叶.等.祁连山森林枯落物水文作用的研究[J].西北林学院学报, 1997, 12 (2): 7-14
    [263]严昌荣, Downey A,韩兴国,等.北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究[J].生态学报, 1999, 19 (6): 793-797
    [264]杨海龙.三峡库区小流域森林植被理水调洪规律的研究[D].北京林业大学博士学位论文, 2004
    [265]杨吉华,张永涛,李红云,等.不同林分枯落物的持水性能及对表层土壤理化性状的影响[J].水土保持学报, 2003, 17 (2): 141-144
    [266]杨立文,石清峰.太行山主要植被枯枝落叶层的水文作用[J].林业科学研究, 1997,10 (3): 283-288
    [267]叶延琼,陈国阶,樊宏.岷江上游脆弱生态环境刍论[J].长江流域资源与环境, 2002. 11 (4): 383-387
    [268]于志民,王礼先.水源涵养林效益研究[M].北京:中国林业出版社, 1999
    [269]余新晓,张志强,陈丽华,等.森林生态水文[M].北京:中国林业出版社, 2004
    [270]翟洪波,李吉跃,聂利水.油松栓皮栎混交林林地蒸散和水量平衡研究[J].北京林业大学学报, 2004, 26 (2):: 48-51
    [271]战伟庆,张志强,武军,等.华北油松人工林冠层穿透雨空间变异性研究[J].中国水土保持科学, 2006, 4 (3): 26-30
    [272]张鼎华,孙志蓉,翟明普,等.杨树刺槐混交林沙地土壤的水分—物理性质[J].应用与环境生物学报, 2001, 7 (2): 122-125
    [273]张东来,毛子军,朱胜英,等.黑龙江省帽儿山林区6种主要林分类型凋落物研究[J].植物研究, 2008, 28 (1): 104-108
    [274]张刚华,陈步峰,聂洁珠,等.热带山地雨林尖峰栲边材液流及其与环境因子的关系[J].应用生态学报, 2007, 18 (4): 742-748
    [275]张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报, 2000, 24 (1): 64-68
    [276]张洪江,北原曜.远藤泰造.几种林木枯落物对糙率系数n值的影响[J].水土保持学报, 1994, (4): 4-10
    [277]张洪江,程金花,余新晓,等.贡嘎山冷杉纯林枯落物储量及其持水特性[J].林业科学, 2003, 39 (5): 147-151
    [278]张华,王百田,郑培龙.黄土半干旱区不同土壤水分条件下刺槐蒸腾速率的研究[J].水土保持学报, 2006, 20 (4): 122-125
    [279]张劲松,孟平,孙惠民,等.毛乌素沙地樟子松蒸腾变化规律及其与微气象因子的关系[J].林业科学研究, 2006, 19 (1): 45-50
    [280]张雷燕,刘常富,王彦辉,等.宁夏六盘山南侧森林枯落物及土壤的水文生态功能研究[J].林业科学研究, 2007, 20 (1): 15-20
    [281]张社奇,王国栋,时新玲,等.黄土高原油松人工林地土壤水分物理性质研究[J].干旱地区农业研究, 2005, 23 (1): 60-64
    [282]张升堂,王明新,沙海军.降水入渗模型研究进展[J].杨凌职业技术学院学报, 2004, 3 (3): 1-2
    [283]张卫强,贺康宁,周毅,等.黄土半干旱区刺槐林地土壤蒸发特性研究[J].水土保持研究, 2007, 14 (6): 367-370
    [284]张希彪,上官周平.人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J].生态学报, 2006, 26 (11): 3685-3695
    [285]张小由,康尔泗,司建华,等.胡杨蒸腾耗水的单木测定与林分转换研究[J].林业科学, 2006, 42 (7): 28-32
    [286]张一平,王馨,刘文杰.热带森林林冠对降水再分配作用的研究综述[J].福建林学院学报, 2004, 24 (3): 274-282
    [287]张一平,王馨,王玉杰,等.西双版纳地区热带季节雨林与橡胶林林冠水文效应比较研究[J ],生态学报, 2003, 23 (12): 2653-2665
    [288]张远东,刘世荣,马姜明.川西高山和亚高山灌丛的地被物及土壤持水性能[J].生态学报, 2006, 26 (9): 2775-2782
    [289]张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能[J].水土保持学报, 2005, 19 (3): 139-143
    [290]张志强.森林水文:过程与机制[M].北京:中国环境科学出版社, 2002
    [291]张志山,王新平,李新荣,等.沙漠人工植被区土壤蒸发测定[J].中国沙漠, 2005b, 25 (2): 243-248
    [292]张志山,张景光,刘立超,等.沙漠人工植被降水截留特征研究[J].冰川冻土, 2005a, 27 (5): 761-766
    [293]赵鸿雁,吴钦孝,从怀军.黄土高原人工油松林枯枝落叶截留动态研究[J].自然资源学报, 2001, 16 (4): 381-385
    [294]赵鸿雁,吴钦孝,刘向东.油松人工林林冠层的水文作用[J].中国水土保持, 1993, (2): 40-43
    [295]赵鸿雁,吴钦孝,刘国彬.山杨林的水文水生态效应研究[J].植物生态学报, 2002b, 26 (4): 497-500
    [296]赵鸿雁,吴钦孝.黄土高原人工油松林林冠截留动态过程研究[J].生态学杂志, 2002a, 21 (6): 20-23
    [297]赵平,饶兴权,马玲,等.马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异[J],生态学报, 2006, 26 (12): 4050-4058
    [298]赵文飞,王华田,亓立云,等.春季麻栎树干边材木质部液流垂直变化及其滞后效应[J].植物生态学报, 2007, 31 (2): 320-325
    [299]赵西宁,吴发启.土壤水分入渗的研究进展和评述[J].西北林学院学报, 2004, 19 (1): 42-45 117
    [300]赵玉涛,余新晓,程根伟,等.粗木质残体(CWD)的水文生态功能——当前森林水文研究中被忽视的重要环节[J].山地学报, 2002b, 20 (1): 12-18
    [301]赵玉涛,余新晓,张志强,等.长江上游亚高山峨眉冷杉林地被物层界面水分传输规律研究[J].水土保持学报, 2002c, 16 (3): 118-121
    [302]赵玉涛,张志强,余新晓.森林流域界面水分传输规律研究述评[J].水土保持学报, 2002a, 16 (1): 92-95
    [303]郑思俊,张庆费,吴海萍,等.上海外环线绿地群落凋落物对土壤水分物理性质的影响[J].生态学杂志, 2008, 27 (7): 1122-1126
    [304]钟芳,李正平,宋耀选,等.黄土高原西部土壤蒸发实验研究[J].中国沙漠, 2006, 26 (4): 608-611
    [305]周光益,曾庆波,黄全,等.热带山地雨林林冠对降雨的影响分析[J].植物生态学报, 1995, 19: 201-207
    [306]周晓峰.森林水文循环的研究.见:周晓峰.森林生态系统定位研究[M].哈尔滨:东北林业大学出版社, 1994
    [307]朱金兆,刘建军,朱清科,等.森林枯落物水文生态功能研究[J].北京林业大学学报, 2002, 24 (5): 30-34
    [308]邹碧,李志安,丁永祯,等.南亚热带4种人工林凋落物动态特征[J].生态学报, 2006, 26 (3): 715-721

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700