用户名: 密码: 验证码:
我国红树林主要造林树种PGPR研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红树林具有重要的生态、经济和社会效益。由于长期人为干扰,我国红树林出现面积减少、林分质量下降、防护功能衰退等问题。对红树林主要造林树种的PGPR开展研究,不仅有助于开发红树林微生物资源,而且可利用筛选出的优良PGPR菌株研制促生菌剂,接种于红树林幼苗根际以促进其生长、增强抗逆能力,提高红树林的造林存活率、保障沿海防护林体系建设顺利实施。本研究利用常规分离鉴定方法、乙炔还原法、钼锑抗比色法、Salkowski比色法、Biolog微生物鉴定系统和16S rDNA序列分析等试验技术和分析方法,对我国红树林主要造林树种根际固氮菌和溶磷菌,进行了菌株分离筛选及促生特性分析、红树林幼苗的接种效应研究,以及PGPR微胶囊菌剂的研制。结果表明:
     1.红树林主要造林树种的根际存在种类较丰富的PGPR菌。分别从广东湛江、珠海及海南东寨港等三地的木榄Bruguiera gymnorrhiza、秋茄Kandelia candel、无瓣海桑Sonneratia apetala、红海榄Rhizophora stylosa、海莲Bruguiera sexangula和海桑S. caseolaris等6种红树植物的根际,分离出固氮菌20株和溶磷菌35株。筛选出的7株优良固氮菌分属Azotobacter(1个)、Pseudomonas (1个)、Bacillus(4个)和Ochrobactrum(1个),7株优良溶磷菌分属Pseudomonas (1个)和Bacillus(6个)。
     2.利用改良OAB培养基分离的20株菌株大部分具有固氮能力,固氮酶活性在50.72~ 385.6 nmol C2H4·h-1 mL-1之间。固氮酶活性较高的菌株偏少,大于200nmol C2H4·h-1 mL-1的固氮菌株仅有NGWB4-wy1和NGHHL2-r14。利用改良SRMS1培养基分离得到的溶磷菌株数(35株)较多,其解磷酸盐的能力差异较大。溶磷强度较大的菌株有PGHHL -y7(180.2 mg·L-1),PGWB-y2(158.9 mg·L-1)和PGWB-wp5(153.2 mg·L-1)。采用Salkowski比色法定量测定部分菌株分泌IAA能力,所测试的9株固氮菌株和9株溶磷菌株所分泌的IAA浓度在11.40~14.10μg·mL-1之间。
     3.根据固氮酶活性、分泌IAA能力等初筛出15株固氮菌,用于固氮菌盆栽单接种试验。结果表明,接种固氮菌可显著促进秋茄苗和木榄苗的生长和氮磷吸收。综合比较各项生长指标和氮磷水平,NGWB3-w14、NGWB4-wy1、NLQQ2-w14、NGHHL2-r14、NLQQ2-r14、NGWB2-y1和NLQQ3-wy4等7株固氮菌株促生效果较好。接种这7株固氮菌后,秋茄苗高、地下生物量、地上生物量比对照组增长30.09%~65.19%, 61.64%~79.13%和55.97%~75.21%,木榄的苗高、地下生物量、地上生物量增长11.98%~23.81%,37.93%~51.90%和38.00%~63.78%。
     4.根据溶磷能力、分泌IAA能力等初筛出溶磷菌株16株,用于溶磷菌盆栽单接种试验。结果表明,接种溶磷菌能显著促进秋茄和木榄苗的生长和氮磷吸收。PGWB-wp5、PGHHL-y7、PGWB-y8、PLQQ-y12、PGWB-y2、PGML-y1和PGWB-y6等7株溶磷菌株促生效果较好;接种后,秋茄苗高、地下生物量、地上生物量比对照组增长31.92% ~45.61%,49.28%~70.56%和45.80%~67.71%,木榄的对应值分别增长20.17%~ 26.79%,34.87%~51.20%和55.92%~67.53%。
     5.通过室外盆栽接种试验,研究了PGPR接种对白骨壤Avicennia germina幼苗抗寒性的影响。结果表明PGPR的接种在促进白骨壤苗生长的同时增强了其抗寒能力,表现在对照组死亡率为60%,而各接菌处理组幼苗的死亡率为10% ~ 50%。
     6.采用固氮菌和溶磷菌交互组合方法,进行红树植物苗木的盆栽混合接种试验。结果表明,混合接种可显著促进秋茄苗和木榄苗的生长和氮磷吸收。综合比较各项生长指标和氮磷水平,以组15(NGHHL2-r14+ PGWB-y8+ NGWB3-w14+ PGML-y1)、组6(NGWB2-y1+ PGHHL-y7)和组9(NLQQ2-w14+ PGWB-wp5)的促生效果最佳。接种组15、组6和组9后,秋茄苗高、地径、根干重、总干重和叶面积分别比对照组增长35.13%~69.93%,10.03% ~13.27%,85.90%~99.33%,116.8%~131.8%和93.66% ~105.2%,木榄的苗高、地径、根干重、总干重和叶面积分别增长22.60%~24.38%,9.85%~10.92%,101.0%~106.6%,97.17% ~116.6%和74.53% ~85.47%。
     7.苗圃接种试验表明,混合接种可明显促进秋茄苗和木榄苗的生长。经方差分析及多重比较,混合接种处理组秋茄和木榄苗的各生长指标与对照比差异极显著。促生效果最佳的是组15(NGHHL2-r14+ PGWB-y8+ NGWB3-w14+ PGML-y1),秋茄苗高、根干重和总干重分别比对照组增长25.76%、42.22%和47.70%,木榄的分别增长15.15%、35.50%和42.20%。
     8.采用锐孔-凝固浴法,对PGPR微胶囊菌剂的研制进行了探讨。加工制造出微胶囊菌剂的专用生产设备,并形成较完整的PGPR微胶囊菌剂生产工艺流程。采用单因子试验确定微胶囊制作的适宜条件,即海藻酸钠质量分数为2.5%,CaC12质量分数为2.0%,菌体与海藻酸钠的体积比为1: 2,固化时间为1 h。经干燥处理后的PGPR微胶囊菌剂其有效期至少6个月,可在秋茄苗根际定殖并缓慢释放菌体,经盆栽接种试验表明其接种效果优于液体菌剂。
Mangrove has important ecological, economic and social benefits. Because of long-term human damage, the mangrove area reduced, stand quality decreased, and protective effects declined. Study on PGPR of mangrove afforestation species is helpful to utilize mangrove microbial resources, and develop effective bacteria inoculants based on excellent strains. Inoculation of PGPR promotes the growth of mangrove plants and enhances their resistance. This utilization of inoculated seedlings should increase the survival rate of mangrove reforestation and promote the construction of coastal shelter forest system. The present study tries to screen and identify PGPR strains from the rhizosphere of mangrove plants, evaluate their inoculation effects, develop PGPR microbeads inoculants by using advanced experimental techniques and analysis methods, such as conventional bacteria selection and identification methods, acetylene reduction method, molybdenum-antimony anti-colorimetry, Salkowski colourimetry, Biolog automated microbial identification system, 16s rDNA sequence analysis. The results obtained were as follows:
     1. There were abundant PGPR strains colonized on rhizosphere of mangrove afforestation species. Plant samples were collected for PGPR screen from Zhanjiang, Zhu hai and Dongzhai Harbor. Total 20 nitrogen fixing strains and 35 phosphorus solubilizing strains were isolated from 6 mangrove species, including Bruguiera gymnorrhiza,Kandelia candel,Sonneratia apetala,Rhizophora stylosa,Bruguiera sexangula and Sonneratia caseolaris. According to identification, seven excellent nitrogen fixing strains belonged to Azotobacter (1 strain),Pseudomonas (1strain),Bacillus(4 strains),Ochrobactrum(1 strain). And seven excellent phosphorus solubilizing strains belonged to Pseudomonas (1 strain) and Bacillus (6 strains).
     2. Using modified OAB medium, 20 nitrogen fixing strains were screened from the the rhizosphere of mangrove plants. Most of these strains showed positive nitrogenase activity ranged from 50.72 to 385.6 nmol C2H4·h-1·mL-1. Only two strains of NGWB4-wy1 and NGHHL2-r14 had their C2H4 production higher than 200 nmol C2H4·h-1mL-1. A batch of (35 strains) phosphorus solubilizing strains with different phosphorus solubilizing abilities, were isolated by using modified SRMS1 medium. There were three strains with marked phosphorus solubilizing intensities, including PGHHL-y7 180.2 mg·L-1 ) , PGWB-y2(158.9 mg·L-1), PGWB-wp5(153.2 mg·L-1). Results of Salkowski colourimetry showed that all tested strains ( i.e. 9 nitrogen fixing strains and 9 phosphorus solubilizing strains ) could secrete IAA, which ranged from 11.40 to 14.10μg·mL-1.
     3. On the basis of nitrogenase activity and IAA secretion, 15 strains of nitrogen fixing bacteria were selected for single-inoculation pot test. The results showed that inoculation of nitrogen fixing strains significantly increased the height, biomass, nitrogen and phosphorus levels of K. candel and B. gymnorrhiza seedlings. According to different performances on growth indicators, nitrogen and phosphorus levels, 7 strains were screened with marked effects on growth promotion, including NGWB3-w14, NGWB4-wy1, NLQQ2-w14, NGHHL2-r14, NLQQ2-r14, NGWB2-y1, NLQQ3-wy4. As to the K. candel seedlings, height increased 30.09%~65.19%, below-ground biomass increased 61.64%~79.13%, above-ground biomass increased 55.97%~75.21% compared to the control. As to the B. gymnorrhiza seedlings, the corresponding values were 11.98%~23.81%, 37.93%~51.90%, 38.00%~63.78% respectively.
     4. On the basis of phosphorus solubilizing activity and IAA secretion, 16 strains of phosphorus solubilizing bacteria were selected for single-inoculation pot test. The results showed that inoculation of phosphorus solubilizing strains significantly increased the seedling growth, nitrogen and phosphorus levels of K. candel and B. gymnorrhiza. According to different performances on growth indicators, nitrogen and phosphorus levels, 7 strains were screened with marked effects on plant growth promotion, including PGWB-wp5, PGHHL-y7, PGWB-y8, PLQQ-y12, PGWB-y2, PGML-y1, PGWB-y6. As to the K. candel seedlings, the height increased 31.92%~45.61%, below-ground biomass increased 49.28%~70.56%, above-ground biomass increased 45.80%~67.71% compared to the control. As to the B. gymnorrhiza seedlings, the corresponding values were 20.17%~26.79%, 34.87%~51.20%, 55.92%~67.53%.
     5. Inoculation effects of PGPR strains on cold resistance of Avicennia germina seedlings were studied through the outdoor pot experiment. Inoculation not only promoted seedling growth but also enhanced the cold resistance of A. germina. The mortality rate of the control group was 60%, while those treatment groups 10% ~ 50%.
     6. Using the interactive combinations of nitrogen-fixing strain and phosphorus solubilizing strain, mixed inoculation pot experiments were conducted in greenhouse. Results showed that mixed inoculation could promote the growth of K. candel and B. gymnorrhiza seedlings significantly. According to different performances on growth indicators, nitrogen and phosphorus levels, there were 3 strain combinations having marked growth promoting effects, i.e.Group15 ( NGHHL2-r14+ PGWB-y8+ NGWB3-w14+ PGML-y1),Group 6(NGWB2-y1+ PGHHL-y7),Group 9(NLQQ2-w14+ PGWB-wp5. As to the K. candel seedlings, height increased 30.09%~65.19%, basal diameter increased 10.03%~13.27%, below-ground biomass increased 85.90%~99.33%, total biomass increased 116.8%~131.8%, leaf area increased 93.66%~105.2% compared to the control. As to the B. gymnorrhiza seedlings, the corresponding values were 22.60%~24.38%, 9.85%~10.92%, 101.0%~106.6%, 97.17%~116.6%, 74.53%~85.47%.
     . 7. Mixed inoculation experiments were carried out in mangrove nursery. Results showed that mixed inoculation promoted the seedling growth of K. candel and B. gymnorrhiza significantly. By analysis of variance and multiple comparisons, the growth indicators, nitrogen and phosphorus levels of these inoculated seedlings had significant differences compared to the control. The growth-promoting effect was the best when treated with Group15. As to the K. candel seedlings, height increased 25.76%, below-ground biomass increased 42.22%, total biomass increased 47.70% compared to the control. As to the B. gymnorrhiza seedlings, the corresponding values were 15.15%, 35.50%, 42.20%.
     8. Microbead inoculants were explored according to the piercing-solidifying method. A special equipment for the production of microbeads was processed and manufactured, and a complete technological process was formed. Several single-factor tests were conducted to determine suitable conditions for microbead production. The results were as follows, 2.5% (mass fraction) sodium alginate, 2.0% (mass fraction) CaC12, with the volume ratio of bacterium solution and Sodium Alginate at 1:2, with the curing time of 1h. The validity of PGPR microbead inoculants reached at least 6 months after drying process. Microbead inoculants could colonize in the rhizosphere of K.candel, and release bacteria slowly. According to the pot experiments, effects of microbead inoculants on the plant growth promoting were better than those of liquid inoculants.
引文
曹启民,郑康振,陈耿等.红树林生态系统微生物学研究进展.生态环境,2008,17(2):839-845
    柴燚.固定化枯草杆菌生产纳豆激酶的研究.浙江大学硕士学位论文,2004,7-8
    陈佩林.微生物吸附重金属离子研究进展.生物学教学,2003,28(12):1-3
    陈晓斌,张炳欣.植物根围促生细菌(PGPR)作用机制的研究进展.微生物学杂志,2000,20(1):38-41,44
    戴梅,宫象辉,丛蕾等. PGPR制剂研发现状与发展趋势.山东科学,2006,19(6):45-48
    董俊德,王汉奎,张偲等.海洋固氮生物多样性及其对海洋生产力的氮、碳贡献.生态学报,2002,22(10):1741-1749
    杜立新,冯书亮,曹克强等.枯草芽抱杆菌BS-208和BS-209菌株在番茄叶面及土壤中定殖能力的研究.河北农业大学学报,2004,27(6):80-82
    范丙全,金继运,葛诚等.溶磷草酸青霉菌筛选及其溶磷效果的初步研究.中国农业科学,2002,35(5):525-530
    冯瑞章,冯月红,姚拓等.春小麦和苜蓿根际溶磷菌筛选及其溶磷能力测定.甘肃农业大学学报,2005,10(5):604-608
    葛诚.微生物肥料的生产应用及其发展.北京:中国农业科技出版社,1996,6-50
    郭明勋,于玲.明胶微胶囊化技术.明胶科学与技术,2000,20(3):113-123
    韩文星. PGPR菌肥研制及其对燕麦生长和品质影响的研究.甘肃农业大学硕士学位论文,2007,17-18
    胡炳福. PGPR及其在我国林业上应用研究.贵州林业科技,2004,28(2):41-47
    胡江春,薛德林,马成新,等.植物根际促生菌(PGPR)的研究与应用前景.应用生态学报,2004,15(10):1963-1966
    胡小加,江木兰,张银波.巨大芽孢杆菌在油菜根部定殖和促生作用的研究.土壤学报,2004,41 (6):945-948
    花晓梅,骆贻颛,刘国龙.松树Pt菌剂育苗菌根化研究.林业科学研究,1995,8(3):258-265
    黄宝灵,梁秀棠,钟文勇等.菌根菌剂在良种按育苗及造林中的应用效应.林业科技开发,1996,(4):22-23
    黄宝灵,梁秀棠,钟文勇等. Pt菌根菌剂对巨尾按生长的持续效应.热带亚热带植物学报,1999,7(2):165-168
    黄勤钦,莫文理,吴宏辉等.用抗生细菌拌种提高马尾松飞播造林质量试验初报.林业科技通讯,1988,(7):15-17
    
    黄晓东,季尚宁,Bernard Glick等.植物促生菌的应用现状.现代化农业,2002,9:10-11
    李永吉,吴绍于,杨胜坤等.应用PGPP接种剂培育马尾松壮苗和沾根造林.贵州林业科技,1996,24(3):49-52
    郑志成,周美英,姚炳新.红树林根系放线菌的组成.厦门大学学报(自然科学版),1989,28(3):306-310
    林启美,王华,赵小蓉等.一些细菌和真菌的解磷能力及其机理初探.微生物学通报,2001,28(1):26-30
    林启美,赵小蓉,孙焱鑫等.四种不同生态环境土壤中解磷细菌的数量及种群分布.土壤与环境,2000,9(1):34-37
    吕泽勋,李久蒂,朱至清.玉米内生固氮菌的回接分离及限菌条件下在玉米根内的定殖.应用与环境生物学报,2001,7(3):207-212
    李玫,廖宝文,康丽华等. PGPB对红树植物木榄幼苗的接种效应.林业科学研究,2006,19(1): 109-113
    刘晓庚,谢亚桐.微胶囊制备方法的比较.粮食与食品工业,2005,12(1):28-31
    陆嘉.海洋来源的放线菌23001次级代谢产物抗肿瘤活性成分的研究.中国海洋大学硕士论文,2004,20-21
    南京农业大学主编.土壤农化分析(第二版).北京:农业出版社,1996,69,71-74,311-312
    森林植物与森林枯枝落叶层全氮、全磷、全钾、全钠、全镁的测定(硫酸-高氯酸消煮法),GB 7888-87
    孙万成,蒋笃孝,宋龄瑛等.壳聚糖/海藻酸钠微胶囊固定化磷脂酶A1的研究.食品科技,2004,(11):14-17
    万璐,康丽华,廖宝文等.红树林根际解磷菌分离、培养及解磷能力的研究.林业科学研究,2004,17(1):89-94
    翁启勇,陈庆河,赵健等.利福平标记菌株BS1在番茄、茄子根部及土壤中的定殖动态.福建农业学报,2003,18(2):87-88
    席琳乔,王静芳,马金萍等.棉花根际解磷菌的解磷能力和分泌有机酸的初步测定.微生物学杂志,2007,27(5):70-74
    丸山哲彦.菌体颗粒の制造方法及ひ装置. JP60-141281,1985
    王伯荪,廖宝文,王勇军等.深圳湾红树林生态系统及其持续发展.北京:科学出版社,2002,3
    王建龙.生物固定化技术与水污染控制.北京:科学出版社,2002,28-31
    王平,胡正嘉,李阜棣.荧光假单胞菌群根部定殖的研究进展.应用与环境生物学报,1996,2(4): 408-414
    王显伦.锐孔法制备微胶囊技术研究.郑州粮食学院学报,1995,16(4):21-26
    王真辉,赵忠.植物共生微生物混合接种效应的研究进展.海南大学学报自然科学版,2001,19(2):176-182
    许光辉,郑洪元.土壤微生物分析方法手册.北京:农业出版社,1986,187-189
    杨合同,陈凯,李纪顺等.重组巨大芽孢杆菌在小麦根际的定殖及其对植物真菌病害的防治效果.山东科学,2003,16(3):12-17
    姚拓.高寒地区燕麦根际联合固氮菌研究Ⅱ固氮菌的溶磷性和分泌植物生长素特性测定.草业学报,2004,(3):85-90
    张明江,孟祥晨.提高食品中益生菌数量的两大新技术.现代食品科学与技术,2005,21(4):90-92
    张乔民,隋淑珍.中国红树林湿地资源及其保护.自然资源学报,2001,16(1):28-36
    张晓图,李来成.四种药菌剂对落叶松造林效果的对比试验.林业科技通讯,1997,(7):29-30
    张学武,同金侠,宋晓斌等.菌根菌补充接种在油松造林中的应用研究.陕西林业科技,2001,(3):14-16
    郑志成,周美英.红树植物秋茄根际链霉菌(Streptomyces))146产生的几丁质酶.台湾海峡,1993,12(3):69-74
    郑忠辉,缪莉,黄耀坚等.红树植物内生真菌的抗肿瘤活性.厦门大学学报(自然科学版),2002, 42(4):513-516
    郑天凌,庄铁城,蔡立哲等.微生物在海洋污染环境中的生物修复作用.厦门大学学报(自然科学版) 2001,40(2):524-534
    周志权,黄泽余.广西红树林的病原真菌及其生态学特点.广西植物,2001,21(2):157-162
    周仲强.植物根际促生细菌功能菌株的筛选.吉林大学硕士学位论文,2005,8
    朱本岳.长效复合肥在松树容器苗上的应用研究.浙江林业科技,1998,18(1):6-9
    朱丽云,孙培龙,张立钦.微生物农药微胶囊技术及其应用前景.浙江林学院学报,2002,19(l): 101-112
    左雅慧,蒋德群.一株高效处理甲醇废水细菌的研究.微生物学杂志,2002,22(2):58-59
    Ali S, Hamid N, Nagina N and Malik K A. Screening of Phosphate Solublizing Microorganisms Using Different Original and Modified Culture Media. Biologia, 1998, 44 (102):110-122
    Alongi D M, Christ offersen P, Tirendi F. The Influence of Forest Type on Microbial-nutrient Relationships in Tropical Mangrove Sediments. J Exp Mar Biol Ecol, 1993, 171: 201-223
    Amann R I,Ludwig W,Schleifer K H. Phylogenetic identification and in situ detection of individualmicrobial cells without cultivation. Microbiological Reviews,1995,59:143-169
    Anderson A J and Guerra D.Responses of bean to root colonization with Pseudomonas putida in a hydroponic system. Phytopathology ,1985,75: 992-995
    Arshad M, Frankenberger W T J. Plant Growth-promoting Substance in the Rhizosphere:Microbial Production and Function.Adv Agro,1998,(62) :145-151
    Bashan Y. Alginate Beads as Synthetic Inoculant Carriers for Slow Release of Bacteria that Plant Growth. Applied And Microbiology, 1986,51(5):1089-1098
    Bashan Y, A Rojas and ME Puente. Improved Establishment and Development of Three Cacti Species Inoculated with Azospirillum brasilense Transplanted into Disturbed Urban Desert Soil. Can. J. Microbiol., 1999, 45: 441-451
    Bashan Y, Hoguin G. Azospirillum-plant Relationships: Environmental and Physiological Advances (1990-1996). Can J Microbiol, 1997, 43: 103-121
    Bashan Y and Holguin. Plant Growth-promoting Bacteria: a Potential Tool for Arid Mangrove Reforestation. Trees, 2002,16:159-166
    Bashan Y, Moreno M and Troyo E. Growth Promotion of the Seawater-irrigated Oilseed Halophyte Salicornia bigelovii Inoculated with Mangrove Rhizosphere Bacteria and Halotolerant Azospirillum spp. Biology and Fertility of Soils , 2000,32: 265-272
    Bashan Y, Puente M E, Myrold D D, et al. In Vitro Transfer of Fixed Nitrogen from Diazotrophic Filamentous Cyanobacteria to Black Mangrove Seedlings. FEMS Microbiol.Ecol., 1998, 26(3):165-170
    Becker O and Cook R J. Role of Siderophores in Suppression of Pythium Species and Production of Increased Growth Response of Wheat by Fluorescent pseudomonads. Phytopathology,1988,78:778-782
    Beshay U. Production of Alkaline Protease by Teredinobacter Turnirae Cells Immobilized in Ca-alginate Beads. African J. Biotechnol.,2003,2:60-65
    Beveridge T J, Schultze-Lam S. Detection of Anionic sites on Bacterial Walls, their Ability to Bind Toxic Heavy Metals and Form Sedimentable Flocs and Their Contribution to Mineralization in Natural Fresh Water Environments. In Allen HE, Huang CP,Bailey GW,Bowers AR ed. Metal Speciation and Contamination of Soil. Boca Raton: CRC Press/Lewis Publisher,1995.183-205
    Boto K G, Alongi D M, Nott A L J. Dissolved Organic Carbon Bacteria Interactions at Sediment-water Interface in a Tropical Mangrove system. Mar. Ecol. Prog. Ser., 1989,51:243-251
    Broadbent P, et al. Bacteria and Actinomycetes Antagonistic to Fungal Root Pathogens in Australian soil.Aust J Biol Sci,1971,24:925-944
    Burd G I, Dixon D G and Glick B R. Plant Growth-promoting Bacteria that Decrease Heavy Metal Toxicity in Plants. Can. J. Microbiol., 2003,46: 237-245
    Buysens Heungens K, Poppe J, Hofte M. Involvement of Pyochelin and Pyoverdin in Suppression of Pythium-Induced Damping-Off of Tomato by Pseudomonas aeruginosa 7NSK2. Appl.Environ.Microbiol.,1996,62:865-871
    Carrillo A and Bashan Y. Microencapsulation as a Potential Carrier for Plant Growth-Promoting Bacteria. In: Ogoshi A Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant Growth-promoting Rhizobacteria - Present Status and Future Prospects. Faculty of Agriculture, Hokkaido University Sapporo, Japan, 1997, 460-463
    Craven P A and Hayasaka S S. Inorganic Phosphate Solubilization by Rhizosphere Bacteria in a Zoaera Marina Community.Can J Microbiol,1982,28:605-610
    Crouch L J, Smith M T, Van S J, et al. Identification of Auxins in Commercial Concentrates. J. Plant Physoil. 1992,139:590-594
    Duijff B J, W J de Kogel, PAHM Bakker and B Schippers. Influence of Pseudobactin 358 on the Iron Nutrition of Barley. Soil Biol.Biochem.,1994,26:1681-1688
    Elad Y and Baker R. Influence of Trace Amounts of Cations and Siderophore-producing Pseudomonads on Chlamydospore Germination of Fusarium Oxysporum. Phytopathology. 1985,75:1042-1045
    Elibol M and Moreira A R. Production of extracellular alkaline protease by immobilization of the marine bacterium Teredinobacter turnirae. Proc. Biochem., 2003,38:1445-1450
    Elisa G, Guido L, Graziella B, Philippe L. Methods for Studying Root Colonization by Introduced Beneficial Bacteria. EDP Sciences, 2003, 23: 407-418
    Ellison A M, Farnsworth E J, Twilley R R. Facultative mutualism between red mangrove and root-fouling sponges in Belizean Mangal. Ecology, 1996, 77(8):2431-2444
    Glick B R. The Enhancement of Plant Growth by Free-living Bacteria. Can J Microbiol, 1995,41:109-117
    Glick B R and Bashan Y. Genetic Manipulation of Plant Growth-promoting Bacteria to Enhance Biocontrol of Phytopathogens. Biotechnology Advances,1997, 15: 353-378
    Glick B R, Pattern C L, Houlguin G, Penrose D M. Biochemical and Genetic Mechanisms Used by Plant Growth-promoting Bacteria. Imperial College Press, London, UK. 1999.
    Glickmann E and Dessaux Y. A Critical Examination of the Specificity of the Salkowski Reagent for IndolicCompounds Produced by Phytopathogenic Bacteria. Applied And Environmental Microbiology,Feb.1995: 793-796
    Gorgon S A, Weber R P. Colorimetric Estimation of Indoleatic Acid.Plant Pbysiol., 1951,26:192-195
    Hafeez F Y, Malik K A. Manual on Biofertilizer Technology. NIBGE, Pakistan.2000:35-37
    Hawksworth D L. The Fungald Imension of Biodiversity:Magnitude,Significance and Conservation. Mycological Research,1991,95:641-655
    He C Y, Hsiang T and Wolyn D J. Induction of Systemic Disease and Pathogen Defense Responses in Asparagus Officinalis Inoculated with Nonpathogenic Strains of Fusarium Infection. Plant Pathol,2002,51:225-230
    Hernandez J P, De-Bashan L E and Bashan Y. Starvation Enhances Phosphorus Removal from Wastewater by the Microalga Chlorella spp. Co-immobilized with Azospirillum brasilense. Enzyme Microb Technol , 2006,38: 190-198
    Hicks BJ, Silvester WB. Nitrogen Fixation Associated with the New Zealand Mangrove(Avicennia marina (Forsk.) Vierh. var. resinifera (Forst. f.) Bakh. Applied And Environmental Microbiology, Apr. 1985, p. 955-959
    Hida R, Reynaldo F. Phosphate Solubilizing Bacteria and Their Role in Plant Growth Promotion. Biotechnology Advances, 1999, 17:319-339
    Holguin G, Bashan Y, Mendoza-Salgado R A, et al. La Microbiología de los Manglares, Bosques en la Frontera Entre el Mar y la Tierra. Ciencia y Desarrollo, 1999, 25(44): 26-35
    Holguin G, Guzman M A, Bashan Y. Two New Nitrogen-fixing Bacteria from the Rhizosphere of Mangrove Trees: their Isolation,Identification and in vitro Interaction with Rhizosphere Staphylococcus sp. FEMS Mictrobiol Ecol,1992,101:207-216
    Holguin G, Vazquez P, Bashan Y. The Role of Sediment Microorganisms in the Productivity,Conservation,and Rehabilitation of the Mangrove Ecosystems: an Overview .Bio Fertil Soils, 2001(33):265-278
    Howie W J and Suslow T V. Role of Antibiotic Synthesis in the Inhibition of Pythium Ultimum in the Cotton Spermosphere and Rhizosphere by Pseudomonas fluorescens. Mol Plant-Microbe Interact, 1991, 4:393-399
    Huang X D, Ei-alawi Y, Penrose D M, et al. Responses of Three Grass Species to Creosote during Phytoremediation. Environmental Pollution, 2004, 130 (3): 453-463
    Hussain S, Mirza M S and Malik K A. Production of Phytohonnones by the Nitrogen Fixation Bacteria Isloated from Sugarcan. Biohorizons, 1999,2(1-4):61-76
    Illmer P and Schinner F. Solubilization of Inorganic Phosphates by Microorganisms Isolated from Forest Soils. Soil Biol.Biochem. 1992, 24(4): 389-395,14
    Jetiyanon K and Kloepper J W. Mixtures of Plant growth-promoting Rhizobacteria for Induction of Systemic Resistance against Multiple Plant Diseases. Biol Control, 2002,24:285-291
    Kamilova F, Validov S, Azarova T, et al. Enrichment for Enhanced Competitive Plant Root Tip Colonizers Selects for a New Class of Biocontrol Bacteria. Environmental Microbiology. 2005,7(11):1809-1817
    Karsten U,Maier J,Garcia-Pichel F. Seasonality in UV-absorbing Compounds of Cyanobacterial Mat Communities from an Intertidal Mangrove Flat. Aquatic Microbial Ecology, 1998,16(1):37-44
    Kloepper J W, Leong J, Teintze M, et al. Enhanced Plant Growth by Siderophores Produced by Plant Growth-promoting Rhizobacteria, Nature,1980,286:885-886
    Kloepper J W, Rodriguez-Ubana R, Zehnder G W, et al. Plant Root Bacterial Interactions in Biological Control of Soilborne Diseases and Potential Extension to Systemic and Foliar Diseases. Aust Plant Pathol, 1999, 28:21-26
    Kloepper J W and Schroth M N. Plant Growth Promoting Rhizobacteria on Radishes. In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria. ed. Station de Pathologic Vegetal et Phytobacteriologic. 1978, Vol. 2, pp. 879-882. Angers, France.
    Kong R Y C, Chan J Y C, Mitchell J I, et al. Relationships of Halosarpheia, Ligninchola and Nais Inferred from Partial 18S rDNA. Mycological Research, 2000,104(1):35-43
    Kucey R M N. Phosphate-solubilizing Bacteria and Fungi in Various Cultivated and Virgin Alberta Soils. Canadian Journal of Soil Science, 1983,63:671-678
    Lean D R S and Liao C F H, Murphy T P, et al. The Importance of Nitrogen Fixation in Lakes: Environmental Role of Nitrogen-fixing Blue-green Algae and a Symbiotic Bacteria. Ecol Bull (Stockholm), 1978, 26: 41-51
    Lucy M, Reed E and Glick B R. Applications of Free Living Plant Growth-promoting Rhizobacteria. Antonie van Leeuwenhoek, 2004, 86: 1-25
    Mann F D. Biological Nitrogen Fixation Associated with Blue Green Algal Communities in the Beachwood Mangrove Nature Reserve II. Seasonal Variation in Acetylene Reduction Activity. S. Afr. J. Bot.,1993,59(3):1-8
    Meglumphy J H,Pfaff J O,Quinn A W,el al. Processes for incorporating encapsulated flavors and the like in reconstituted tobacco sheet.美国专利:3540456,1970-11-17
    Meglumphy J H,Pfaff J O,Quinn A W,el al. Reconstituted tobacco containing adherent encapsulated Flavors and other matter.美国专利:3550598,1970-12-29
    Mehnaz S, Mirza M S, Hassan U, et al. Detection of Inoculated Plant Growth Promoting Rhizobacteria in the Rhizosphere of Rice. In: Proceedings 7th int. Symp. on "Nitrogen Fixation with Nonlegumes" . Eds. Malik K.A., Mirza S.M. and Ladha J.K. Kluwer Publishers, The Netherlands., 1998:75-83
    Momein H, El-Katatny Ahmed M, Hetta Gehan M, Shaban Hesham M El-Komy. Improvement of Cell Wall Degrading Enzymes Production by Alginate Encapsulated Trichodermas pp. Food Technol Biotechno,2003,41(3):219-225
    Narsian V and Patel H H. Aspergillus aculeatusas a Rock Phosphate Solubilizer. Soil Biol. Biochem. 2000, 32: 559-565
    Nautiyal C. An efficient Microbiological Growth Medium for Screening Phosphate Solubilizing Microorganisms. FEMS Microbiology Letters,1999,170(1):265-270
    Neilands J B and Nakamura K. Detection,Determination,Isolation,Characterization and Regulation of Microbial Iron Chelates.In CRC Handbook of Microbial Iron Chelates. G.Winkelmann, ed (London:CRC Press),1991:1-14
    Okon Y, Albrecht S L and Burris R H. Methods for growing Spirillum Lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol,1977,33: 85-88
    Palus J A, Borneman J, Ludden P W, et a1. A diazotrophie bacterial endophyte isolated from stems of Zea mays L.an d Zea luxurtans Ihis an d Doebley.P1an t Soil.1996,186:135-142
    Pointing S B, Buswell J A, Jones E B G, Vrijmoed L L P. Extracellular Cellulolytic Enzyme Profiles of Five Lignicolous Mangrove Fungi. Mycological Research, 1999, 103(6): 696-700
    Priest F G, Goodfellow M and Todd C. The Genus Bacillus: a Numberical analysis. In The Aerobic Endospore-forming Bacteria. Classifrcation and Identification, 1981, 91-103. Edited by R.C.W. Berkeley&M. Goodfellow. London: Academic Press
    Promod K C and Dhevendaran K. Studies on Phosphobacteria in Cochin Backwater. J Mar Biol Ass India,1987,29: 297-305
    Puente M E, Holguin G, Glick B R, Bashan Y. Root-surface Colonization of Black Mangrove Seedlings by Azospirillum halopraeferens and Azospirillum brasilense in Seawater. FEMS Microbiol Ecol, 1999,29:283-292
    Raghukumar C, Dsouza T M, Thom R G, Reddy C A. Lignin-modifying enzymes of Flavodon flavus, a Basidionycete Isolated from a Coastal Marine Environment, Applied and Environmental Microbiology, 1999,65(5): 2103-2111
    Rasul G, Mirz M S, Latif F, et al. Identification of Plant Growth Hormones Produced by Bacterial Isolates from Rice, Wlreet and Kallar Grass. In: Proceedings 7th int. Symp. on "Nitrogen Fixation with Nonlegumes.". Eds. Malik K.A., Mirza M. S. and Ladha J.K.Kluwer Publishers, The Netherlands. 1998:25-37
    Ravikumar S, Kathiresan K, Thadedus S, et al. Nitrogen-fixing Azotobacters from Mangrove Habitat and their Utility as Marine Biofertilizers. Journal of Experimental Marine Biology and Ecology,2004, 312: 5- 17 Rojas A, Holguin G, Glick B R, et al. Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a Semiarid Mangrove Rhizosphere. FEMS Microbiol Ecol,2001,35:181-187
    Routray T K, Satapathy G G, Mishra A K. Seasonal Fluctuation of Nitrogen Transforming Microorganisms in Bhitarkanika Mangrove Forest. Journal of Environmental Biology, 1996,17(4):325-330
    Ryder M H, McClure N C. Antibiosis in Relation to Other Mechanisms in Biocontrol by Rhizobacteria In Plant Growth-promoting Rhizobacteria: Present Status and Future of an HIV gp120 Envelope Glycoprotein in Complex with the CD4 Recepter and a Neutralizing Human antibody. Nature,1998,393:648-59
    Ryu C M, Farag M A, Hu C H, et al. Bacterial Volatiles Promote Growth in Arabidopsis. Proc Natl Acad Sci USA,2003,100:4927-4932
    Schingmann G, Milne L, Williams D R, et al. Cell Wall Active Antifungal Compounds Produced by the Marine Fungus Hypoxylon oceanicumL L-15G256.II. Isolation and Structure deter-mination. J.Antibiot.,1998, 51(3):303-316
    Schippers B, Bakker A W, Bakker P A H M. Interacts of Deleterious and Beneficial Rhizosphere Microorganisms and the Effect of Cropping Practices. Ann. Rev. Phytopathoi. 1987,25: 339-358
    Sengupta A and Chaudhuri S. Ecology of Heterotrophic Dinitrogen fixation in the Rhizosphere of Mangrove Plant Community at the Ganges River Estuary in India. Oecologia, 1991,87: 560-564
    Shome R,ShomeB R,MandalA B,BandoPadhyay A K. Baeterial flora in mangroves of Andaman-Prat l: Isolation,identification and antibiogram studies. India Journal of Marine science, 1995, 24:97-98
    Siebner-Freibach H, Hadar Y, Chen Y. Siderophores Sorbed on Ca-montmorillonite as an Iron Source for Plants. Plant and soil, 2003,251:115-124
    Singh N, Steinke T D. Colonization of Decomposing Leaves of Bruguiera gymnorrhiza (Rhizopraceae) by Fungi, and in vitro Cellulolytic Activity of the Isolates. South Afric.J.Bot., 1992,58(6): 525-529
    Sturz A V, Christie B, and Nowak J. Bacterial Endophytes: Potential Role in Developing Sustainable Systems of Crop Production. Critical Reviews in Plant Science ,2000,19: 1-30
    Sundaram W V B and Sinha M K. Phosphate Dissolving Microorganisms in the Rhizosphere and Soil. India J Agric Sci,1963,33(4):272-278
    Tam N F Y. Effects of Wastewater Discharge on Microbial Population and Enzyme Activites in Mangrove Soils. Environ.Poll.,1998,102(2-3):233-242
    Tan T K, Teng C L, Jones E B G. Substrate Type and Microbial Interactions as Factors Affecting Ascocarp Formation by Mangrove Fungi. Hydrobiologia, 1995, 295(1-3):127-134
    Thakuria D, Talukdar N C, Goswami C, et al. Characterization and Screening of Bacteria from Rhizosphere of Rice Grown in Acidic Soils of Assam. Current Science, Vol. 86, No. 7, 10 April, 2004: 978-985,68
    Toledo G, Bashan Y, Soeldner A. Cyanobacteria and Black Mangroves in Northwestern Mexico: Colonization,and Diurnal and Seasonal Nitrogen Fixtation on Aerial Roots. Can J Microbiol, 1995,41: 999-1011
    Van der Valk A G and Attiwill P M. Acetylene Reduction in an Avicennia marina community in Southern Australia. Aust J Bot,1984,32:157-164
    Van Veen J A, Van Overbeek L S, Van Elsas J D, et al. Fate and activity of microorganisms introduced into soil. Micro. Mol. Biol. Rev. 1997,61:121-135
    Vazquez P, Holguin G, Puente M E, et al. Phosphate-solubilizing Microorganisms Associated with the Rhizosphere of Mangroves in a Semiarid Coastal Lagoon. Biol Fertil Soils,2000,30: 460-468
    Wang J S, Zhao L P, Feng J X. Recombination Microorganisms for Biological Control of Plant Disease. In:Huang D F, eds. Genetic Engineering of Agricultural Microorganisms. Beijing: SciencePress. 2001,316-408
    Wei G, et al. Induced Systemic Resistance to Cucumber Diseases and Increased Plant Growth Plant Growth-promoting Rhizobacteria under Field Conditions. Phytopathology, 1996, 86:221-224
    Woitchik A F, Ohowa B, Kazungu J M, et al. Nitrogen Enrichment During Decomposition of Mangrove Leaf Litter in An East African Coastal Lagoon (Kenya): Relative Importance of Biological Nitrogen Fixation.Biogeochemistry, 1997, 39(1): 15-35
    Wu R Y. Studies on the Microbial Ecology of Tansui Estuary,Botanical Bulletin of Academin Sinica, 1993,34(1):13-30
    Xie G H, Cai M Y, Tao G C, et al. Cultivable heterotrophic N2-fixing bacterial diversity in rice fields.Biol Fertil Soils, 2003, 37: 29-38
    Yao C B, Zehner G W, Sikora E, et al. Evaluation of Induced Systemic Resistance and Plant Growth Promotion in Tomato with Selected PGPR Strains. In: Ogoshi A, Kobayashi K, Homma Y, eds. Plant Growth-Promoting Rhizobacteria-Present Status and Future Prospects. Sapporo: Nakanishi Printing,1997,285-288
    Zehnder G, Klopper J, Yao C, et al. Induction of Systemic Resistance in Cucumber Against Cucumber Beetles by Plant Growth-promoting Rhizobacteria. J Econ Entomol, 1997,90:391-396
    Zuberer D and Silver W S. Biological Dinitrogen Fixation (Acetylene reduction) Associated with Florida mangroves. Appl Environ Microbiol, 1978,35:567-575
    Zuberer D and Silver W S. Biological Nitrogen. Appl Environ Microbiol, 1984, 47:44-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700