用户名: 密码: 验证码:
视觉信息的注意计时机制实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时间知觉即“知觉到的现在”,其约3秒钟的时间范围是产生“现在感”的基础,同时也是信息得以进行时间整合并形成统一的知觉对象的基础。时间知觉的时间范围提供了一个人类有意识信息加工活动时间窗口,也反映了人类动作行为的基本时间组织。
     本研究依据“分段综合模型”对时间知觉的概念界定,在综述经典时间知觉研究和信息加工计时特性有关研究的基础上,提出时间知觉反映了有意识信息加工的时间限度的假设;同时直接以视觉信息的注意加工为对象,设计了五个实验系统考察视觉信息的选择性注意计时特性,揭示其时间限度。
     实验一~实验三分别采用空间视觉搜索、空间快速序列视觉搜索以及标准快速序列视觉搜索三种范式考察视觉搜索中的注意计时特性,并同时考察空间位置(实验一、二)、搜索任务类型(实验一)、显示集容量(实验一、二、三)、项目间时间间隔(实验二、三)、项目可区分度(实验一、二、三)等因素对于视觉搜索作业的影响。实验四、五采用快速序列视觉呈现双目标任务考察注意瞬脱现象及在改变任务目标和任务类型、项目呈现时距条件下注意瞬脱效应的普遍性,进一步揭示视觉信息加工中注意的计时特性。
     本研究条件下得出如下主要结论:
     1空间搜索中,特征搜索和联合搜索都包含并行和串行加工成分;被试作业反应时随显示集容量增大而增大,随项目可区分度减小而增大;
     2空间序列搜索中,联合搜索正确率随项目呈现时距和可区分度增大而提高,目标未出现时正确率更高;注意资源可能在各加工阶段间进行动态的分配;
     3标准序列搜索中,被试作业正确率随项目呈现时距增大而提高;该条件下项目间的遮蔽抵消了难度效应;目标未出现时正确率更高,同样也反映了注意的灵活性;
     4标准序列呈现双任务作业范式中,双目标任务条件下,被试对第二个目标的加工相对单目标任务在第一个目标呈现后200~400ms出现损伤,表现出明显的注意瞬脱效应;
     5采用相同范式,变化三种项目呈现时距(60、80、100ms),改变目标项类型和作业类型,仍分离出较明显的注意瞬脱效应;注意瞬脱所反映的不是知觉组织阶段的加工特点,而是知觉后乃至工作记忆加工的计时特点;
     6视觉搜索和注意瞬脱反映了不同的注意计时特性,注意瞬脱牵涉到对两个序列目标的觉察,此时注意转换的时间限度为约200~400ms。视觉搜索只牵涉到单个目标的检测,以反应时为指标得到约100~150ms每项的注意转换速度估计,但其中可能杂揉了空间并行加工和外显眼动的影响;以正确率为指标,在空间序列搜索中得到注意选择的时间解析度至少可达到80~160ms每项;在遮蔽比较明显的标准序列搜索中,该时间解析度至少也可达到160ms每项。
     7视觉搜索更多地反映了注意的早期选择瓶颈;注意瞬脱则更多地反映了注意的晚期选择瓶颈;可以尝试用一个多阶段注意选择理论来整合这两个领域的争论。
     本研究从理论上辨析了经典时间知觉的研究内容,阐明了时间知觉本质上反映了有意识信息加工的时间限度,因而可以据此统合经典时间知觉和当代认知神经科学对信息加工计时特性的研究。据此,本研究从注意的有意识觉察本质出发,首次直接以注意的计时特性为研究对象,突出了注意乃至有意识信息加工时间维度上的限度;并尝试用一个整合的多阶段理论揭示有意识信息加工存在普遍但分层级的时间限度,丰富了时间知觉研究和分段综合模型。本研究还揭示出时间维度上的注意选择普遍存在于信息加工的各阶段,因而视觉搜索和注意瞬脱领域中的一些争论得到了较好的整合。本研究的创新点还表现在将视觉搜索和注意瞬脱等范型引入时间知觉领域;综合采用空间、空间序列、标准序列视觉搜索、注意瞬脱等多种实验范式以及反应时、正确率多种指标系统考察注意的计时特性及其影响因素,体现了分段综合模型所建议的多范式、多方法、多因素的综合研究取向在揭示时间知觉本质中的生命力。
     最后在指出本研究内容、方法等方面不足的基础上给出了今后进一步改进的方向。
Time perception, being regarded as perceived present, has a three-second around temporal extent which is underlying the sense of present. Also, it is substrate for temporal integration of informations from which unitary and coherent percepts are established. The range of perceived present represented a basic temporal organization of humans' motion behaviors, as well as providing a temporal window for the activities of conscious information processing.This research, beginning with the definition of time perception based on range-synthetic model, reviewed classical researches on time perception and updated researches related with temporal processing of information. Then, it was suggested that time perception represented the time limits of conscious information processing. Based on this hypothesis, five experiments were designed to explore the timing mechanisms, especially the time limits, of selective attention for visual information processing.Three paradigms, named as spatial search, spatial RSVP search, and standard RSVP search, were used respectively in first three experiments to explore the atttentional timing mechanism underlying visual search. Also, the effects of spatial location (Expt. 1 and 2), search task (Expt. 1), setsize (Expt. 1, 2 and 3), SOA between items (Expt. 2 and 3), and discrimination of items (Expt. 1, 2 and 3) on the performance of visual search were examined. Experiment 4 and 5 both used standard RSVP paradigm with double task to explore the phenomenon called attentional blink (AB). Further, the availability of AB effect under conditions with different target identities, task requirements and presenting durations of items was examined to uncover the attentional timing mechanism of visual information processing.
     The present research concluded that:
     Firstly, both parallel and serial component was founded in feature and conjunction search in spatial search paradigm, in which the RT of subjects' performance also increased with the increase of setsize and decrease of discrimination among items.
     Secondly, the correct ratio of subjects' performance in conjunction search increased with the increase of both SOA and discrimination among items, with higher correct ratios under the target-absent condition, in spatial RSVP search paradigm which reflected dynamic allocation of attention resource in multiple stages of processing.
     Thirdly, the performance of subjects increased with the increase of SOA and the effect of discrimination was lost because of the masking between items in standard RSVP search paradigm. Also, higher correct ratios under the target-absent condition were argued as reflecting the flexibility of attention processes.
     Fourthly, the performance of second target (T2) detection was impaired in condition of dual-target task compared with single-target task in the time range of 200 to 400 ms after the onset of first target, in standard RSVP paradigm with double tasks, which represented remarkable attentional blink effect.
     Fifthly, with the same paradigm, significant AB effect was found under the conditions of different target identity and task requirement, which suggested that this effect represented the attentional timing characteristic of postperceptual and even working memory processing, rather than in the stage of perceptual organization.
     Sixthly, attentional blink and visual search represented different attentional timing mechanism. The former involved the awareness of two targets and the time limit of attention switching here was estimated as 200 to 400 ms around. The latter, visual search, involved the detection of single target and the speed of attention switching was estimated as 100 to 150 ms per item, which may include the effect of spatial serial processing and overt eye movement, with the index of reaction time. On the other hand, the temporal resolution of attention selection was estimated as 80 to 160 ms per item in the spatially serial search and 160 ms per item in the standard serial search with remarkable masking effects, respectively, both with the index of correct ratio.
     Lastly, visual search and attentional blink represented more on the bottleneck of early attention selection and of late selection, respectively. Thus, a theory of multi-stage selection was used to integrate the debates between the two fields.
     Based on the theoretical analysis of the contents of classical time perception studies, the present research demonstrated that time perception in nature represented the time limits of conscious information processing. It may be used to integrate the fields of classical time perception and of temporal processing of information in contemporary cognitive neuroscience. Based on the nature of conscious awareness, the attentional timing was directly studied, which emphasis the limits of attention and even conscious information processing in temporal dimension. Also, an integrated theory of multi-stage was used to indicated that there exist universal but multiple levels of temporal limits, which expanded the studies on time perception and range-synthetic model. The present research also indicated that the attention selection in the time dimension occurred in multiple stages of information processing, which made it possible to integrate debates in visual search and attentional blink. At last, the present research demonstrated it's value by introducing visual search and attentional blink paradigms into field of time perception and using varied experimental designs and indices to explore timing of attention and factors affect it. This last point represented a synthetic research approach with multiple paradigms, multiple methods and multiple factors suggested by range-synthetic model, which will show its vitality in uncovering the nature of time perception.
     As the end, furth research suggestions were provided based on the deficiencies of present research on the research contents, methods, and so on.
引文
1.凤四海,黄希庭(2004).时间知觉理论与实验范型.心理科学,V27(5):1157-1160.
    2.黄希庭(1993).时距信息加工的认知研究.西南师范大学学报(自然科学版),18,207-215.
    3.黄希庭,李伯约,张志杰(2003).时间认知分段综合模型的探讨.西南师范大学学报(人文社科版),29(2):5~9.
    4.黄希庭,孙承惠(1991).时间词义赋值特征的分析.心理学报,23(3):244~249.
    5.黄希庭,徐光国(1997).对变化,分割模型的检验(Ⅰ).心理学报,29,326-334.
    6.黄希庭,郑涌(1995).时间记忆的理论与实验范型.心理科学,18,201-205.
    7.黄希庭(1994).未来时间的心理结构,心理学报.26,110-126.
    8.黄希庭(1991).心理学导论.北京:人民教育出版社.
    9.李永瑞,梁承谋.注意瞬脱现象及其理论解释.心理学动态,V9(1):5-9.
    10.柳学智(1993).多种因素对时间连续阈限的影响.心理学报,26(3):226-231.
    11.吴国盛(1996).时间的观念.北京:中国社会科学出版社.
    12.张志杰,黄希庭(2003).时间认知的脑机制研究.心理科学进展,11(1):44~48.
    13.张志杰(2002).西南师范大学基础心理学专业博士学位论文.
    14.[德]恩斯特·波佩尔,李百涵等译(2000).意识的限度:关于时间与意识的新见解.北京:北京大学出版社,2000
    15.[德]胡塞尔著,杨富斌译.(1999).内在时间意识的现象学.北京:华夏出版社.
    16.[美]弗兰西斯·克里克著,汪云九等译(1998).惊人的假说:灵魂的科学探索.长沙:湖南科学技术出版社.
    17.[美]罗伯特·列文著,范东生、许俊农等译(2000).时间地图:不同时代与民族对时间的不同解释.合肥:安徽文艺出版社.
    18. Allan, L. G.(1975). The relationship between judgments of successiveness and judgments of order. Perception & Psychophysics, 18, 29-36.
    19. Allan, L. G.(1979). The perception of time. Perception & Psychophysics, 26, 340-354.
    20. Allan, L. G.(1998). The Influence of the Scalar Timing Model on Human Timing Research. Behavioural Processes, 44, 107-117.
    21. Allan, L. G., & Gibbon, J.(1991). Human Bisection at the Geometric Mean. Learning and Motivation, 22, 39-58.
    22. Allan, L. G., & Kristofferson, A. B.(1974). Successiveness discrimination: two models. Perception & psychophysics, 15(1), 37~46.
    23. Arnell, K. M., & Jolicoeur, P.(1999). The Attentional Blink Across Stimulus Modalities: Evidence for Central processing Limitations. Journal of Experimental Psychology: Human Perception and Performance, 25, 630-648.
    24. Awh, E., Serences, J., & Laurey, P., et al.(2004). Evidence against a central bottleneck during the attentional blink: Multiple channels for configural and featural processing. Cognitive Psychology, 48, 95-126.
    25. Beck, D. M., Rees, G., & Frith, C. D., et al.(2001). Neural correlates of change detection and change blindness. Nature. Neuroscience. 4, 645-650.
    26. Bennett, S. C., & Wolfe, J. M.(1996). Serial visual search can proceed at 50 msec per item. Investigative Ophthalmology and Visual Science, 37.
    27. Binkofski, F., & Block, R. A.(1996). Accelerated time experience after left frontal cortex lesion. Neurocase, 2,485-499.
    
    28. Block, R. A., & Zakay, D. (2001). Psychological time at the millennium: some past, present, future, and interdisciplinary issues. In: Soulsby, M. P. & Fraser, J. T. (Eds). Time Perspectives at the Millennium (The Study of Time X), Chapter 11. Westport: Bergin & Garvey.
    
    29. Block, R. A. (2003). Psychological Timing Without a Timer: The Roles of Attention and Memory. In Helfrich, H. (Ed.), Time and mind II: information processing perspectives. Cambridge, MA: Hogrefe & Huber Publishers.
    
    30. Block, R. A., & Zakay, D. (2000). Psychological Time: Memory, Attention, and Consciousness. In: Buccheri et al., (Eds). Studies on the Structure of Time: From Physics to Psycho(path)ology. New York: Kluwer Academic/Plenum Publishers, 15-31.
    
    31. Block, R. A., George, E. J., & Reed, M. A. (1980). A watched pot sometimes boils: a study of duration experience. Acta Psychologica 46:81-94.
    
    32. Bowman, H., Wyble, B., & Barnard, P. J. (2004). Towards a Neural Network Model of the Attentional Blink. Proceeding of 8th Neural Computer & Psychology, Progress in Neural Procedure (Voll5, ppl78-187). World Scientific.
    
    33. Bravo, M. J., & Nakayama, K. (1992). The role of attention in different visual-search tasks. Perception & Psychophysics, 51: 465-472.
    
    34. Broadbent, D. E., & Broadbent, M. H. P. (1987). From detection to identification: Response to multiple targets in rapid serial visual presentation. Perception & Psychophysics, 42, 105-113.
    
    35. Brockmole, J R., Wang, R F, & Irwin, D E. (2002). Temporal Integration Between Visual Images and Visual Percepts. Journal of Experimental Psychology: Human Perception and Performance, 28(2): 315-334.
    
    36. Brown, S. W., Stubbs, D. A., & West, A. N. (1992). Attention, multiple timing, and psychophysical scaling of temporal judgments. In F. Macar, V. Pouthas, & J. Friedman (Eds.). Time, Action, and Cognition: Towards Bridging the Gap (ppl29-140). Dordrecht, The Netherlands: Kluwer.
    
    37. Brown,S.W.(1997).Attentional resources in timing: Interference effects in concurrent temporal and nontemporal working memory tasks. Perception & Psychophysics, 59,1118-1140.
    
    38. Burle, B., Macar, F., & Bonnet, M. (2003). Behavioral and electrophysiological oscillations in information processing: A tentative synthesis. In Helfrich, H. (Ed.), Time and mind II: information processing perspectives. Cambridge, MA: Hogrefe & Huber Publishers.
    
    39. Cardaci, M. (2000). The Mental Clock Model: Studies on the Estimation of Time. In: Buccheri et al.(Eds.) Studies on the Structure of Time: From Physics to Psycho(path)ology. New York: Kluwer Academic/Plenum Publishers, 33-36.
    
    40. Carrasco, C. M., Guillem, J. M.,& Redolat, R. (2000). Estimation of short temporal intervals in Alzheimer's disease. Experimental Aging Research, 26, 139-151.
    
    41. Casini, L., Macar, F., & Grondin, S. (1992). Time estimation and attentional sharing. In F. Macar, V. Pouthas, & J. Friedman (Eds.), Time, action,and cognition: Towards bridging the gap(pp177-180). Dordrecht, The Netherlands: Kluwer.
    
    42. Cave, K. R., Wolfe, J. M. (1990). Modeling the role of parallel processing in visual search. Cognitive. Psychology, 22:225-271.
    
    43. Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception & Performance, 21, 109-127.
    
    44. Church, R M. (2003). Simultaneous Temporal Processing. In Helfrich, H. (Ed.), Time and mind II: information processing perspectives. Cambridge, MA: Hogrefe & Huber Publishers.
    
    45. Church, R. M., & Broadbent, H. (1990). Alternative Representations of Time, Number, and Rate. Cognition, 37,55-81.
    
    46. Church, R. M., & Gibbon, J. (1982). Temporal Generalization. Journal of Experimental Psychology: Animal Behavior Processes, 8, 165-186.
    
    47. Corbetta, M., Miezin, F. M, (1990). Dobmeyer S , et al., Attentional modulation of neural processing of shape , color, and velocity in humans. Science, 248 (4962): 1556 - 1559.
    
    48. Crick, F., & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in The Neurosciences, 2, 263-275.
    
    49. Crick, F., & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in The Neurosciences, 2, 263-275.
    
    50. Crick, F., Koch, C. (2003). A framework for consciousness. Nature Neuroscience, 6, 119-126.
    
    51. Czigler, I. (2003). Temporal Characteristics of Auditory Event-Synthesis: Electrophysiological Studies. In Helfrich, H. (Ed.), Time and mind II: information processing perspectives. Cambridge, MA: Hogrefe & Huber Publishers.
    
    52. Damasio, A. R. (1989). Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition, 33,25-62.
    
    53. Debener, S., Herrmann, C.S., & Kranczioch, C, et al., (2003). Top-down attentional processing enhances auditory evoked gamma band activity. NeuroReport, 14,683-686.
    
    54. Dennett, D. C. (1993). Consciousness explained. London: Penguin Books.
    
    55. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18:193-222.
    
    56. DiLollo, V. et al. (2001) The preattentive emperor has no clothes: a dynamic redressing. Journal of Experimental Psychology: General, 130,479-492.
    
    57. Duncan, J., & Humphreys, G. (1989). Visual search and stimulus similarity. Psychological Review, 96: 433-458.
    
    58. Duncan, J., Ward, R., & Shapiro, K. L. (1994). Direct measurement of attentional dwell time in human vision. Nature, 369,313-315.
    
    59. Durgin, F. H., & Stemberg, S. (2002). The Time of Consciousness and Vice Versa. Consciousness and Cognition, 11,284-290.
    
    60. Egeth, H. E. & Yantis, S. (1997). Visual Attention: Control, Representation, and Time Course. Annual Review of Psychology, 48,269-97.
    
    61. Engel, A, K. (2003). Time and conscious visual processing. In Helfrich, H. (Ed.), Time and mind II: information processing perspectives. (O.pp. 141-159). Cambridge, MA: Hogrefe & Huber Publishers, 2003
    
    62. Engel, A. E., Fries, P., & Konig, P., et al. (1999). Temporal Binding, binocular rivalry and consciousness. Consciousness and Cognition, 8(2): 128-151.
    
    63. Engel, A. K., Roelfsema, P. R., & Fries, P., et al. (1997). Role of the temporal domain for response selection and perceptual binding. Cerebral Cortex, 7,571-582.
    
    64. Engel, A.K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Science, 5, 16-25.
    
    65. Fell, J., Fernandez, G., & Klaver, P., et al. (2003). Is synchronized neuronal gamma activity relevant for selective attention? Brain Research Review, 42, 265- 272.
    
    66. Flaherty, M. G. (1991). The perception of time and situated engrossment. Social Psychology Quarterly, 54(1): 76-85.
    
    67. Fortin, C. & Breton, R.(1995). Temporal interval production and processing in working memory. Perception & Psychophysics, 57,203-215.
    68. Fortin, C. (1999). Short-term memory in time interval production. International Journal of Psychology, 34, 308-316.
    
    69. Fraisse, P. (1963). The Psychology of Time. New York: Harper & Row.
    
    70. Fraisse, P. (1981). Cognition of Time in Human Activity. In: G. d'Ydewalle, W. Lens, (Eds). Cognition in Motivation and Learning, Hillsdale, New York: Erlbaum, 233-259.
    
    71. Fraisse, P. (1984). Perception and Estimation of Time. Annual Review of Psychology, 35: 1-36.
    
    72. Freedman, M. S., Lucas, R. J., & Soni, B., et al. (1999). Regulation of Mammalian Circadian Behavior by Non-rod, Non-cone, Ocular Photoreceptors. Science, 284, 502-504.
    
    73. Fries, P., Reynolds, J. H., & Rorie, A. E., et al. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291, 1560-1563.
    
    74. Fries, P., Schroder, J. H., & Roelfsema, P. R. et al. (2002). Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. Journal of Neuroscience, 22, 3739- 3754.
    
    75. Geissler, H G. (2003). Invariants of Mental Timing: Facts, Ideas and the Necessity to Agree on a Framework of Universals. In Helfrich, H. (ed.), Time and mind II: information processing perspectives. Cambridge, MA: Hogrefe & Huber Publishers.
    
    76. Gibbon, J., Malapani, C, & Dale, C.L., et al.(1997). Toward a neurobiology of temporal cognition: Advance and Challenges. Current Opinion in Neurobiology, 7,170-184.
    
    77. Gibbons, H., Brandler, S., & Rammsayer, T. H. (2003). Dissociating Aspects of Temporal and Frequency Processing: A Functional ERP Study in Humans. Cortex, 39, 947-965.
    
    78. Gibson, J. J. (1975). Events Are Perceivable, But Time is Not, In J. T. Fraser & N. M. Laurence (Eds). The Study of Time II, New York: Spinger-Verlag.
    
    79. Glassman, R B. (2003). Hypothesized Temporal and Spatial Code Properties for a Moment's Working Memory Capacity: Brain Wave " Harmonies" and "Four-Color" Topology of Cortical Area Micromaps for Chunk-Attributes. In Helfrich, H. (ed.), Time and mind II: information processing perspectives. Cambridge, MA: Hogrefe & Huber Publishers.
    
    80. Gomes, G. (1998). The Timing of conscious experience: A critical review and re interpretation of Libet's research . Consciousness and Cognition, 1998(7): 559-595
    
    81. Grondin, S. (2003). Sensory Modalities and Temporal Processing. In Helfrich, H. (ed.), Time and mind II: information processing perspectives. Cambridge, MA: Hogrefe & Huber Publishers.
    
    82. Hanke, W. (2000). The Perception of Time. In: Buccheri et al eds. Studies on the Structure of Time: From Physics to Psycho(path)ology. New York: Kluwer Academic/Plenum Publishers, 37-48.
    
    83. Harris, C. L., Morris, A. L. (2001). Identity and similarity in repetition blindness: no cross-over interaction. Cognition, 81, 1-40.
    
    84. Horowitz, T.S. & Wolfe, J.M. (1998). Visual search has no memory. Nature, 394, 575-577.
    
    85. James, W. (1950). The Principles of Psychology, http://www.w3.org/TR/REC-htm140, 2006-03-15.
    
    86. Jolicoeur, P., & Dell'Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psychology, 36, 138-202.
    
    87. Jueptner, M., Rijntjes. M., & Weiller, C, et al. (1995). Localization of a cerebellar timing process using PET. Neurology, 45,1540-1545.
    
    88. Kaernbach, C, Demany, L. (1998). Psychophysical evidence against the autocorrelation theory of auditory temporal processing. Journal of Acoustic Society, 104 (4), 2298-2306.
    
    89. Katsumi, N. A . study of a rhythm perception model, http://www.tsuyama-ct.ac.jp/kats/papers/kn8/kn8.htm, 2000-08-15
    
    90. Kinsbourne, M. & Hicks, R.E, (1990). The extended present: evidence from time estimation by amnesiacs and normals. In: Vallar, G., Shall ice, T. (Eds). Neuropsychological impairments of short-memory (pp329-329), Cambridge: Cambridge University Press.
    
    91. Klapproth, F. (2003). Notable Results Regarding Temporal Memory and Modality. In Helfrich, H. (Ed.), Time and mind II: information processing perspectives. Cambridge, MA: Hogrefe & Huber Publishers.
    
    92. Klein, R. (1988). Inhibitory tagging system facilitates visual search. Nature, 334, 430-431.
    
    93. Kosslyn, S. M., Rosenberg, R. S. (2004). Psychology: the brain, the person, the world (英文影印版) .北京 :北京大学出版社, 172-174.
    
    94. Kranczioch, C, Debener, S., Engel, A.K. (2003). Event-related potential correlates of the attentional blink phenomenon. Brain Research. Cognitive Brain Research. 17, 177-187.
    
    95. Kristofferson A B. A real-time criterion theory of duration discrimination. Perception and Psychophysics, 1977,21: 105-117
    
    96. Lejeune, H. (1998). Switching or gating? The attentional challenge in cognitive models of psychological time. Behavioural Processes, 44, 127-145.
    
    97. Leopold, D. A., Logothetis, N. K. (1999). Multistable phenomena: changing views in perception. Trends in Cognitive Science, 3, 254- 264.
    
    98. Luck, S. J., Vogel, E. K., Shapiro, K. L. (1996). Word meanings can be accessed but not reported during the attentional blink. Nature, 383,616-618.
    
    99. Macar, F, Grondin, S., & Casini, L. (1994). Controlled attention sharing influences time estimation. Memory & Cognition, 22, 673-686.
    
    100. Mangels, J. A., Ivry, R. B., & Shimizu, N. (1998). Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Cognitive Brain Research, 7, 15-39.
    
    101. Mangun, G. R., & Hillyard, S. A. (1990). Allocation of visual attention to spatial location: Tradeoff functions for event-related brain potentials and detection performance. Perception and Psychophysics, 47(6): 532-550.
    
    102. Marois, R., Chun, M. M., & Gore, J. C. (2000). Neural correlates of the attentional blink. Neuron, 28,299-308.
    
    103. Matell, M. S., & Meck, W. H. (2000). Neuropsychological Mechanisms of Interval Timing Behavior. Bioessays, 22,94-103.
    
    104. Mates, J., Muller, U., & Radii, T., et al. (1994). Temporal integration in sensorimotor synchronization. Journal of Cognitive Neuroscience, 6,332-340.
    
    105. Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3, 227-242.
    
    106. Michon, J. A. (1985). The complete time experiencer. In J. A. Michon & J. L. Jackson (Eds.), Time, mind and behavior (pp20-52). Berlin: Springer-Verlag.
    
    107. Michon, J. A. (1989). Timing Your Mind and Minding Your Time. In: J. T. Fraser (Ed.), Time and Mind: Interdisciplinary Issues. The Study of Time VI, Connecticut: International Universities Press, 17-42.
    
    108. Michon, J.A., & Jackon, J. L. (1984). Attentional effort and cognitive strategies in the processing of temporal information. Annals of the New York Academy of Sciences, 423, 298-321.
    
    109. Monfort, V., Pouthas, V., & Ragot, R. (2000). Role of frontal cortex in memory for duration: An event-related potential study in humans. Neuroscience Letters, 286, 2, 91-94.
    
    110. Morris, N., & Jones, D. M. (1990). Memory updating in working memory: The role of the central executive. British Journal of Psychology, 81, 111-121.
    
    111. Muller, H. J., & Elliott, M. A. (2001). Neural binding of space and time: An introduction. Visual Cognition, 8, 273-285.
    112. Munk, M. H. J., Roelfsema, P. R., & Konig, P., et al. (1996). Role of reticular activation in the modulation of intracortical synchronization. Science, 272, 271-274.
    
    113. Newman, J., & Baars, B.J. (1993). A neural attentional model for access to consciousness: a global workspace perspective. Concepts in Neuroscience. 4,255- 290.
    
    114. Perbal S., Pouthas V. & Van der Linden M. (2000) Time Estimation and Amnesia: A case study. Neurocase, 6, 347-356.
    
    115. Jolicoeur, P. (1999). Concurrent Response-Selection Demands Modulate the Attentional Blink. Journal of Experimental psychology: Human perception and performance , 25: 1097-1113.
    
    116. Poppel, E. (2004). Lost in time: a historical frame, elementary processing units and the 3-second window. Acta Neurobiology Expression, 64, 295-301.
    
    117. Poppel, E., Wittmann, M. (2000). Time in the Mind (影印版) In Wilson, R. A., Keil, F. C. (Eds). 认知科学百科全书 (The MIT Encyclopedia of the Cognitive Sciences), 上海:外语教育出版社. 841-842.
    
    118. Poppel, E. (1997). A Hierarchical Model of Temporal Perception. Trends in Cognitive Science, 1, 56-61.
    
    119. Posner, M. I. & Cohen, Y. (1984). Components of attention. In Bouma, H., & Bouwhuis, D.G. (Eds). Attention and Performance X (pp55-66), Erlbaum.
    
    120. Potter, M. C, Chun, M. M., & Muchenhoupt, M. (1998). Two attentional deficits in serial target search: The visual attentional blink and an modal task-switch operation. Journal of Experimental psychology: Human perception and performance, 24: 979-992.
    
    121. Potter, M. C, Staub, A., & O'Connor, D. H. (2002). The time course of competition for attention: attention is initially labile. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 1149-1162.
    
    122. Pouthas, V, Garnero, L., & Ferrandez, A. M. et al. (2000). ERPs and PET analysis of time perception: Spatial and temporal brain mapping during visual discrimination tasks. Human Brain Mapping, 10, 49- 60.
    
    123. Poynter, W. D. (1989). Judging the duration of time intervals: A process of remembering segments of experience. In I. Levin, D. Zakay, (Eds). Time and Human cognition: A Life-Span Perspective(pp305-331). Amsterdam: North-Holland.
    
    124. Rammsayer, T. H. (2003). Sensory and Cognitive Mechanisms in Temporal Processing Elucidated by a Model Systems Approach. In Helfrich, H. (ed.), Time and mind II: information processing perspectives. Cambridge, MA: Hogrefe & Huber Publishers
    
    125. Rammsayer, T. H. (1999). Neuropharmacological evidence for different timing mechanisms in humans. Quarterly Journal of Experimental Psychology. B, Comparative & Physiological Psychology, 52B, 273-86.
    
    126. Rao, S. M., Harrington, D. L., & Harland, K. Y., et al. (1997). Distributed neural systems underlying the timing of movements. Journal of Neuroscience, 17, 5528-5535.
    
    127. Raymond, J. E., Shapiro, K. L., Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: an attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18,849-860.
    
    128. Reeves, A., Sperling, G. (1986). Attention gating in short-term visual memory. Psychological Review, 93, 180-206.
    
    129. Revonsuo, A. & Newman, J. (1999). Binding and consciousness. Consciousness and Cognition, 8, 123-127.
    
    130. Schubotz, R. I., Friederici, A. D., & von Cramon, D. Y. (2000). Time perception and motor timing: A common cortical and subcortical basis revealed by fMRI. Neuroimage, 11, 1-12.
    
    131. Shapiro, K. L., Raymond, J. E., & Arnell, K. M. (1997). The attentional blink. Trends in Cognitive Sciences, 1,291-296.
    
    
    132. Singer, W. (1994). The organization of sensory motor representations in the neocortex: A hypothesis based on temporal coding. In C. Umilta & M. Moscovitch (Eds.), Attention and performance XV: Conscious and nonconscious information processing (pp77-107). Cambridge, MA: MIT Press.
    
    133. Singer, W. (1999). Time as coding space? Current Opinion in Neurobiology, 9, 189-194.
    
    134. Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555-586.
    
    135. SPSS Inc.. Advanced Techniques: ANOVA (SPSS 10.0)., SPSS Inc., Chicago, 2000.
    
    136. Staddon, J. E. R., & Higa, J. J. (1999). Time and Memory: Towards a Pacemaker-free theory of Interval Timing. Journal of the Experimental Analysis of Behavior, 71,215-251.
    
    137. Sternberg, S., & Knoll, R. L. (1973). The perception of temporal order: fundamental issues and a general model. In: Kornblum S ed. Attention and performance IV, New York: Academic Press, 629-685.
    
    138. Sternberg, S. (2001). Separate modifiability, mental modules, and the use of pure and composite measures to reveal them. Acta Psychologica, 106, 147-246.
    
    139. Thomas, E. A. C, & Weaver, W. B. (1975). Cognitive processing and time perception. Perception & Psychophysics, 17,363-367.
    
    140. Treisman, M. (1963). Temporal discrimination and the indifference interval: Implication for a model of the "internal clock". Psychological Monographs, 77, 1-13.
    
    141. Treisman, A. (1988). Features and objects: The Fourteenth Bartlett Memorial Lecture. The Quarterly Journal of Experimental Psychology, 40A, 201-237.
    
    142. Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology, 6, 171-178.
    
    143. Treisman, M., Cok, N., & Naish, P. L. N., et al. (1994). The Internal Clock - Electroencephalographic Evidence For Oscillatory Processes Underlying Time Perception. Quarterly of Experimental Psychology, 47, 241-289.
    
    144. Treisman, M., Faulkner, A., & Naish, P. L. N. et al. (1990). The Internal Clock: Evidence for a Temporal, Oscillator Underlying Time Perception with Some Estimates of Its Characteristic Frequency. Perception, 19, 705-743.
    
    145. Tresiman, M. (1993). On the structure of the temporal sensory system. Psychologica Belgica, 33,271-283.
    
    146. Ulrich, R. (1987). Threshold models of temporal-order judgments evaluated by a ternary response task. Perception & psychophysics, 42(3): 224-239.
    
    147. Vanni, S. (2003). fMRI Assisted EEG Source Modelling in Visual Cortices. In Helfrich, H. (ed.), Time and mind II: information processing perspectives. Cambridge, MA: Hogrefe & Huber Publishers.
    
    148. VanRullen, R, & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognitive Science, 7(5).
    
    149. Vogel, E. K., & Luck, S. J. (2002). Delayed working memory consolidation during the attentional blink. Psychonomic Bulletin & Review, 9, 739- 743.
    
    150. Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception & Performance, 24, 1656- 1674.
    
    151. Von der Malsburg, C. (1995). Binding in models of perception and brain function. Current Opinion in Neurobiology, 5(4), 520-526.
    
    152. Von der Maisburg, C, & Schneider, W. (1986). A neural cocktail-party processor. Cybernetics 54, 29-40.
    
    153. Wearden, J. H. (2003). Applying the Scalar Timing Model to Human Time Psychology: Progress and Challenges. In Helfrich, H. (ed.), Time and mind II: information processing perspectives. Cambridge, MA: Hogrefe & Huber Publishers
    
    154. Wearden, J. H., & Ferrara, A. (1993). Subjective shortening in humans' memory for stimulus duration. Quarterly Journal of Experimental Psychology, 46B, 163-186.
    155. Weichelgartartner, E, & Sperling, G. (1987). Dynamics of automatic and controlled visual attention. Science, 238, 778-780.
    
    156. Zakay, D. (1989). Subjective and atttentional resource allocation: an integrated model of time estimation. In: Levin, Zakay, D. (Eds.), Time and human cognition(pp. 365-397). Elsevier Science: North-Holland.
    
    157. Zakay, D., & Block, R. A. (1995). An attentional-gate model of prospective time estimation. In M. Richelle, V. De Keyser, G. d'Ydewalle, & A. Vandierendonck (Eds.), Time and the dynamic control of behavior (pp 167-178). Liege, Belgium: Universite de Liege.
    
    158. Zakay, D., & Block, R. A. (1997). Temporal cognition. Current Directions in Psychological Science, 6, 12-16.
    
    159. Zakay, D., & Block, R. A. (1998). New perspective on prospective time estimation. In V. De Keyser, G. d'Ydewalle, & A. Vandierendonck, A. (Eds.), Time and the dynamic control of behavior (ppl29-141). Seattle, WA: Hogrefe & Huber.
    
    160. Zakay, D., Tsal, Y., Moses, M., et al. (1994). The Role of Segmentation in Prospective and Retrospective Time Estimation Processes. Memory and Cognition, 22, 344-351.
    
    161. Zakay, D. (1990). The evasive art of subjective time measurement: Some methodological dilemmas. In R.A. Block(Ed.), Cognitive models of psychological time(pp59-83). Hillsdale,NJ: Erlbaum.
    
    162. Zeki, S. & Bartels, A. (1999). Toward a Theory of Visual Consciousness. Consciousness and Cognition, 8, 225-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700