用户名: 密码: 验证码:
视觉空间关系加工中的参照系表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对人类空间关系表征方式的深刻理解有助于人们深入了解自身空间信息表征的过程,同时给于涉及空间关系判断的地图设计、座舱仪表设计、空间定位系统的研发等领域心理学的借鉴与指导。任何具体的空间关系都是基于一个参照系而言的。对视觉空间关系加工中的参照系表征方式和特征的探讨,对于丰富和发展空间关系加工与参照系表征理论,解释和适应更多的实践领域具有理论和现实意义。
     本研究以视觉空间关系加工中的参照系表征问题为核心,运用启动、负启动等实验范式,通过行为实验,展开了一系列关于类别与数量空间关系任务中参照系表征方式与特征的研究。比较系统地考察了类别与数量空间关系加工中的参照系参数表征与参照系表征的激活、选择与抑制问题,以及动态情境下的参照系表征对两种空间关系加工的影响。
     研究一(第三章)采用启动范式探讨了类别与数量空间关系任务中的参照系参数表征,基于参数表征探讨了两种空间关系加工间的关系。
     研究二(第四章)进而在研究一基础上,将传统研究方法视半域技术与参数表征研究相结合,根据两种空间关系任务中参数表征的视域偏向,分析了两种空间关系加工的大脑半球偏向。
     研究三(第五章)中实验五通过控制被试加工策略,就类别空间关系任务中伴随参照系选择的多个参照系的激活与表征问题展开讨论。实验六运用启动范式,对数量空间关系任务中内在参照系的表征及影响因素展开分析。
     研究四(第六章)在实验五的基础上运用负启动范式,探讨了类别空间关系任务中参照系的选择伴随非选择参照系的激活与随后抑制的问题,并就抑制发生的参照系成分与参照系表征的层次展开了分析。
     研究五(第七章)探讨了参照系的动态表征下,参照客体运动方向与定位客体出现位置间关系等时空信息,分别对类别和数量空间关系加工的影响。
     基于以上研究和分析,本论文得到以下研究结论:
     (1)数量空间关系加工中存在方向参数表征,在一定任务情境下存在朝向参数表征;而类别空间关系加工中也存在距离参数表征。该表征结果进而说明类别与数量空间关系加工中内隐地包含与加工类型相对的空间关系。
     (2)数量空间关系加工总体呈现左视域偏向,其中的方向参数表征未呈现视域优势;类别空间关系加工总体未呈现右视域偏向,其中的距离参数表征则呈现了左视域优势。该表征结果进而说明数量空间关系明显存在大脑右半球加工偏向,而类别空间关系的大脑左半球加工偏向却较难在实验中获得。
     (3)类别空间关系任务中绝对与相对参照系的选择存在内在参照系的自动激活参与表征。两种参照系在类别空间关系任务中的表征各自具有优势轴。数量空间关系任务中存在内在参照系表征,受判断难度的影响,在启动和探测刺激处于参照系同终点时存在对任务的促进。
     (4)类别空间关系任务中绝对与相对参照系的选择存在非选择内在参照系的激活与随后的抑制,抑制主要发生在优势轴上。证明参照系的轴可以独立于具体的终点成为参照系的表征单位。
     (5)运动消失客体的时空信息在头脑中可能被离线存储,对运动客体的类别空间关系加工比数量空间关系加工表现出持久性;且相对于类别空间关系加工,数量空间关系加工作为精确距离表征不易受参照客体运动方向与定位客体位置间关系信息的影响。
     总结以上研究和结论,本论文通过五项研究的探讨与分析,对类别与数量空间关系加工中的参照系表征方式和特征形成了较为系统的认识,对于未来空间关系加工研究和参照系表征研究而言,展开了一个新的研究视角,丰富了Kosslyn空间关系加工子系统研究模式,拓展了参照系表征理论适用的领域。
In-depth understanding of the representation styles of human spatial relations can assist us in understanding deeply the process of our spatial informational representation, which can provide us with psychological reference and guidance in various fields on judging the spatial relations, such as the map designing, meter designing in the cockpit, the research and development of spatial orientation systems etc. Any spatial relation will be based on a reference frame. Discussing the representation styles and characteristics of reference frames in the processing of visuospatial relations will be meaningful both theoretically and realistically, not only in terms of enriching and developing the theories of spatial relation processing and reference frame representation, but also in terms of interpretation and adapting to more practical fields.
     Through the behavioral experiments and the use of several kinds of paradigms, such as priming, negative priming etc., the current research focuses on the reference system representation of the processing of visuospatial relations, and a series of studies on the representation styles and characteristics of the reference frame were conducted regarding the processing of coordinate and categorical spatial relations. The following aspects were systematically examined in processing the categorical and coordinate spatial relations:firstly, the representation of reference frame parameters; secondly, the selection, activation and subsequent inhibition of the reference frame representation; thirdly, the influences of the reference frame representation under the dynamic situations on the two spatial relations.
     Adopting the priming paradigm, Research 1 (Chapter 3) studied the representation of reference frame parameters in the categorical and coordinate spatial relations. The relationship between these two kinds of spatial relations was investigated on the basis of parameter representation.
     Based on the research results in Research 1, Research 2 (Chapter 4) was conducted through combining the traditional visual half-field method and the parameter representation studies. According to the visual field bias of the parameter representation in the processing of two spatial relations, the hemispheric difference of the processing of two spatial relations was analyzed.
     In Research 3 (Chapter 5), through controlling the processing strategies of the subjects during the categorical spatial relation task, discussions were conducted on the activation and representation of multiple reference frames in company with the reference frame selection in Experiment 5. In Experiment 6, based on the priming paradigm, the intrinsic reference frame representation and the corresponding influence factors in the task of coordinate spatial relation were investigated.
     Based on the research results of Experiment 5, Research 4 (Chapter 6) adopted the negative priming paradigm and explored the proposition that the selection of the absolute/relative reference frame involves activation and subsequent inhibition of the non-selected intrinsic reference frame during the categorical spatial relation task. Furthermore, in-depth analyses were conducted about which components of the non-selected reference frame are inhibited and the hierarchical structures of reference frame representation.
     Under the dynamic representation of reference frame, Research 5 (Chapter 7) explored the influences of space-time information on the processing of the categorical and coordinate spatial relations respectively, such as the relationship between the reference object's movement direction and the appearing spot of the location object etc.
     Accordingly, the research results are as follows:
     (1) The representation of direction existed in the coordinate spatial relations processing, and the parameters of orientation existed in the contexts of certain tasks. Moreover, the parameters of distance also existed in the categorical spatial relations processing. Such results concerning representation could further indicate that processing of categorical and coordinate spatial relations implicitly include spatial relations to another.
     (2) The processing of coordinate spatial relations generally showed the left visual field deviation. The corresponding direction parameter representation had not presented visual field advantage. Moreover, in general, the processing of categorical spatial relations had not showed the right visual field deviation. The corresponding distance parameter representation presented the advantage of the left visual field. The preceding representation results further indicated that in terms of coordinate spatial relations, the processing deflection of the right hemisphere was evident, while in terms of categorical spatial relations, the processing deflection of the left hemisphere may not be easy to found.
     (3) In the tasks of categorical spatial relations, the automatic activation of the non-selected intrinsic reference frame was involved in the selection of the absolute/relative reference frame. And the representations of the two reference frames had its own priority axis respectively. In the tasks of coordinate spatial relations, intrinsic reference frame representation existed, which was influenced by the difficulty of judgment. When across prime trials and probe trials were located at the same endpoint of intrinsic reference frame, the tasks would be promoted.
     (4) In the tasks of categorical spatial relations, there was the activation and subsequent inhibition of the non-selected intrinsic reference frame during the selection of the absolute/relative reference frame. Such inhibition mainly happened on the priority axes. The preceding facts proved that the axis of the reference frame could become the representation unit of the reference frame independent of the concrete endpoint.
     (5) Time-space information might be stored into a so-called off-line memory when the moving stimuli disappeared. Compared with the coordinate spatial relations processing, the categorical spatial relations processing of the moving objects could be more permanent. Furthermore, compared with the categorical spatial relations processing, the coordinate spatial relations processing as a kind of sophisticated distance representation was not easily influenced by the information concerning the relationship between the moving directions of the reference objects and the appearing spot of the location objects.
     In summary, five researches were carefully conducted so as to provide a relatively systematic understanding towards the representation styles and characteristics of the reference frame in the processing of categorical and coordinate spatial relations. With regard to the future researches on the spatial relationship processing and the reference frame representation, the current studies have provided a brand-new research angle, while enriching Kosslyn's research paradigm concerning the processing subsystem of the spatial relations.
引文
[1]舒华.心理与教育研究中的多因素实验设计[M].北京:北京师范大学出版社,1994.
    [2]王甦,汪安圣.认知心理学[M].北京:北京大学出版社,1992.
    [3]曾祥炎,陈军.E-Prime实验设计技术[M].广州:暨南大学出版社,2009.
    [4]朱滢主编.实验心理学[M].北京:北京大学出版社,2000.
    [5]Gazzaniga MS主编,沈政等译.认知神经科学[M].上海:上海教育出版社,1998,127-140.
    [6]梁三才,游旭群,霍涌泉.注意瞬脱对视觉空间关系判断的影响[J].心理科学,2006,29(4):963-966.
    [7]刘丽虹,张积家,王惠萍.习惯的空间术语对空间认知的影响[J].心理学报,2005,37(4):469-475.
    [8]牟炜民,杨姗,张侃.空间情境模型中的空间关系[J].心理科学,2000a,23(3):336-339.
    [9]牟炜民,张侃,杨姗.自我中心结构中的空间方位效应[J].心理科学,1999,22(4):358-359.
    [10]牟炜民,杨姗,张侃.身体转向模式对方位效应和相对位置效应的影响[J].心理学报,2000b,32(1):45-48.
    [11]牟炜民,赵民涛,李晓鸥.人类空间记忆和空间巡航[J].心理科学进展,2006,14(4):497-504.
    [12]晏碧华,游旭群,屠金路.视觉空间关系判断的分离与协同[J].心理科学,2008,31(1):113-116.
    [13]杨仕云,晏碧华,游旭群.民航飞行员、飞行学员动态空间能力加工水平检测[J].心理科学,2009,32(1):71-73.
    [14]游旭群,杨治良.视觉空间关系识别中的认知特性研究[J].心理学报,2002,34(3):344-350.
    [15]张积家,刘丽虹,石艳彩.情境和任务对空间认知参考框架选择的影响[J].心理学探新,2008,28(1):49-54.
    [16]张学民,姚林,鲁学明.位置和轨迹信息在短暂消失目标复原过程中的作用[J].心理学报,2008,40(1):1-7.
    [17]赵民涛.物体位置与空间关系的心理表征[J].心理科学进展,2006,14(3):321-327.
    [18]周荣刚,张侃.基于线索的视觉空间关系判断[J].心理学报,2004,36(2):127-132.
    [19]周荣刚,张侃.自我参照和环境参照整合过程中的主方位判断[J].心理学报,2005,37(3):298-307.
    [20]Arguin M et al. Evidence for an independent stimuluscentered spatial reference frame from a case of visual hemineglect[J]. Cortex,1993,29:349-357.
    [21]Ashley A et al. Encoding direction when interpreting proximal terms[J]. Language and Cognitive Processes,2007,22:1021-1044.
    [22]Baker DP et al. Encoding categorical and coordinate spatial relations without input-output correlations:new simulation models[J]. Cognitive Science,1999, 23(1):33-51.
    [23]Banich MT et al. Categorical and metric spatial processes distinguished by task demands and practice[J]. Journal of Cognitive Neuroscience,1999,11:153-166.
    [24]Barsalou LW. Perceptual symbol systems[J]. Behavioral and Brain Sciences,1999, 22:577-660.
    [25]Bruyer R et al. Dissociation between categorical and coordinate spatial computations:modulation by cerebral hemispheres, task properties, mode of response, and age[J]. Brain and Cognition,1997,33:245-277.
    [26]Bryant D et al. Internal and external spatial frameworks for representing described scenes[J]. Journal of Memory and Language,1992,31:74-98.
    [27]Bryant DJ et al. Retrieving spatial relations from observation and memory. In:Zee E van der, Nikanne U (Eds). Conceptual structure and its interfaces with other modules of representation[M]. Oxford:Oxford University Press,2001:116-139.
    [28]Carey DP et al. Perception and action in depth[J]. Consciousness and Cognition, 1998,7:438-53.
    [29]Carey DP et al. Pointing to places and spaces in a patient with visual form agnosia[J]. Neuropsychologia,2006,44:1584-1594.
    [30]Carlson LA et al. Selecting a reference frame[J]. Spatial Cognition and Computation,1999,1:365-379.
    [31]Carlson LA et al. Using spatial terms to select an object[J]. Memory & Cognition, 2001,29:883-892.
    [32]Carlson LA et al. Neural correlates of spatial term use[J]. Journal of Experimental Psychology:Human Perception and Performance,2002,28:1391-1408.
    [33]Carlson LA et al. The space in spatial language[J]. Journal of Memory and Language,2004,51:418-436.
    [34]Carlson LA et al. Inhibition within a reference frame during the interpretation of spatial language[J]. Cognition,2008,106:384-407.
    [35]Carlson-Radvansky LA et al. Reference frame activation during spatial term assignment[J]. Journal of Memory and Language,1994,33:646-671.
    [36]Carlson-Radvansky LA et al. The influence of functional relations on spatial term selection[J]. Psychological Science,1996,7:56-60.
    [37]Carlson-Radvansky LA et al. The influence of reference frame selection on spatial template construction[J]. Journal of Memory and Language,1997,37:411-437.
    [38]Carlson-Radvansky LA et al. Inhibition accompanies reference frame selection[J]. Psychological Science,1998,9:386-391.
    [39]Carlson-Radvansky LA et al. What effects on where? Functional influences on spatial relations[J]. Psychological Scienc,1999,10:516-521.
    [40]Committeri G et al. Reference frames for spatial cognition:different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location[J]. Journal of Cognitive Neuroscience,2004,16(9):1517-1535.
    [41]Cowin EL et al. Categorical versus coordinate spatial processing:effects of blurring and hemispheric asymmetry [J]. Journal of Cognitive Neuroscience,1994, 6:156-164.
    [42]Crawford LE et al. Linguistic and non-linguistic spatial categorization[J]. Cognition,2000,75:209-235.
    [43]Fencsik DE et al. Target reacquisition strategies in multiple object tracking [Abstract]. Journal of Vision,2003,3(3):583,583a
    [44]Fox E. Negative priming from ignored distractors in visual selection:a review[J]. Psychonomic Bulletin & Review,1995,2:145-173.
    [45]Franconeri SL et al. Evidence against a speed limit in multiple-object tracking[J]. Psychonomic Bulletin & Review,2008,15(4):802-808.
    [46]Frank AU. Formal models for cognition:taxonomy of spatial location description and frames of reference. In:Freksa C, Habel C, Wender K (Eds) Spatial cognition: an interdisciplinary approach to representing and processing spatial knowledge[M]. Berlin Heidelberg New York:Springer press,1998:293-312.
    [47]Franklin N et al. Searching imagined environments [J]. Journal of Experimental Psychology:General,1990,119:63-76.
    [48]Franklin N et al. Parsing surrounding space into regions[J]. Memory & Cognition, 1995,23:397-407.
    [49]Friederici A et al. Spatial references in weightlessness:perceptual factors and mental representations [J]. Percept Psychophys,1990,47:253-266.
    [50]Graf M. Orientation congruency effects for familiar objects[J]. Psychological Science,2005,16(3):214-221.
    [51]Hayward WG & Tarr MJ. Spatial language and spatial representation[J]. Cognition, 1995,55:39-84.
    [52]Hellige JB et al. Categorization versus distance:hemispheric differences for processing spatial information[J]. Memory & Cognition,1989,17:770-776.
    [53]Hellige JB et al. Individual variation in hemispheric asymmetry:multitask study of effects related to handedness and sex[J]. Journal of Experimental Psychology, 1994,123:235-256.
    [54]Hellige JB et al. Categorical and coordinate spatial processing:more on contributions of the transient/magnocellular visual system[J]. Brain and Cognition, 2001,45:155-163.
    [55]Hinton GE et al. Scene-based and viewer-centered representations for comparing shapes[J]. Cognition,1988,30:1-35.
    [56]Hoffman JE et al. Spatial breakdown in spatial construction:evidence from eye fixations in children with Williams syndrome[J]. Cognitive Psychology,2003,46: 260-301.
    [57]Horowitz TS et al. How do we track invisible objects? [J] Psychonomic Bulletin & Review,2006,13:516-523.
    [58]Hunt EB et al. The ability to reason about movement in the visual field[J]. Intelligence,1988,12(1):77-100.
    [59]Iachini T et al. Egocentric and allocentric spatial frames of reference:a direct measure[J]. Cognition processing,2006,7:126-127.
    [60]Jager G et al. On the hemispheric specialization for categorical and coordinate spatial relations:a review of the current evidence[J]. Neuropsychologia,2003,41: 504-515.
    [61]Keane BP et al. Does tracking disappearing objects in MOT involve predicting the locus of reappearance? [Abstract]. Journal of Vision,2003,3(3):583,583a
    [62]Kosslyn SM. Seeing and imagining in the cerebral hemispheres:a computational approach[J]. Psychological Review,1987,94:148-175.
    [63]Kosslyn SM et al. Evidence for two types of spatial representations:hemispheric specialization for categorical and coordinate relations [J]. Journal of Experimental Psychology:Human Perception and Performance,1989,15:723-735.
    [64]Kosslyn SM et al. Components of high-level vision:a cognitive neuroscience analysis and accounts of neurological syndromes[J]. Cognition,1990,34:205-240.
    [65]Kosslyn SM et al. Categorical versus coordinate spatial relations:computational analyses and computer simulations [J]. Journal of Experimental Psychology,1992, 18:562-577.
    [66]Kosslyn SM. Image and brain:the resolution of the imagery debate[M]. London: MIT press,1994.
    [67]Kosslyn SM et al. Neural systems that encode categorical versus coordinate spatial relations:PET investigations[J]. Psychobiology,1998,26:333-347.
    [68]Kosslyn SM. You can play 20 questions with nature and win:categorical versus coordinate spatial relations as a case study [J]. Neuropsychologia,2006,44: 1519-1523.
    [69]Laeng B. Lateralization of categorical and coordinate spatial functions:a study of unilateral stroke patients[J]. Journal of Cognitive Neuroscience,1994,6:189-203.
    [70]Laeng B et al. Cerebral lateralization for the processing of spatial coordinates and categories in left-and right-handers [J]. Neuropsychologia,1995,33:421-39.
    [71]Laeng B et al. Asymmetries in encoding spatial relations. In:R. J. Davidson & R. Hugdahl (Eds). The asymmetrical brain[M]. Cambridge, MA, US:MIT press,2003: 303-339.
    [72]Lag T et al. The visual basis of category effects in object identification:evidence from the visual hemifield paradigm[J]. Brain and Cognition,2006,60:1-10.
    [73]Landau B. Spatial cognition[J]. Encyclopedia of the Human Brain,2002,4: 395-418.
    [74]Landau B. Axes and direction in spatial language and spatial cognition. In:J. Slack & E. van der Zee (Eds). Representing direction in language and space[M]. Oxford: Oxford University Press,2003.
    [75]Landau B et al. Parallels between spatial cognition and spatial language:Evidence from Williams syndrome[J]. Journal of Memory and Language,2005,531: 163-185.
    [76]Levelt WJM. Some perceptual limitations on talking about space. In:van Doom AJ, van der Grind WA, Koeriderink JJ (Eds). Limits in perception[M]. Utrecht:VNU Science Press,1984,323-358.
    [77]Levinson SC. Vision, shape, and linguistic description:Tzeltal body-part terminology and object description[J]. Linguistics,1992,32:791-855.
    [78]Levinson S. Frames of reference and Molyneux’s questions:cross-linguistic evidence. In P. Bloom, M. A. Peterson, L. Nadel, & M. Garret (Eds.), Language and space[M]. Cambridge, MA:MIT Press,1996:109-169.
    [79]Levinson S. Space in language and cognition[M]. Cambridge, UK:Cambridge University Press,2003:152-154.
    [80]Logan GD. Spatial attention and the apprehension of spatial relations[J]. Journal of Experimental Psychology:Human Perception and Performance,1994,20: 1015-1036.
    [81]Logan GD. Linguistic and conceptual control of visual spatial attention[J]. Cognitive Psychology,1995,28:103-174.
    [82]Logan GD et al. Distance and distraction effects in the apprehension of spatial relations[J]. Journal of Experimental Psychology:Human Perception and Performance,1996a,22:159-172.
    [83]Logan GD et al. A computational analysis of the apprehension of spatial relations. In P. Bloom, M.A. Peterson, L. Nadel and M. Garrett (eds.), Language and Space[M]. Cambridge, MA:MIT Press,1996b:493-529.
    [84]Loomis JM et al. Immersive virtual environment technology as a basic research tool in psychology[J]. Behavior Research Methods, Instruments, & Computers, 1999,31:557-564.
    [85]Martin R et al. Is there continuity between categorical and coordinate spatial relations coding? Evidence from a grid/no-grid working memory paradigm[J]. Neuropsychologia,2008,46,576-594.
    [86]May CP et al. Determinants of negative priming[J]. Psychological Bulletin,1995, 118:35-54.
    [87]McCloskey M et al. Attention-referenced visual representations:evidence from impaired visual localization[J]. Journal of Experimental Psychology:Human Perception and Performance,2000,26:917-933.
    [88]Michimata C. Hemispheric processing of categorical and coordinate spatial relations in vision and visual imagery[J]. Brain and Cognition,1997,24:539-556.
    [89]Mou W et al. Intrinsic frames of reference in spatial memory[J]. Journal of Experimental Psychology:Learning Memory and Cognition,2002,28:162-170.
    [90]Mou W et al. Roles of egocentric and allocentric spatial representations in locomotion and reorientation[J]. Journal of Experimental Psychology:Learning, Memory, and Cognition,2006,32(6):1274-1290.
    [91]Niebauer CL et al. Visual field differences in spatial frequency discrimination[J]. Brain and Cognition,1999,41:381-389.
    [92]Niebauer CL. A possible connection between categorical and coordinate spatial relation representations[J]. Brain and Cognition,2001,47:434-445.
    [93]Okubo M et al. Hemispheric processing of categorical and coordinate spatial relations in the absence of low spatial frequencies [J]. Journal of Cognitive Neuroscience,2002,14:291-297.
    [94]Oleksiak A et al. Temporal dynamics of decisions on spatial categories and distances do not differ[J]. Brain and Cognition,2009,69:209-217.
    [95]Parrot M et al. Hemispheric preponderance in categorical and coordinate visual processes[J]. Neuropsychologia,1999,37:1215-1225.
    [96]Postma A et al. Editorial:New insights in categorical and coordinate processing of spatial relations[J]. Neuropsychologia,2006,44(9):1515-1518.
    [97]Reese C et al. Hemispheric specialization for categorical and coordinate spatial relations during an image generation task:evidence from children and adults[J]. Neuropsychologia,2005,43:517-529.
    [98]Regier T et al. Grounding spatial language in perception:an empirical and computational investigation[J]. Journal of Experimental Psychology:General, 2001,130:273-298.
    [99]Remington RW et al. A dissociation between attention and selection[J]. Psychological Science,2001,1(2):511-515.
    [100]Roth EC et al. Spatial processing and hemispheric asymmetry. Contributions of the transient/magnocellular visual system[J]. Journal of Cognitive Neuroscience, 1998,10:472-484.
    [101]Sergent J. Judgments of relative position and distance on representations of spatial relations [J]. Journal of Experimental Psychology:Human Perception and Performance,1991a,91:762-780.
    [102]Sergent J. Processing of spatial relations within and between the disconnected cerebral hemispheres [J]. Brain,1991b,114:1025-1043.
    [103]Shelton AL et al. Systems of spatial reference in human memory[J]. Cognitive Psychology,2001,43:274-310.
    [104]Slotnick S D et al. Prefrontal cortex hemispheric specialization for categorical and coordinate visual spatial memory[J]. Neuropsychologia,2006,44:1560-1568.
    [105]Tanenhaus MK et al. Integration of visual and linguistic information in spoken language comprehension[J]. Science,1995,268:1632-1634.
    [106]Taylor HA et al. “Could you hand me those keys on the right?” Disentangling spatial reference frames using different methodologies [J]. Spatial Cognition and Computation,1999,1:381-397.
    [107]Taylor HA et al. Is the donut in front of the car? An electrophysiological study examining spatial reference frame processing [J]. Canadian Journal of Experimental Psychology,2001,55:177-186.
    [108]Taylor HA et al. Where is the donut? Factors influencing spatial reference frame use[J]. Cognitive Process,2004,5:175-188.
    [109]Tranel D et al. Neuroanatomical correlates of locative prepositions[J]. Cognitive Neuropsychology,2004,21:719-749.
    [110]Trojano L et al. Coordinate and categorical judgments in spatial imagery. An fMRI study[J]. Neuropsychologia,2002,40:1666-1674.
    [111]Trojano L et al. Categorical and coordinate spatial processing in the imagery domain investigated by rTMS[J]. Neuropsychologia,2006,44:1569-1574.
    [112]Tversky B. Spatial perspective in descriptions. In:Bloom P, Peterson M, Nadel L, Garrett M (Eds). Language and space[M]. Cambridge:MIT Press,1996:463-492.
    [113]van der Lubbe et al. Divergence of categorical and coordinate spatial processing assessed with ERPs[J]. Neuropsychologia,2006,44:1547-1559.
    [114]van der Ham IJM et al. The time course of hemispheric differences in categorical and coordinate spatial processing[J]. Neuropsychologia,2007,45:2492-2498.
    [115]Wilkinson D et al. The role of stimulus factors in making categorical and coordinate spatial judgments[J]. Brain and Cognition,1999,39:171-185.
    [116]Woodin ME et al. Independent reference frames in human spatial memory: body-centered and environment-centered coding in near and far space [J]. Memory and Cognition,1998,26:1109-1116.
    [117]Wraga M et al. Updating displays after imagined object and viewer rotations[J]. Journal of Experimental Psychology:Learning, Memory, and Cognition,2000,26: 151-168.
    [118]Zaehle T et al. The neural basis of the egocentric and allocentric spatial frame of reference [J]. Brain Research,2007,1137:92-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700