用户名: 密码: 验证码:
淮河流域水土保持监测分区及其站点布局研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了发挥水土保持监测工作在政府决策、经济社会发展和社会公众服务中的作用,为编制流域水土保持监测规划提供技术支撑,开展淮河流域水土保持监测分区研究十分必要。本文以淮河流域为研究对象,通过收集相关资料,分析了流域水土流失空间异质性,针对不同区域水土保持主导功能,采取主导因子法建立了水土保持监测分区指标体系,应用定量与定性相结合的方法提出了流域两级监测分区方案,明确了各个分区水土流失监测重点和内容,并编制了水土保持监测分区专题图。主要结果如下。
     1、构建了水土保持监测分区指标体系
     依据淮河流域水土流失分布特点、主导影响因子分析以及水土保持监测分区指标选取原则,确定水土保持监测分区指标体系。
     (1)水土保持监测一级分区指标:主导指标体为地貌类型、县域平均海拔;辅助指标为水土流失类型、年均降水量、土壤类型。
     (2)水土保持监测二级分区指标:主要指标为微地貌类型、土壤类型、植被覆盖度;辅助指标为土壤侵蚀强度、县域平均海拔、土壤类型、年均降水量。
     2、提出了水土保持监测分区命名方法
     遵循水土保持监测分区命名同时体现区域自然环境特点和水土保持监测特点的原则,提出了水土保持监测分区(两级)命名方法。
     (1)一级区命名:“地形地貌类型”+“水土流失类型”+“监测区”
     (2)二级区命名:“地理位置”+“地形地貌类型”+“水土保持功能”+“监测区”。
     3、提出了水土保持监测两级分区方案
     按照淮河流域水土流失空间异质性特征和水土保持分区指标体系,采用应用定量与定性相结合的方法,提出了淮河流域水土保持监测两级分区方案,包括7个一级分区和15个二级分区。
     Ⅰ沂蒙山低山丘陵水力侵蚀监测区
     Ⅰ1沂沭河上游低山丘陵水源涵养监测区
     Ⅰ2沂蒙山低山丘陵土壤保持监测区
     Ⅰ3沂蒙山山前平原农田防护监测区
     Ⅱ黄泛平原风水复合侵蚀监测区
     Ⅱ1豫东丘岗沙地防风固沙监测区
     Ⅱ2鲁西南平原沙地农田防护监测区
     Ⅲ伏牛山山地丘陵水力侵蚀监测区
     Ⅲ1沙颍河上游中低山水源涵养监测区
     Ⅲ2豫西南低山丘陵土壤保持监测区
     Ⅳ桐柏大别山山地丘陵水力侵蚀监测区
     Ⅳ1淮干上游中低山水源涵养监测区
     Ⅳ2大别山低山丘陵土壤保持监测区
     Ⅳ3淮南山地山前平原农田防护监测区
     Ⅴ淮北平原岗地水力侵蚀监测区
     Ⅴ1徐宿淮丘岗土壤保持监测区
     Ⅴ2淮北苏北平原农田防护监测区
     Ⅵ江淮丘陵岗地水力侵蚀监测区
     Ⅵ1蚌凤嘉盱丘岗土壤保持监测区
     Ⅵ2淮河中游南岸平原农田防护监测区
     Ⅶ江淮下游平原水力侵蚀监测区
     4、分析了水土保持监测分区监测重点
     依据淮河流域水土保持基础资料和水土流失空间异质性特征,针对不同水土保持监测分区(二级分区),分析了区域自然环境与社会经济特征、存在的主要问题,提出了水土保持监测的重点内容、主要监测设施和监测指标。
     5、确定了各监测分区监测站点数量
     根据经典统计学方法,确定了淮河流域监测站点总数为104。淮河流域各监测分区水土保持监测站点数量如下:
     沂蒙山低山丘陵水力侵蚀监测区(Ⅰ1、Ⅰ2、Ⅰ3)面积为39278km2,监测站点数量25个。
     黄泛平原风水复合侵蚀监测区(Ⅱ1、Ⅱ2)面积为48753km2,监测站点数量为16个。
     伏牛山山地丘陵水力侵蚀监测区(Ⅲ1、Ⅲ2)面积为22014km2,监测站点数量为17个。
     桐柏大别山山地丘陵水力侵蚀监测区(Ⅲ1、Ⅲ2)面积为31069km2,监测站点数量为19个。
     淮北平原岗地水力侵蚀监测区(Ⅴ1、Ⅴ2)面积为85603km2,监测站点数量为12个。
     江淮丘陵岗地水力侵蚀监测区(Ⅵ1、Ⅵ2)面积为18517km2,监测站点数量为12个。
     江淮下游平原水力侵蚀监测区(Ⅶ)面积为27227km2,监测站点数量为3个。
     6、评价了水土保持规划监测站点
     根据淮河流域土壤侵蚀空间插值模数图,评价了淮河流域水土保持规划监测站点,得出淮河流域规划监测站点数目较少,淮河流域共需要增加21个监测站点。
     7、提出了水土保持监测站点布局
     根据经典统计学方法确定的淮河流域各监测分区水土保持监测站点数量和淮河流域土壤侵蚀空间插值模数图,综合考虑地形地貌、土壤侵蚀模数、河流水系、水土保持功能等影响因子,确定了水土保持监测站点位置,得到了各监测站点的监测面积。
Carrying out the Huaihe River Basin Soil and Water Conservation Monitoring partition isnecessary for providing technical support for the preparation of the Watershed MonitoringProgramme, playing the monitoring of soil and water conservation in government decision-making, the role of economic and social development and social services to the public. In thispaper, the Huaihe River Basin, as the research object, by collecting relevant material, analyzesthe river water and soil loss space heterogeneity, the dominant functions for different regionsof the soil and water conservation, take the dominating factor method to establish the soil andwater conservation monitoring regionalization index system, the application of quantitativeand qualitative analysis method of combining the proposed two level monitoring partitionscheme river, made it clear that the key and content of each partition soil erosion monitoringand prepare the soil and water conservation monitoring division special charts. The mainresults are as follows:
     1. Construct the index system of soil and water conservation monitoring division
     According to the distribution features of the Huaihe River Basin water and soil loss,leading the impact factor analysis and water and soil conservation monitoring division indexchoosing, determine the water and soil conservation monitoring regionalization index system.
     (1)Water and soil conservation monitoring First-level Partition Index: Leading indicatorsinclude body types, an average elevation for landscape (county); Auxiliary indexes includesoil and water erosion types the annual precipitation, and soil type
     (2)Water and soil conservation monitoring Second-level Partition Index: The main indexis the microlandscape type, soil type, vegetation coverage; Auxiliary indexes is the soilerosion intensity, an average elevation (county), soil type, and average annual rainfall
     2. Put forward the soil and water conservation monitoring division naming methods
     Follow the soil and water conservation monitoring division naming also embodied thenatural environment characteristics and the characteristics of the soil and water conservationmonitoring principle, puts forward the soil and water conservation monitoring division (twolevels)naming methods.
     (1)First-level Partition named: Topography type+Soil erosion types+Monitoring area
     (2)Second-level Partition: The geographical position+Topography type+Soil and waterconservation function+Monitoring area
     3. Put forward two partition scheme of soil conservation monitoring
     In accordance with the spatial heterogeneity of soil erosion in the Huaihe River Basinand the Soil and Water Conservation Divisions indicator system, The article uses the methodof the application of quantitative and qualitative combination and puts forward the two levelpartition scheme of the Huaihe River Watershed monitoring, including seven first-levelpartitions and15second-level partitions.
     Ⅰ Yimengshan hilly water erosion monitoring area
     Ⅰ1The Yishu upstream hilly water conservation monitoring area
     Ⅰ2Yimengshan hilly soil conservation monitoring area
     Ⅰ3Yimeng piedmont plain farmland protection monitoring area
     Ⅱ Yellow River Flood Plain feng shui compostation erosion monitoring area
     Ⅱ1Yudong hilly sand sand-fixing monitoring area
     Ⅱ2In Southwest sand plains farmland protection monitoring area
     Ⅲ Funiu Mountain hills water erosion monitoring area
     Ⅲ1Shaying upstream low mountain water conservation monitoring area
     Ⅲ2Henan southwest hilly soil conservation monitoring area
     Ⅳ The Tongbai Dabie Mountains, mountains and hills water erosion monitoringarea
     Ⅳ1Huai dry low mountain in the upstream water conservation monitoring area
     Ⅳ2Dabie Mountains,hilly soil conservation monitoring area
     Ⅳ3The piedmont plains of the Huainan mountain farmland protective monitoring
     area
     Ⅴ Huaibei Plain hillock water erosion monitoring area
     Ⅴ1Xu Su Huai hilly soil conservation monitoring area
     Ⅴ2Huaibei Plain in Northern protection monitoring area
     Ⅵ Jianghuai Hill Gang to water erosion monitoring area
     Ⅵ1Mussels Fung Ka Xu, hilly soil to maintain the monitoring area
     Ⅵ2Huaihe River middle reaches of the south bank of the plain farmland protection
     monitoring area
     Ⅶ Huaihe River Plain water erosion monitoring area
     4. Analysis of the monitoring of soil and water conservation district monitoringpriorities
     According to the basic data of the Huaihe River Basin Soil and Water Conservation andthe spatial heterogeneity characteristics of soil erosion for different soil and waterconservation monitoring divisions (two divisions), the article analyzes the regional naturalenvironment and socio-economic characteristics and the main problems, and raises the focusof the Soil and Water Conservation Monitoring content, monitoring facilities, and monitoringindicators.
     5.Determine the number of the partition monitoring stations of the variousmonitoring
     According to classical statistical methods to determine the total number of monitoringstations of the Huaihe River Basin is104. Soil and Water Conservation Monitoring stations inHuaihe River Basin monitoring partition are listed below:
     The area of Yimengshan hilly water erosion monitoring area(Ⅰ1、 Ⅰ2、 Ⅰ3) is39278km2,the number of monitoring stations is25.
     The area of Yellow River Flood Plain feng shui compostation erosion monitoring area(Ⅱ1、Ⅱ2)is48753km2, the number of monitoring stations is15.
     The area of Funiu Mountain hills water erosion monitoring area(Ⅲ1、Ⅲ2) is22014km2,the number of monitoring stations is17.
     The area of The Tongbai Dabie Mountains, mountains and hills water erosion monitoringarea(Ⅳ1、Ⅳ2) is31069km2, the number of monitoring stations is19.
     The area of Huaibei Plain hillock water erosion monitoring area(Ⅴ1、Ⅴ2) is85603km2,the number of monitoring stations is12.
     The area of Jianghuai Hill Gang to water erosion monitoring area(Ⅵ1、Ⅵ2) is18517km2,the number of monitoring stations is12.
     The area of Huaihe River Plain water erosion monitoring area(Ⅶ) is27227km2, thenumber of monitoring stations is3.
     6. Valuation of the planning of soil and water conservation monitoring station
     According to the spatial interpolation module map of soil erosion in Huaihe basin,Valuation of the planning of soil and water conservation monitoring station, the number inHuaihe River Basin planning monitoring station is less,21monitoring stations are needed to increase Huaihe River basin.
     7. Determination the layout of soil and water conservation monitoring station
     According to the monitoring station number and soil erosion in Huaihe basin spatialinterpolation modulus of soil and water conservation of classical statistics method todetermine the map of the Huaihe River Basin of the monitoring area, Considering thetopography, soil erosion, river system, soil and water conservation function influence factors,determine the monitoring station location of soil and water conservation, the monitoring areaof each monitoring station.
引文
白清俊.黄土坡面细沟侵蚀带产流产沙模型研究[J].水土保持学报,2000,14(1):93-94
    蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998
    蔡强国.坡长在坡面侵蚀产沙过程中的作用[J].泥沙研究,1989,(4):84-91
    曹文华,罗志东.水土保持监测站点规范化建设与运行管理的思考[J].水土保持通报,2009,29(2):114-115
    曾大林.关于水土保持监测体系建设的思考[J].中国水土保持,2008,(2):1-2
    曾红娟,李智广,杨胜天.开发建设项目水土保持监测点布局[J].中国水土保持科学,2009,7(3):42-45.
    陈法杨.监测区域水土保持监测[R].水利部水土保持监测中心,1992,78-79
    陈明荣,龙斯玉.中国气候生产潜力区划的探讨[J].资源科学.1984(3):71-79
    陈明荣,龙斯玉.中国气候生产潜力区划的探讨[J].资源科学.1984(3):71-79
    陈艳梅,彭林,宋立伟.河北省崇礼县水土保持分区治理措施初探[J].水土保持研究,2007,14(5):13-15
    范昊明,王铁良,蔡强国,武敏,周丽丽,郭成久.东北地区土壤侵蚀分异特征与分区治理模式研究[J].水土保持通报,2008,15(2):70-72
    傅伯杰,刘国华,陈利项,马克明,李俊然.中国生态区划方案[J].生态学报,2010,21(1):1-6
    高永年,高俊峰.太湖流域水生态功能分区[J].地理研究,2010,29(1):111-117
    郭索彦,李智广,赵辉.我国水土保持监测制度体系建设现状与任务[J].中国水土保持科学,2011,9(6):22-26.
    郭索彦,李智广.我国水土保持监测的发展历程与成就[J].中国水土保持科学,2009,7(5):19-24
    郭索彦.水土保持监测理论与方法[M].北京:中国水利水电出版社,2010
    国家遥感中心,地球空间信息科学技术进展[M].北京:电子工业出版社,2009
    国务院. GB/T15774-2008,水土保持综合治理效益计算方法[S].北京:中国标准出版社
    何胜利.小流域综合治理中的水保监测工作探讨—以铜川市马勺沟流域为例[J].陕西水利,2011,(4):45-46
    侯琳,彭鸿,陈晓荣,朱晓绒.分层抽样法在路基水土流失监测中的应用[J].水土保持通报,2004,24(3):37-39.
    胡玉平.高速公路建设期水土流失监测方法分析研究[M]:武汉:武汉理工大学,2004.
    黄秉维.中国综合自然区划(初稿)[M].北京:科学出版社,1959
    黄德明.十年来我国测土配方施肥的进展[J].植物营养与肥料学报,2003,9(4):495~499.
    黄建辉,阂婕,聂卓娜.基于GIS技术的重庆市水土保持监测分区研究.[J].水土保持通报.2009,29(2):28-32
    黄绍文,金继运,杨俐苹,程明芳.县级区域粮田土坡壤养分的空间变异性[J].土壤通报,2002,33(3):188~193.
    江忠善,王志强.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1):1-9
    姜德文.大力推进水土保持监测工作为落实科学发展观提供支撑[J].中国水土保持,2008,(4):6-8.
    李锐,徐传早.美国水土流失预测预报与动态监测--赴美水土保持新技术考察报告摘录[J].水土保持研究,1998,5(2):119-123
    李锐,杨勤科,赵永安.水土流失动态监测与评价研究现状与问题[J].中国水土保持,1999,(11):3l-33
    李天宏,张平.遥感影像软分类在区域水土流失评估中的应用.应用基础与工程科学学报,2002,10(2):126-133
    李小文.地球表面时空多变要素的定量遥感项目综述.地球科学进展[J].2006,21(8):772-778
    李颖明,黄宝荣.我国的分区实践与环境管理分区研究[J].生态经济,2010,(2):169-172
    李智广,曾大林,巫明强.从水土保持监测的多尺度特性探讨监测网络的建设[J],中国水土保持.1999:(7):7-8
    李智广.水土保持监测技术指标体系[M].北京:中国水利水电出版社,2006
    廖晶晶,罗海波,韦举顺.基于层次分析法的工矿废弃土地复垦潜力分区研究[J].中国农学通报2011,27(9):216-220
    刘昌红.水土保持耕作措施在小流域综合治理中的作用[J].中国水土保持.2008(9)29-30,38
    刘付程,史学正,于东升,潘贤章.基于地统计学和GIS的太湖典型地区土壤属性制图研究[J].土壤学报,2004,41(l):20~26.
    刘九玉,可素娟,徐建华.水土保持生态环境监测站网合理布局研究[J].水土保持研究,2002,9(4):113—115
    刘胤汉,管海晏,李厚地,王永,刘晓靖.西北五省(区)生态环境综合分区及其建设对策[J].地理科学进展,2002,21(5):403-409
    刘咏梅,杨勤科,王略.水土保持监测基本方法述评[J].水土保持研究.2008,15(5):221-225
    刘震.水土保持监测技术[M].北京:中国大地出版社,2004
    刘震.总结经验坚定信心推进全国水土保持监测工作[J].中国水土保持,2006,(1):4-5,12
    罗开富.中国自然区划(草案)[M].北京:科学出版社,1954
    罗志军,刘耀林,贾泽露.基于RS和GIS的小流域土壤侵蚀量估算研究.华中师范大学学报(自然科学版),2005,39(2):269-272
    马建华.现代自然地理学[M].北京:北京师范大学出版社,2002
    马晓微,杨勤科.基于GIS的中国潜在水土流失评价指标研究[J].水土保持通报.2001.21(2):41-44
    毛道云.河南省生态旅游区划研究[J].经济研究导刊,2008,(11):191-192
    毛典辉,曾致远,鄢铁平,袁静.基于多元隶属度的区域水土流失评价模型研究.[J].人民长江.2007,38(1):105-107
    苗鸿,王效科,欧阳志云.中国生态环境胁迫过程区划研究[J].生态学报,2001,21(1):7-13
    缪启龙,李兆元,窦永哲.主成分分析在气候区划中的应用.南京气象学院学报.1987,10(4):436-445
    齐洪亮,田伟平,舒延俊.中国公路水文区划指标体系[J].长安大学学报(自然科学版),2010,30(2):39-43
    石明爽.浅谈水土保持监测工作的重要性[J].经济研究导刊,2011,(18):205,296
    数字地球十年:从理念走向行动[C].测绘发展研究动态,北京,2010
    帅方敏,卢进登,王新生.基于GIS空间插值方法的长湖水质评价[J].环境监测管理与技术,2007,19(4):40~42.
    水利部,中国科学院,中国工程院.中国水土流失防治与生态安全(水土流失数据卷)[M].北京:科学出版社,2010
    水利部.SL341-2006,水土保持信息管理技术规程[S].北京:水利电力出版社,2006
    水利部.SL342-2006,水土保持监测设施通用技术条件[S].北京:水利电力出版社,2006
    水利部.SL419-2007,水土保持试验规程[S].北京:水利电力出版社,2007
    水利部.SL452-2009,水土保持监测点代码[S].北京:水利电力出版社,2009
    水利部.SL190-2007,土壤侵蚀分类分级标准[S].北京:水利电力出版社,2007
    水利部.SL277-2002,水土保持监测技术规程[S].北京:水利电力出版社,2002
    宋桂琴.黄土高原重点水土流失区土地利用分区[J].水土保持通报,1996,16(1):36-41,67
    孙伟,陈雯,段学军.GIS技术在区域土地开发适宜性分区中的应用——以江苏省为例[J].计算机应用研究,2006,23(12):220-223
    孙小银,周启星.中国水生态分区初探[J].环境科学学报,2010.30(2):415-423
    孙长安.国内外应用"3S"技术开展水土流失监测的发展状况[J].中国水土保持,2008,(6):54-57
    覃莉,赵军,刘建忠.浅谈水土保持监测站点规范化建设[J].水土保持应用技术,2002,(2):46—47
    田雷,杨胜天,王冰.水土保持监测方法与技术现状初探[A].全国第二届水土保持监测学术研讨会论文集[C],2005
    田颖超.对水土保持生态环境监测有关问题的思考[J].中国水土保持,2004(4):23—24
    汪自军,陈圣波,韩念龙,湛邵斌,吕航.地学尺度转换理论及方法研究.地理空间信息[J].2007,5(4):59-63
    王景雷,孙景生,刘祖贵,张寄阳.作物需水量观测站点的优化设计[J].水利学报,2005,36(2):225-231
    王莲芬,许树柏,编著.层次分析法引论[M].北京:中国人民大学出版社,1990
    王万茂,韩桐魁.土地利用规划学[M].北京:中国农业出版社,2002
    王效科,欧阳志云,肖寒,苗鸿,傅伯杰.中国水土流失敏感性分布规律及其区划研究[J].生态学报,2001,21(1):14-19
    吴国庆.农业可持续发展的生态安全研究[J].中国生态农业学报,2003,11(2):141-143
    谢松良,吴兴中.我国水土保持监测工作的现状及问题[J].水土保持通报,2009,29(2):58-61
    徐冠华,等.地理空间信息技术和产业发展年度报告—2009[R].国家遥感中心发展战略专家组。
    许峰.宏观水土保持监测研究及其进展.水土保持通报[J].2002,45(4):34-39
    许峰.宏观水土保持监测研究及其进展[J].水土保持通报,2002,22(4):72—75
    许国华.罗德民与中国的水土保持事业[J].中国水土保持,1984(3):39-42.唐克丽.中国水土保持[M].北京:科学出版社,2004
    杨贵羽,陈亚新.土壤水分盐分空间变异性与合理采样数目[J].干旱地区农业研究,2002,20(4):64-66
    杨勤科,刘咏梅,李锐.关水保持监测概念的讨论[J].水土保持通报,2009,29(2):97-124
    张洁瑕,陈佑启.中国土地利用区划研究概况与展望[J]中国土地科学,2008,22(5):62-71
    张攀,姚文艺,冉大川.水土保持综合治理的水沙响应研究方法改进探讨[J].水土保持研究.2008(2)173-176
    张庆利,潘贤章,王洪杰,刘付程,史学正.中等尺度上土壤肥力质量的空间分布研究及定量评价[J].土壤通报,2003,34(6):493~496.
    张小林.长江流域水土保持生态修复的实践与探索[J].中国水利,2003,(7):50-51
    赵松乔.中国自然地理总论[M].北京:科学出版社,1983
    中国法制出版社.中华人民共和国水土保持法[M].北京:中国法制出版社,2011
    周慧珍,曹子荣,蒋晓基.本农田动态监测及预警研究[J].土壤学报,1999,36(2):245-252
    朱明芬,葛进平.运用聚类分析划分农业生态类型区[J].农村生态环境,1993,(4):16-19
    朱求安,张万昌,余均辉.基于GIS的空间插值方法研究[J].江西师范大学学报(自然科学版),2003,28(2):183~188.
    朱同新,陈永宗.晋西黄土地区重力侵蚀产沙分区的模糊聚类分析[J].水土保持通报,1989,9(2):27-34
    N.W. Hudson著,窦葆璋译.土壤保持[M].北京:科学出版社,1976
    A P J De Roo The LISEM Project:An Introduction Hydrological Processes [J].1996
    Arnold J G;Srinivasan R;Muttiah T S Large Area Hydrologic Modeling and Assessment PartII. Model Application1998(01)
    Arnold J G;Srinivasan R;Muttiah T S Large Area Hydrologic Modeling and Assessment Part1. Model Application1998(01)
    Bailey, R.G.&H.C. Hogg. A world ecoregions map for resource reporting.EnvironmentalConservation,1986.13:195-202
    Bailey, R.G. Description of the Ecoregions of the United States. Washington. DC: UnitedStates Department of Agriculture.1980
    Bailey, R.G.. Suggested hierarchy of criteria for multi-scale ecosystem mapping. Landscapeand Urban Planning,1987,14:313-319
    Bashkin V.N.&R.G. Bailey. Revision of map of ecoregions of the world (1992-1995)..Environmental Conservation,1993,20:75-76
    Bergstroms.Phil G L. On the Scale Problem in Hydrological Modeling.Journal ofHydrology,1998,211:253-265
    Burgess. The organic chemistry and its application on agriculture and Physiology]. German,Verlag Viehweg, Braunschweig,1843,167.
    Cambardella C A. Mooman.T A. Novak.J M. Field-scale variability of soil properties incentral Iowa soils.Soil Sci.Soc,Am,1994.58:1501~1511.
    Chien.Y J, Dar yuan Le.HorngYun.Guo.et al. Geostatistics analysis of soil properties of mild-west TaiWan soils.Soil Sci.Soc Am,1996,162(4):291~299.
    conservation practice1988
    Davidoff B,Selim H M. Correlation between spatial variable soil moisture content and soiltempera-ture.Soil Sci,1988,145:1~105.
    DE Graaff J, Cameron J, Sombatpanit S, et al. Monitoring and Evaluation of SoilConservation and Watershed Development Projects. Environmental Science,2007,5:15-22
    ECOMAP. National Hierarchical Framework of Ecological Units.[M].Washington, DC:United States Department of Agriculture, Forest Service.1993
    Favis-Mortlock D Q, JN Dickinson V W T.The GCTE validation of soil erosion models forglobal change studies.Journal of Soil and Water Conser-vation,1996,51(5):397-403
    Holdridge, L.R.. Life Zone Ecology[M]. San Jose: Tropical Science Center.1967
    Ingram J L, Valentin J C. The GCTE Soil Erosion Network: A multi-participatory researchprogram.Journal of Soil and Water Conservation,1996,51:377-380.
    Jeffrey Star, John Estes, Geographic Information Systems[M].California: Press of Universityof California,1988
    Jeffrey Star, John Estes. Geographic Information Systems[M]. Press of University ofCalifornia1988
    Junta Yanai,Choung Keun Lee,Toshikazu Kaho,et.al. Geostatistical analysis of soil chemistryproperties and rice yield in a paddy field and application to the analysis of yielddetermining factors.Soil Sci.Plant Nutr,2001,47(2):291~302.
    Junta Yanai,Choung Keun,Takashi Kosaki.Spatial variability of soil chemical properties in apaddy field.Soil Sci.Plant Nutr,2000,46:473~482.
    Laflen J M,Lwonard J L,Forster G R. WEEP a new generation of erosion predictiontechnology. Journal of soil and water Cons.1991,46(l):55-64
    Lane L J, Renard K G foster G R, Laflen J M. Development and application of modern soilErosion Perdition Technology. The USDA Experience Aust. J. Soil Res.1992,30:545-562
    Lane L J,Renard K Q, Foster G R, Laflen J M. Development and Application of Modern SoilErosion Prediction Technology--The USDA Experience Aust. J. Soil Res.1992,30:25-32
    M. Sevkli, et al. An application of data envelopment analytic hierarchy process for supplierselection:a case study of BEKO in Turkey. International Journal of ProductionResearch,2007,45(9):1973-2003
    Matthews, E. Global vegetation and land use:new high-resolution data bases for climatestudies.Journal of Climate and Applied Meteorology,1983.22:474-487
    MORGAN R P C;Quinton J N;Smith R E The European soil erosion model (EUROSEM).documentation and user guide1998
    Muhammad Ashraf a,Jim CLoftis a, Hubbard KG. Application of geostatistics to evaluatepartiai weather station networks.Agricultural and Forest Meteorology,1997,84:255-271.
    Olson, D.M., E. Dinerstein, E.D. Wikramanayake, N.D. Burgess, G.V.N. Powell, E.C.Underwood, J.A. D’Amico, I. Itoua, H.E. Strand, J.C. Morrison, C.J. Loucks, T.F. Allnutt,T.H. Ricketts, Y. Kura, J.F. Lamoreux, W.W. Wettengel, P. Hedao&K.R. Kassem.Terrestrial ecoregions of the world:A new map of life on Earth. BioScience,2001.51:933-938
    Olson, J.S., J.A. Watts&L.J. Allison. Major World Ecosystem Complexes Ranked by Carbonin Live Vegetation: A Database.[M]. Oak Ridge: Oak Ridge National Laboratory.1985
    Omernik JM. Map Supplement: Ecoregions of the conterminous United States annals of theassociation of American.Geographers,1987.77(1):118-125
    Perera H S C, Costa W K R. Analytic hierarchy process for selection of ERP software formanufacturing companies.The Journal of Business Perspective,2008,12(2):1-11
    Rose C W Research progress on soil erosion processes and a basis for soil
    Schultz, J. The Ecozones of the World: the Ecological Divisions of the Geosphere. Berlin:Springer-Verlag.1995
    Spanner M A et al. Soil loss prediction in a geographic information system format[M]. In:Procof the Inter. Sym. on Remote Sensing of Environment,1983
    Spanner M A et al. Soil loss prediction in a geographic information system format. In Porc ofthe Inter. Sym. On Remote Sensing of Environment,1983
    Udvardy, M.D.F. A Classification of the Biogeographical Provinces of the World[M].Morges:IUCN.1975
    Vauclin M,Vieria S R, Vachuad G et al. The use of co-kriging with limited field soilobservation.Soil Sci Soc Am J,1983,47:175~184.
    Wang Y M, et al. A note on the application of the data envelopment analytic hierarchy processfor supplier selection. International Journal of Production Research,2009,47(11):3121-3138
    Wiken, E.B. Terrestrial Ecozones of Canada.[M].Hull: Environment Canada.1986
    Wiken, E.B., C.D.A. Rubec&G. Ironside. Canada Terrestrial Ecoregions (1:7.5millionscale).[M].Ottawa:Environment Canada.1993
    Williams J R, Jones C A, Dyke P T. A modeling approach to determining the relationshipbetween erosion and soil productivity.Trans. ASAE,1984,27:129-144
    Wilson B N;Barfield B J;Ward A D A Hydrology and Sedimentology Watershed Model. PartI.Operational Format and Hydrologic Component1984(05)
    Wilson B N;Barfield B J;Ward A D A Hydrology and Sedimentology Watershed Model. PartⅡ.Sedimentology Component1984(05)
    Wischmeier W H. Use and misuse of the universal soil loss equation. Journal of Soil andWater Conservation,1976,1:5-91
    Wishmeier W H, Smith D D. Predicting rainfall erosion losses-A guide to conservationplanning[M]. Washington, D.C.: USDA Agriculture Handbook No.537.1978
    Wishmeier, W.H., Johnson, C.B., Cross. Soil Erodibility Nomograph for Farmland andConstruction stations. Journal of Soil and Water Conservation.1971,26(5):189-193
    Zingg A W. Degree and length of land slope as it affects soil loss in runoff. AgriculturalEngineering,1940,21:59-641

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700