用户名: 密码: 验证码:
掺铜多孔硅的光致发光及多孔硅的光电导特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔硅(porous silicon,PS)的研究已经有较长的历史,但在1990年Canham发现室温下多孔硅的可见光发射现象以后,多孔硅的研究进入了一个新的阶段。室温下多孔硅的强可见光发射现象为硅基发光材料的研究展示了一条新途径,给全硅光电子器件的研究带来了希望,同时也开拓了人们的思路。与间接带隙的单晶硅相比,多孔硅具有制作方法简单、成本低廉、发光效率高且发光稳定等诸多优点,在光电子材料及显示技术材料等方面显示出巨大的潜力。而且多孔硅还具有十分敏感的光学性质,这就意味着其在光电领域有极好的应用前景,已经制造出多种多孔硅光电器件。多孔硅本身是一种硅材料,很容易与现有的硅技术兼容,如果能够用多孔硅制造出实用的发光器件,将会产生新一代的硅片,将使硅技术的应用从微电子学领域扩展到光电子学领域,它对未来电子器件,及整个电子学领域的发展将会产生不可估量的影响。
     本文根据室温下多孔硅在可见光范围内较强的可见光发射现象和敏感的光学性质,研究了多孔硅的发光特性和光电导特性,并对其发光机理进行了进一步探讨。
     论文第一章是多孔硅的综述部分。本章首先回顾了多孔硅的研究历史,主要论述了多孔硅的制备工艺及其独特的微结构特征,然后论述了多孔硅的发光特性和光电特性。
     论文第二章研究了多孔硅的光致发光特性和发光机理。多年来,人们对多孔硅的发光机理一直进行着坚持不懈的研究和探讨,已经提出了许多解释多孔硅层(PSL)发光的模型,典型的有以下几种:量子限制模型、氢化非晶硅模型、硅氧烯分子模型、表面态模型和量子限制发光中心模型。尽管如
    
    曲阜师范大学硕士研究生毕业论文
    第11页
    此,多孔硅的发光机理仍是一个有争议的问题。发光和碎灭在发光材料中是
    互相对立互相竞争的两种过程。研究发光和发光碎灭现象,对掌握多孔硅的
    发光机理具有重要的意义。本章采用浸泡镀敷的方法对多孔硅进行了铜掺杂
    处理,该掺杂过程是经过浸泡,使硫酸铜稀溶液中的铜离子吸附在多孔硅层
    的纳米硅粒上,然后扩散进纳米硅粒中的。实验通过对铜掺杂前后多孔硅的
    光致发光(PL)谱和傅立叶变换红外吸收谱(FTIR)的测量和分析,讨论了
    金属掺杂对多孔硅光致发光的影响,结果表明,该铜镀层不仅对多孔硅的光
    致发光有碎灭作用,而且使其发光峰位明显蓝移。并以此为基础,对多孔硅
    的发光机理进行了进一步地探讨。同时,对金属掺杂多孔硅的研究也有利于
    更好地解决半导体器件与其它金属街接的问题。
     论文的第三章是关于多孔硅光电导特性的研究。对多孔硅光电特性的研
    究是多孔硅材料走向实用化的前提。多孔硅对可见光十分敏感,并具有较好
    的可见光光电导效应。本章主要从激发光强、入射光波长、应用偏压以及多
    孔硅的制备条件四个方面对共面型电极多孔硅的光电导特性进行了研究。对
    多孔硅光电导与激发光强的变化关系的研究表明,多孔硅中既有双分子复合
    过程又包含单分子复合过程,并计算出费米能级附近隙态分布的特征参数。
    通过对多孔硅光电导谱的研究,发现多孔硅具有较强的可见光光电导效应,
    而且在500nm一600lun波段光电导响应最佳。通过光电导谱,还可以比较方
    便地给出多孔硅材料的带隙值在1 .85eV左右,明显大于单晶硅(l .12eV),
    这与多孔硅的可见光发射和能带展宽的理论相符合。多孔硅的光电导响应随
    所加偏压的逐渐增大而变得更加显著,最后达到饱和,而且PC峰峰位随偏
    压的增大有少许红移。本章最后讨论了多孔硅的制备条件对其光电导特性的
    影响,研究表明:在一定的范围内,随着阳极化电流密度的增大,阳极化时
    间的延长以及HF酸浓度的减小,多孔硅的光电导现象会增强,同时PC峰位
    发生蓝移。上述现象都可以通过量子限制模型加以解释,通过改变多孔硅的
    制备条件使硅纳米尺寸减小,带隙展宽,PC峰位蓝移。因此,多孔硅在提高
    光敏度效率上具有很大潜力,其光电导效应与多孔硅层中硅粒的尺寸以及孔
    隙的尺寸和分布有关,因而提高多孔硅器件的光敏性可通过优化多孔硅的制
    备条件以改变硅粒的纳米结构来实现。
    甲
    
    曲阜师范大学硕士研究生毕业论文
    第111页
     低维半导体的研究是现在材料领域发展最快、最吸引人的,并具有重要
    的技术应用前景。多孔硅以其简单的制备方法、复杂的微结构特征、较高的
    光致发光效率以及良好的光电特性而备受研究者们关注。随着研究的逐渐深
    入和各种测试技术的发展,多孔硅的奥妙终将被揭开,它作为一种光电材料
    也必将在光电子领域展示其迷人的应用前景。.
There is a long history of study on porous silicon (PS), but the research on this material has entered a new phase since the report of the visible light emission out of porous silicon at room temperature by Canham in 1990. This discovery pioneered a new way for the development of Si-based light-emitting devices and optoelectronic devices. Compared with crystalline silicon which has indirect band gap, PS has many advantages such as simply prepared method, lower-cost, complex constructure characteristics, higher photoluminescence efficiency, better photoelectric properties etc. For these reasons, PS has promising potential in the field of optoelectronic and display technology materials. Furthermore, because of its higher photosensitivity, PS shows favorable application prospects in photoelectronics field. As a silicon-based material, PS can match with silicon technology easily. So once applied luminescence devices is made from PS, it will give birth to a new silicon-based material which will expand the applica
    tion of Si technology from microelectronics to photoelectronics field, and even have a tremendous influence on the future electronic devices as well as the whole field of electronics.
    In this paper, according to the strong visible photoluminescence (PL) from porous silicon and its higher photosensitivity, its photoluminescence properties and photoconductivity (PC) characteristics was studied. At the same time, the PL mechanism of PS was further discussed.
    In the first chapter, the history of study on porous silicon was reviewed in brief, including the prepared technics and the microstructure of PS. Then the luminescence and photoelectric properties of this material was discussed at last.
    In the second chapter, the luminescence characteristics and PL mechanism of PS was mainly discussed. PS radiation mechanism has been discussed and investigated for many years .and many theoretical models have been proposed to
    
    
    describe the photoluminescence in PS, for instance, quantum confinement effect model, polysilanes model, surfacial states model and quantum confinement-light center model etc. But the PL mechanism of PS is still a controversial issue. Luminescence and quenching are two courses which oppose and compete with each other in the luminescence materials. So in order to grasp the luminescence mechanism of PS, it is very important to study its luminescence and quenching. We reported the optical properties of copper-doped porous silicon by immersion plating in metal ion solutions (CuSO4). Immersion or electroless plating refers to the adsorbing of copper ions onto the Si nanocrystallites in the PS layers by immersing PS into the CuSO4 solutions without applying a bias. In order to research the influence on the photoluminescence of copper-doped PS, the photoluminescence spectra and the Fourier transform infrared (FTIR) spectroscopy of PS was measured. This study indicated that the PL of PS was quenched by copper-doping, and the blue shift of the PL peak locations was found too. At the same time, the PL mechanism of PS was further discussed. In addition, it was found that immersion plating was a good method for metal deposition on the surface of semiconductors.
    The third chapter was about the photoconductivity characteristics of PS. It is precondition for the application of PS material to study on the photoconductivity characteristics of PS. PS has higher photosensitivity and better photoconductivity response. In this chapter, we studied the photoconductivity characteristics of porous silicon under different intensity of illumination, wavelength, applied voltage and prepared conditions. Experiments indicated that PS had a good photoconductivity effect in the range of visible light, and the highest photosensitivity was found to be around wavelength of 500~600nm. The recombination included the processes of both monomolecular and bimolecular in the PS layers. Moreover the band gap of PS was about 1.85eV, which could be obtained easily from the photoconduction spectra of PS. With the bias voltage increasing, the photo
引文
[1] L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett., 1990, 57(10): 1046~1408
    [2] K. Imai, Solid State Electron., 1981,24:59
    [3] N. Kushida and H .Koyana, Appl.Phys.Lett.,1992,60:347
    [4] A. Uhlir, Bell, Syst. Teeh. J., 1956, 35:333
    [5] D.R.Tumer, J.Electrchem.Soc., 1958,105:402
    
    
    [6] Y.Watanable,Y.Arita,T.Yokoyama,and Y.Igarashi, J.Electrochem. Soc., 1975, 122:1351
    [7] H.Koyama and N.Koshida, J.Appl.Phys. 1993,74:6365
    [8] T.Nakagawa, H.Koyama, and N.Koshida, Appl.Phys.Lett. 1996, 69:3026
    [9] Y.M.Huang, Appl.Phys.Lett. 1997,71:3850
    [10] J.Sarathy, S.Shih,KimJung,C.Tsai,K.H.Li,etal.,Demonstration of photoluminescence in nonanodized silicon Appl. Phys. Lett., 1992, 60(13)1532.
    [11] Chen Qianwang, Zhu Jingsheng, Li X. G., et al., Phys. Lett., 1996, A220: 293.
    [12] P. Lim, J. R. Brock and I. Trachtenberg, Laser-induced etching of silicon in hydrofluoric acid, Appl. Phys. Lett., 1992, 60(4): 486~488
    [13] R. E. hummel and Sung-Sik Chang, Novel technique for prepari porous silicon Appl. Phys. Lett., 1992, 61(16):1965
    [14] Xiao-yuan Hou et al., Pulsed anodic etching: An effective method of preparing light-emitting porous silicon, Appl. Phys. Lett., 1996, 68 (17): 2323~2325.
    [15] 周卫,福田芳雄等,多孔硅湿法腐蚀现象的研究,电子元件与材料,2000,19(5):7~8
    [16] V. Petrova-Koch, T. Muschik, A. Kux, et al, Rapid-thermal-oxidized porous Si The superior photoluminescent Si, Appl. Phys. Lett., 1992, 61 (8): 943~945.
    [17] 陈华杰,张雪龙,范洪雷,陈溪滢,黄大鸣,俞鸣人,侯晓员,李谷波,物理学报,1994,43:646
    [18] X.Y.Hou, G..Shi, W.Wang, F.L.Zhang, P,H.Hao, D.M.Huang, and D.M.Huang, and X.Wang, Appl.Phys.Lett. 1993,60:1997
    [19] Xinjian Li, Deliang Zhu, Qianwang Chen, et al., Strong- and nondegrading-luminescent porous silicon prepared by hydrothermal etching, Appl. Phys. Lett., 1999, 74(3): 389
    [20] 刘小兵,熊祖洪,史向华等,经Al_2O_3与SiO_x钝化的多孔硅及其光致发光特
    
    性,半导体学报,2000,21(1):38~43
    [21] 李宏建,彭景翠,颜永红等,多孔硅的表面碳膜钝化,发光学报,2000,21(2):104~108
    [22] M.L.J.Beale, N.G.Chew, M.J.Uren, A.G..Gullis and J.D.Benjamin,. Appl.Phys. Lett, 1985,41:86
    [23] 黄宜平,郑大卫,李爱珍 汤庭鳌,崔堑,张翔九.多孔硅的微观结构及其氧化特性,半导体学报,1995,16(1):19~24
    [24] Richter.A, Steiner.P, Kozlowski.F, et al.,IEEE Electron Device Letts, 1991,12 (12): 691
    [25] Kruger.M, Marso.M, Berger.M.G, et al.,Thin Solid Films,1997,297:241
    [26] Vitanov.P, Kamenova.M, Tyutyundzhiev.N,et al.,Thin Solid Films, 1997,297: 299
    [27] Araki.M, Koyama.H, Koshida.N, Appl.Phys.lett, 1996,68(21):2999
    [28] Lerondel.G, Romestain.R, Vial.J.G, et al.,Appl.Phys.Lett, 1997,71 (2):196
    [29] Snow.P.A, Squire.E.K, St P.Russell.J, et al.,J.Appl.Phys, 1999,86(4): 1781
    [30] Pavesi L,Mazzoleni C,Appl Phys Lett,1995,67(22):3280
    [31] A. G. Cullis, L. T. Canham, et al., The structural and luminescence properties of porous silicon, J. Appl. Phys., 1997, 82(3): 909~959:422
    [32] 柯见洪,郑亦庄,池贤兴,程新红,多孔硅PL谱的影响因素分析,半导体学报,2002,23(1):38~42
    [33] K. D. Hirschman, L. Tsyheskov, et al., Silicon-based light emitting devices integrated into microelectronic circuits, Nature, 1996, 384:336~338.
    [34] Zheng.J.P, et ai., Appl.Phys.Lett., 1991,61:459
    [35] 熊祖洪,袁帅.多孔硅的一种新的后处理方法[J].物理学报,1997,46, (10):2059
    [36] L.Schirone, G.Sotgiu, and F.P.Califano, Thin Solid Films, 1997,297:296
    [37] 杨国为,多孔硅基发光二极管和光探测器,1994,4(2):10~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700