用户名: 密码: 验证码:
空间紫外大气遥感成像光谱仪偏振校正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球大气散射光中含有大气成分分布的重要信息,通过测量太阳直射的光谱辐照度和大气散射的光谱辐亮度,可以反演计算出大气中各种微量气体和气溶胶的含量,监测全球温室效应、臭氧层厚度变化和各种有害气体的排放等等。非偏振的太阳光经过大气层后,由于大气分子和气溶胶等的散射作用,散射光中电矢量垂直分量和平行分量的振幅发生变化,不再是各向同性的自然光,而成为部分偏振光或偏振光。空间紫外遥感仪器中通常含有光栅、反射镜等元件,由于这些元件对s光和p光的反射率或者透过率不同,因此对不同偏振光的响应度不同,为了准确测量大气辐亮度,必须对仪器的偏振响应进行校正。空间光学遥感仪器通常采用两种方法解决偏振问题:一是像OMI、SBUV/2等采用退偏器的方法;二是像GOME、SCIAMACHY等采用专门的偏振测试装置进行在轨测试修正。本论文开展了空间紫外遥感仪器偏振特性分析、紫外波段偏振测试方法、空间紫外遥感成像光谱仪器光学退偏和在轨偏振实时测量及修正等偏振响应校正方法研究。
     本文首先对紫外高光谱臭氧廓线探测仪的测量对象-地球大气紫外散射光波的偏振特性作了分析:包括大气分子的瑞利散射、气溶胶的大粒子Mie散射和它们之间的多次散射,并利用大气辐射传输软件库LibRadtran对不同情况下的大气辐亮度及其偏振作了模拟分析;并利用穆勒矩阵法推导了紫外遥感仪器的归一化偏振响应度公式,给出了偏振对辐射测量不确定度的计算公式,由模拟分析结果表明,控制遥感仪器的偏振响应小于0.01,偏振对辐射测量精度的影响满足目标要求。
     利用穆勒矩阵计算法给出了空间紫外遥感仪器的线性偏振响应理论计算公式;详细分析了引起空间紫外遥感仪器线性偏振响应的主要光学元件反射镜、衍射光栅的线性二次衰减;建立偏振实验测试测量系统,系统可实现250-500nm波段对单个元件及仪器整机的偏振响应测试,光学元件偏振响应测量值的不确定度约为1.5%,仪器整机偏振响应测量值的不确定度为1.6%。
     采用穆勒矩阵计算法分析了双光楔H-V型退偏器、双光楔旋光退偏器、改进LYOT型退偏器和双巴比涅型退偏器等空间光学遥感常用的光学退偏器的退偏原理,计算得到了它们相应的平均穆勒矩阵,并对其特点进行了分析;分别利用几何光学计算法、光学传递函数法和软件模拟分析法等方法对退偏器引入的像差进行了分析,确定对成像光谱系统像质影响;并对光学退偏器应用于空间紫外成像光谱仪进行了分析。
     针对紫外高光谱臭氧廓线探测仪结构特点,利用穆勒矩阵计算法对其偏振的主要来源扫描系统及大刻线密度平面反射光栅等偏振特性进行了详细分析,确定了仪器两种主要观测模式时的穆勒矩阵形式,确立了仪器偏振测量校正方案;对偏振响应校正因子的不确定度及校正方案进行数值模拟分析,模拟结果表明采用偏振测量/校正方案,偏振对大气辐亮度的测量精度影响小于2%,利用臭氧垂直探测仪完成了原理验证实验,结果表明方案精度满足要求,有效可行。
The scattered sunlight contains essential information about the globaldistribution of atmospheric constituents, so the measurements of the spectralirradiance of the light from the sun and spectral radiance of the scattered light fromthe earth can provide information about a number of trace gases and aerosols tomonitor the global greenhouse effect, the change of ozone layer, gas pollution et al.Light reflected from the Earth’s atmosphere is linearly or partially linearly polarizedbecause of scattering of unpolarized sunlight by air molecules and aerosols. Thespace-borne ultraviolet spectrometers always contain optical components such asdiffraction gratings, mirrors whose reflectance or transmission are often polarizationdependent, so the instrument are normally sensitive to the state of polarization of light.In order to measure the radiance accurately, the polarization response of theinstrument must be eliminated from the polarization-sensitive measurement. Thespace-borne spectrometers have2options to treat the atmospheric polarization of theincoming light. Either the polarization information is destroyed by scrambling, as inthe OMI and SBUV/2instruments or the polarization of the incoming light has to bemeasured to correct for the polarization dependence of the instrument, as in theGOME and SCIAMACHY. The polarization characteristics of the space-borneultraviolet spectrometers, polarization measurements in the ultraviolet, the scramblingand measuring the polarization of incoming light methods are explored.
     In this dissertation the polarization characteristics of the scattered sunlight whichis the targeted object of ultraviolet hyperspectral ozone profile spectrometers(UHOPS)is analyzed, accounting for rayleigh scattering, mie scattering and multiple scattering.The radiance and polarization model calculations are performed using the LibRadtransoftware package. The radiometric measurement equation considering for polarizationis presented using mueller matrix calculus. The uncertainty in the on-orbit radiance measurement is presented, and the simulation results show that the measurementsuncertainty due to polarization is small for instruments with polarization responsesless than0.01.
     The linear polarization sensitivity of space-borne ultraviolet spectrometers ispresented using mueller matrix calculus. The diattenuation of the main portion of theinstruments (mirror and grating) is analyzed. A set of ultraviolet polarization testsystem is designed with250-500nm wavelength range to test optical components andinstruments. The uncertainty of optical components measurements is about1.5%, andof the optical instruments test is about1.6%.
     The double plate horizontal-vertical depolarizer, rotation depolarizer, improvedLyot depolarizer and the dual Babinet compensator depolarizer which are commonused in remote sensing are evaluated, and the spatial average of their Mueller matrixare gained. The depolarization properties of these depolarizers are described. Theaberrations of these depolarizers are analyzed using geometrical optics calculating,mtf and software simulation to evaluate the image degradation of imagingspectrometers.
     The polarization characteristics of the scan system and small groove spacinggrating that are the main sources of linear polarization sensitivity of UHOPS areanalyzed and the mueller matrix for the two main observations are gained. Accordingto polarization characteristics of UHOPS, the polarization correction algorithm ofinstruments is set. The uncertainty of polarization factor is presented and themathematical approach to obtain the polarization values from the instrumentobservations shows that the error on the measured radiance is within2%. The resultsof solar backscatter ultraviolet spectrometer experiment are within the specification ofmeasurement accuracy and the polarization correction algorithm satisfies therequirement.
引文
[1]周秀骥,陶善昌,姚克亚.高等大气物理学[M].北京:气象出版社,1991.1-3
    [2]吕达仁,陈泽宇,卞建春,等.平流层-对流层相互作用的多尺度过程特征及其与天气气候关系——研究进展[J].大气科学,2008,32(4):782-793
    [3]邱金桓,王普才,夏祥鳌,等近年来大气遥感研究进展[J].大气科学,2008,32(4):841-853
    [4] Eskes H. J., van P. F. J., Kelder H. M. Global ozone forecasting based on ERS-2GOMEobservations[J]. Atmos. Chem. Phys.,2002,2:271-278
    [5] Eck T. F., Bhartia P. K., Kerr J. B. Satellite estimation of spectral UV-B irradiance usingTOMS derived ozone and reflectivity[J]. Geophys. Res. Lett.,1995,22:611-614
    [6] McKenzie, Seckmeyer R. G., Bais A. F., et al. Satellite retrievals of erythemal UV dosecompared with ground-based measurements at northern and southern midlatitudes[J]. J.Geophys. Res.,2001,106(24):51-62
    [7] Buchwitz M., Burrows J. P. Retrieval of CH4, CO, and CO2total column amounts fromSCIAMACHY near-infrared nadir spectra: Retrieval algorithm and first results[J]. SPIE,2004,5235:375–388
    [8]阮宁娟,苏云.国外紫外空间探测器发展综述[J].航天返回与遥感,2008,29(3):58-67
    [9]郑玉权.小型Offner光谱成像系统的设计[J].光学精密工程,2005,13(6):650-657
    [10]禹秉熙.高分辨率成像光谱仪(C-HRIS)研究[J].光机电信息,2000,17(4):1-5
    [11]冯玉涛,向阳.谱线弯曲对成像光谱仪辐射信号采集的影响[J].光学精密工程,2009,17(1):20-25
    [12]李幼平,禹秉熙,韩昌元,等.成像光谱仪工程权衡优化设计的光学结构[J].光学精密工程,2006,14(6):974-979
    [13] Hahne A., Lefebvre A., Callies J. Global Ozone Monitoring Experiment (GOME) on boardof ERS2[J]. SPIE,1992,1715:594-607
    [14] Vries J. D., Oord H. J., Hilsenrath E., et al. Ozone Monitoring Instrument (OMI)[J]. SPIE,2002,4480,315-325
    [15] Burrows J. P., olzle E. H., Goede A. P. H., et al. SCIAMACHY—Scanning ImagingAbsorption Spectrometer For Atmospheric Chartography[J]. Aas,1995,35(7):445–451
    [16]薛庆生,王淑荣,李福田,等.用于大气遥感探测的临边成像光谱仪[J].光学精密工程,2010,18(4):823-830
    [17]薛庆生,王淑荣,李福田.光栅色散临边成像光谱仪的研究[J].光学学报,2010,30(5):1516-1521
    [18] Chipman R.A. PolarizationAberrations[D].[PhD thesis]. Arizona: University of Arizona,1987.
    [19] Coulson K. Polarization and Intensity of Light in the Atmosphere[M]. Hampton, Va: A.Deepak Pub.,1988,291-293
    [20] Pease C. B. Satellite imaging instruments: principles, technologies and operationalsystems[M]. Ellis: Horwood Limited,1991
    [21] Maymon P. W., Chipman R. A. Linear polarization sensitivity specifications for spaceborneinstruments[J]. SPIE,1992,1746:148-156
    [22] Stewart J. E., Gallaway W. S. Diffraction anomalies in grating spectrometers[J]. Appl. Opt.,1962,1:421-429
    [23] Breckinridge. Polarization properties of a grating spectrograph[J]. Appl. Opt.,1971,10:286-294
    [24] Woolsey J. M., McConkey J. W. Elimination of polarization corrections from opticalexcitation-function measurements[J]. J. Opt. Soc. Am.,1968,58:1309-1310
    [25] Clout P. N., Heddle D.W.O. Elimination of polarization corrections from opticalexcitation-function measurements[J]. J. Opt. Soc. Am.,1969,59:715-715
    [26] Stenflo J. O. The measurement of solar magnetic fields[J]. Rep. Prog. Phys,1978,41:865-889
    [27] Howell B. J. Measuement of the polarization effects of an instrument using partiallypolarized light[J]. Appl. Opt.,1979,18:809-812
    [28] Knowden R. E. Wave front errors produced by multiplayer thin film optical coatings[D].
    [PhD thesis]. Arizona: University of Arizona,1981
    [29] McGuire J. P., Chipman R. A. Polarization aberrations in the Solar Activity MeasurementExperiments (SAMEX) solar vector magnetograph[J]. Opt. Eng.,1989,28(3):141-147
    [30] Hearth D. F., Krueger A. J., Roeder H. A., et al. The solar backscatter ultraviolet and TotalOzone Mapping Spectrometer(SBUV/TOMS) for NIMBUS G[J]. Opt. Eng.,1975,14(4):323-331
    [31] Dittman M. G., Leitch J., Chrisp M., et al. Limb Broad-Band Imaging Spectrometer for theNPOESS Ozone Mapping and Profiler Suite (OMPS)[J]. SPIE,2002,4814:120-130
    [32] Bruce H. B. A Monochromatic Depolarizer[J]. J.Opt.Soc.Am,1951,41(2):966-975
    [33] Weiss H., Cebula R. P., Laamann K., et al. Evaluation of the NOAA-11Solar BackscatterUltraviolet Radiometer, Mod2(SBUV/2): inflight calibration[J]. SPIE,1991,1493:80-90
    [34] Vries J, Voors R, Dirksen R, et al. In-orbit performance of the Ozone MonitoringInstrument[J]. SPIE,2005,5978(59780T):1-12
    [35] Ahmad S. P., Levelt P. F., Bhartia P. K., et al. Atmospheric products from the OzoneMonitoring Instrument(OMI)[J]. SPIE,2003,5151:619-630
    [36] Bottger U., Nieke J., Schlapfer D. Assessing polarization effects for the Airborne imagingspectrometer APEX[J]. Adv.Rad. Sci.,2006,4:323-328
    [37] Mariani A., Corpaccioli E., Fibbi M., et al. GOME: a spectrometer for ozone monitoringfrom space[J]. SPIE,1994,2209:57-58
    [38] Kamperman T. M., Goede A. P. H., Gunsing C. J. T., et al. GOME instrument simulation[J].SPIE,1992,1715:562-572
    [39] Hoogeveen, R. W. M., Goede A. P. H., Slijkhuis S., et al. SCIAMACHY development[J].SPIE,1994,2209:78-85
    [40] Mager R., Fricke W., Burrows J. P., et al. SCIAMACHY A New-Generation ofHyperspectral Remote Sensing Instrument[J]. SPIE,1997,3106:84-85
    [41] Bovensmann H., Buchwitz M., Frerick J.,et al. SCIAMACHY on ENVISAT: In-flightoptical performance and first results[J]. SPIE,2004,5235:160-173
    [42] Abelardo P. A., Rosemary M., Enrico C., et al. New generation of GOME instruments[J].SPIE,2002,4486:334-343
    [43] Munro R., Anderson C., Callies J., et al. GOME-2on MetOp[J]. ASCP,2006, ESA SP-628:94-100
    [44] Callies J., Corpaccioli E., Eisinger M., et al. GOME-2-MetOp's Second Generation Sensorfor Operational Ozone Monitoring[J]. ESA Bulletin,2000,102:28-36
    [45] Joerg C., Enrico C., Michael E., et al. GOME-2ozone instrument on-board the EuropeanMETOP satellites[J]. SPIE,2004,5549:60-70
    [46] Joerg C., Enrico C., Michael E., et al. The New Advanced Polarisation Measurements ofGOME-2on-board the METOP satellites[J]. SPIE,2002,4814:131-141
    [47]王淑荣,宋克非,李福田.星载太阳紫外光谱监视器的地面辐射定标[J].光学学报,2007,27(12):2256-2261
    [48]王淑荣,李福田,宋克非,等. FY-3A气象卫星紫外臭氧垂直探测仪[J].光学学报,2009,29(9):2590-2593
    [49]廖延彪.偏振光学[M].北京:科学出版社,2003.45-63
    [50]梁铨廷.物理光学[M].北京:电子工业出版社,2010.298-371
    [51] R. M. A.阿查姆,N. M.巴夏拉.椭圆偏振测量术和偏振光[M].北京:科学出版社,1986.37-43
    [52]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,1999.322-368
    [53] M.波恩,E.沃耳夫.光学原理[M].北京:电子工业出版社,2009.514-523
    [54]魏光辉.矩阵光学[M].北京:兵器工业出版社,1995.144-209
    [55] Jones R. C. A new calculus for the treatment of optical systems: Ⅰ. Description anddiscussion of the calculus[J]. J.Opt.Soc.Am.,1941,31:488-493
    [56] Jones R. C. A new calculus for the treatment of optical systems: ⅡProof of three generalequivalence theorems[J]. J.Opt.Soc.Am.,1941,31:493-499
    [57] Jones R. C. A new calculus for the treatment of optical systems: Ⅴ.A more generalformulation and description of another calculus[J]. J.Opt.Soc.Am.,1947,37:107-110
    [58] Chipman R. A. Mechanics of polarization ray tracing[J]. SPIE,1992,1746:62-75
    [59] Hansen J. E, Travis L. D. Light scattering in planetary atmospheres[J]. Space ScienceReviews,1974,16:527–610
    [60] Liou K. N. An Introduction to Atmospheric Radiation[M]: Academic Press,Inc,1980
    [61]金亚秋.电磁散射和热辐射的遥感理论[M].北京:科学出版社,1993
    [62] Van de Hulst H. C. Light Scattering by Small Particles[M]: Dover Publications, Inc,1981
    [63]吴北婴,李卫,陈洪滨,等.大气辐射传输实用算法[M].北京:气象出版社,1998.52-60
    [64]高扬,段民征,黄兴友.典型矢量辐射传输模式计算精度与效率的初步比较[J].遥感学报,201,14(5):839-851
    [65] Mayer B., Kylling A. Technical note: The libRadtran software package for radiativetransfer calculations-description and examples of use[J]. Atmos. Chem. Phys.,2005,5:1855-1877
    [66] Mayer B., Kylling A., Emde C., et al. LibRadtran users guide[M]: ACP,2011
    [67] Evans K. F., Stephens G. L. A new polarized atmospheric radiative transfer model[J].J.Quant. Spectrosc. Radiat. Transfer,1991,46:413–423
    [68] Stamnes K., Tsay S., Wiscombe W., et al. A numerically stable algorithm fordiscrete-ordinate-method radiative transfer in multiple scattering and emitting layeredmedia[J]. Appl. Opt.,1988,27:2502–2509
    [69] Kylling A., Stamnes K., Tsay S. C. A reliable and efficient two-stream algorithm forspherical radiative transfer: documentation of accuracy in realistic layered media[J]. J.Atmos. Chem.,1995,21:115–150
    [70] Knight E. J. Effect ofpolarization on the application ofradiometric calibration coefficientsto infrared earth scenes[J]. SPIE,1996,2815:84-95
    [71] Fry E. S., Kattawar G. W. Relationships between elements of the Stokes matrix[J].Appl.Opt,1981,20(16):2811-2814
    [72] Kumar M. S., Simon R. Characterization of Mueller matrices in polarization optics[J]. Opt.Com.,1992,88:464-470
    [73] Chipman R. A. Polarization analysis of optical systems[J]. Opt. Eng.,1989,28(2):90-99
    [74] Shurcliff W. A. Polarized Light[M]. Cambridge, MA: Harvard Press,1961
    [75] Chipman R. A. Polarization Aberrations[J]. Proc. Opt. Soc. Am,1985,879:212-223
    [76] Code V. Pasadena, California.Optical Research Associates.2003
    [77]汪龙祺,王淑荣,李福田,等. FY-3A紫外臭氧垂直探测仪数据预处理及验证[J].光学精密工程,2010,18(5):1086-1091
    [78] Thomas S. P., Hartmut H. A., Denis E., et al. AIRS infrared polarization sensitivity andin-flight observations[J]. SPIE,2004,5542:45-52
    [79] George W.G., Thomas S. P. AIRS Instrument Polarization Response:MeasurementMethodology[J]. SPIE,1999,3759:279-291
    [80] Kobayashi K., West E. A., Noble M. Polarization measurements in the VacuumUltraviolet[J]. SPIE,2005,58880G:1-12
    [81] Steinrnetz D. L., Phillips W.G., Wirick M., et al. A Polarizer for the Vacuum Ultraviolet[J].Appl. Opt.,1967,6(6):1001-1004
    [82] Ammann E. O., Massey G. A. Modified Forms for Glan-Thompson and Rochon Prisms[J].J.Opt.Soc.Am,1968,58(11):1427-1433
    [83]蔡履中,王成彦,周玉芳.光学[M].济南:山东大学出版社,2002.112-114
    [84]费业泰.误差理论与精度分析[M].北京:国防工业出版社,2004
    [85] Steven W. B., George P. E., Keith R. L. Facility for spectral irradiance and radianceresponsivity calibrations using uniform sources[J]. Appl.Opt,2006,45(32):8218-8237
    [86] Larason, T. C., Cromer C. L. Sources of Error in UV Radiation Measurements[J]. J. Res.Natl. Inst. Stand. Technol.,2001,106(4):649-656
    [87] Shaw P. S., Gupta R., Lykke K. R. Characterization of an ultraviolet and avacuum-ultraviolet irradiance meter with synchrotron radiation[J]. Appl.Opt,2002,41(34):7173-7178
    [88] Cairns B., Edgar E. R., Larry D. T. The research scanning polar-imeter: calibration andground-basedmeasurements[J]. SPIE,1999,3754:186-196
    [89] Schmidt E., Vedam K. Depolarizing prism[J]. Optic Acta,1971,18(9):713-718
    [90] Loeber A. P. Depolarization of White Light by Birefringent Crystal[J]. J.Opt.Soc.Am.,1975,65(3):248-251
    [91] Loeber A. P. Depolarization of White Light by Birefringent Crystal Ⅱ: The Lyotdepolarizer[J]. J.Opt.Soc.Am.,1982,72(5):650-656
    [92] McGuire J. P., Chipman R. A. Analysis of Spatial pseudo depolarizers in imagingsystems[J]. Opt. Eng.,1990,29(12):1478-1484
    [93] McClain S. C., Chipman R. A., Hillman L. W. Aberrations of a horizontal-verticaldepolarizer[J]. Appl. Opt.,1992,31:2326-2331
    [94]池濒,高军,徐森禄.一种实用的准单色光退偏器的研究[J].光学学报,1997,17(8):1097-1102
    [95]宋师霞,宋连科.双光楔旋光退偏器的Mueller矩阵分析[J].光学学报,2009,27(7):1947-1950
    [96]王锐,王淑荣,李福田,等.星载光栅光谱仪消偏器性能研究[J].光学技术,2009,35(1):89-92
    [97]龙槐生,张仲先,谈恒英.光的偏振及其应用[M].北京:机械工业出版社,1989
    [98] Jahnke E., Emde F. Tables of Functions with Formulae and Curves[M]. New York: DoverPub.,1945
    [99]韩昌元.信息光学基础理论及其应用[M].长春:长春出版社,1989.72-93
    [100]苏显渝,李继陶.信息光学[M].北京:科学出版社,2005.70-77
    [101] McGuire J. P., Chipman R. A. Diffraction image formation in optical systems withpolarization aberrations Ⅰ: formulation and example[J]. J. Opt. Soc. Am. A,1990,7(9):1614-1626
    [102] McGuire J. P., Chipman R. A. Diffraction image formation in optical systems withpolarization aberrations Ⅱ: Amplitude response matrices for rotationally symmetricsystems[J]. J. Opt. Soc. Am. A,1991,8(6):833-840
    [103] Zemax. Bellevue, Washington, USA.Zemax Development Corporation.2005
    [104] Schutgens N. A., Stammes P. Improving the polarisation correction algorithm of GOME[J].SPIE,1999,3754:411-422
    [105] Bob K., Cess S., Huib V. Calibration concept of SCIAMACHY[J]. SPIE,1994,2209:196-209
    [106] Erik Z., Carina O. Calibration Approach for SCIAMACHY[J]. SPIE,1997,3117:306-317
    [107] Stam D. M., De Haan J. F., Hovenier J. W., et al. A fast method for simulating observationsof polarized light emerging from the atmosphere applied to the oxygen-A band[J]. JQSRT,2000,64:131-149
    [108] De Haan J. F., Bosma P. B., Hovenier J. W. The adding method for multiple scateringcalculations of polarized light[J]. Astron. Astrophys.,1987,183:371-391
    [109] Schutgens N. A., Stammes P. Parameterisation of Earth's polarisation spectrum in theultra-violet[J]. J. Quant. Spectros. Radiat.,2002,75:239-255
    [110] Akima H. A new method of interpolation and smooth curve fitting based on localprocedures[J]. J.ACM,1970,17(4):589-602
    [111] Schutgens N. A., Tilstra L. G., Stammes P., et al. On the relationship between Stokesparameters Q and U of atmospheric ultraviolet/visible/near-infrared radiation[J]. J.Geophys. Res.,2004,09(D09205):1-8
    [112]周长发.科学与工程数值算法(Visual C++版)[M].北京:清华大学出版社,2002.293-299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700