用户名: 密码: 验证码:
相贯线切割机器人作业单元关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文密切结合新型5自由度混联机器人TriVariant-B的钢管相贯线切割应用,系统的研究了该机器人运动学与工作空间分析、空间连续轨迹规划、控制系统开发及钢管相贯线切割工艺等相关理论、方法和关键技术,论文取得如下创造性成果:
     采用矢量法建立TriVariant-B混联机器人机构的运动学模型,并基于避免干涉和奇异位形的考虑,在末端执行器逆解多解中正确选择了合理解。采用Newton-Raphson法构造出2自由度球面并联机构的位置正解数值算法,并用C语言和LabVIEW环境开发了用于机器人末端位姿实时监控的位置正解软件模块。计算结果表明,在本文开发的控制系统中,位置正解运算时间为35μs,满足了实时性要求。在此基础上,建立了混联机器人的速度映射模型,进而为后续轨迹规划与运动控制提供了运动学基础。
     根据机器人尺度参数和铰链运动范围约束条件,建立了工作空间边界约束方程,得到TriVariant-B机器人的可达位置空间。在此基础上,应用极坐标描述方法,构造出可达位置空间内部任意点的姿态空间模型。利用上述模型可保证末端执行器在工作空间内的运动连续性,进而为轨迹规划提供了重要依据。
     在独立规划点和矢量轨迹的基础上,提出了一种基于点矢复合运动的时间同步规划算法和轨迹段间过渡算法,保证了末端执行器位姿运动的同步和轨迹过渡问题。针对任意空间曲线和参数化空间曲线,提出一种基于耦合速度曲线的连续运动轨迹规划方法和轨迹插补算法,在二阶近似条件下可获得理想的轨迹精度,进而将操作空间轨迹映射到关节空间后,利用分段三次样条函数可得到C2连续的高精度实时控制轨迹。
     基于PC+Motion Controller构建出TriVariant-B混联机器人控制系统核心硬件平台,并结合切割、焊接、喷涂、轻型加工、装配及搬运等多种应用场合,利用可重构思想设计了控制软件的逻辑架构。应用图形化编程环境LabVIEW实现了机器人控制软件的模块化与层次化设计,开发了控制系统回零、轨迹控制、点动控制、在线仿真、网络通讯等核心功能。这种基于数据流的编程方式可有效缩短软件开发和测试周期,提高开发效率。
     以TriVariant-B机器人为核心构建机器人相贯线切割作业单元,系统地研究了快速零点标定方法、钢管在机器人工作空间中的最优摆放位姿与定位方法和预留坡口角相贯线切割动态轨迹规划等关键技术,基于上述关键技术开发的机器人相贯线切割作业单元成功应用于钢结构生产企业并完成多项石化用火炬塔架相贯线切割任务。
This dissertation presents a theoretical package for kinematics and workspace analysis, continuous path planning, development of the PC based control system for a new 5-DOF hybrid robot known as the TriVariant-B, out of which a pipe intersecting curve cutting machine has been developed. The following contributions have been made.
     The inverse kinematic analysis of the 5-DOF hybrid robot is carried out using vector based method and the interference and singularity free solution is selected. By using Newton-Raphson method, the numerical algorithm is developed to solve the forward displacement problem of the 2-DOF spherical parallel module. It takes less than 35μs to solve the forward displacement problem using this algorithm and thereby can be used for the real time applications. The Jacobian matrix of the hybrid robot is formulated, which is useful for the tool path planning and motion control.
     Given the dimensional parameters and the joint limits, a geometrical constraint method is presented to determine the boundary of the reachable workspace. In addition, the project orientation workspace of the end-effector at any arbitrary point within the position workspace is achieved by using polar coordinate systems. As a result, the continuity of the motion of the end-effector within these workspaces can be ensured
     A novel path planning method for generating point-vector trajectory is proposed and algorithms of time synchronization and the transitions between different path segments are developed. On the basis of velocity profile analysis, an approach for trajectory planning and interpolation is proposed for generating parametric and implicit space curves. Computer simulations show that the ideal trajectory accuracy up to the second order approximation can be obtained. The real-time trajectory in joint space is also obtained using piecewise cubic splines to achieve C2 continuity.
     The hardware platform of the TriVariant-B robot control system is developed based on PC and motion controller and the reconfigurable of the software architecture is designed to meet demands in various applications such as cutting, welding, light machining, assembly, pick-and-place, etc. The graphical programming environment LabVIEW is employed to develop the key control functions such as homing, trajectory control, JOG control, online simulation, network data communications, etc. and great efficiency has been achieved in the development and testing procedure due to the special manner of data flow diagram.
     The TriVariant-B robot has been used to develop a pipe intersecting curve frame cutting unit and the techniques to improve its accuracy, efficiency and applicability are investigated, such as fast home position calibration, quick localization of the steel pipe in the world coordinate systems, trajectory planning of intersecting curve cutting with bevel angles, etc. As a result, the products have been widely used in the construction of flare stack tower pylons in petrochemical enterprises.
引文
[1]汪劲松,黄田,并联机床——机床行业面临的机遇与挑战,中国机械工程,1999,10(10):1103-1107
    [2] Merlet J P, Parallel manipulators: State of the art and perspectives, Journal of Advanced Robotics, 1994, 8 (6): 589-596
    [3] Martin Eastman, Will Hexapods go from show floor to shop floor, Cutting Tool Engineering, 1995, 6: 102-110
    [4] Pritschow G, Wurst K H, Systematic design of Hexapods and other parallel link systems, Annals of CIRP, 1997, 46 (1): 291-295
    [5] http://www.roboticsonline.com/public/articles/archivedetails.cfm?id=797
    [6] Lee M K, Shah D K, Kinematic analysis of a three-degrees-of-freedom manipulator, IEEE Transaction on Robotics and Automation, 1988, 4 (3): 354- 360
    [7] Waldron K J, Raghavan M, et al, Kinematics of a hybrid series-parallel manipulation system, ASME Journal of Mechanisms, Transmissions and Automation in Design, 1989, 111 (6): 211-221
    [8] Pierrot F, Chiaccchio P, Evaluation of velocity capabilities for redundant parallel robot, Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, NM, 1997, 1: 774-779
    [9] Tsai L W, Tahmasebi F, Synthesis and analysis of a new class of six-degree-of-freedom parallel minimanipulators, Journal of Robotic Systems, 1993, 10 (5): 561-580
    [10] Pritschow G, Parallel kinematic machines (PKM)-limitations and new solutions, Annals of CIRP, 2000, 49 (1): 275-280
    [11] Clavel R, Delta, a fast robot with parallel geometry, Proceedings of the 18th International Symposium On Industrial Robots(ISIR’98), 1988: 91-100
    [12] Hunt K H, Structural kinematics of in-parallel-actuated robot-arms, ASME Journal of Mechanism, Transmission and Automation in Design, 1983, 105 (4): 705-712
    [13] Carretero J A, Podhorodeski RP, Nahon M A, et al, Kinematic analysis and optimization of a new 3-DOF spatial parallel manipulator, ASME Journal of Mechanical Design, 2000, 122 (1): 17-24
    [14] Neumann K E, Robot, US Patent, No. 4732525, 1988-05
    [15] Neumann K E, Tricept application, In: The 3rd Chemnitz Parallel Kinematics Seminar, Germany, 2002: 547~551
    [16] Huang T, Li M, Wu M L, et al, The Criteria for conceptual design of reconfigurable PKM modules—theory and application, Chinese Journal of Mechanical Engineering (In Chinese), 2005, 41 (8): 36-41
    [17] Thornton G S, The GEC Tetrabot-a new serial-parallel assembly robot, IEEE International Conference on Robotics and Automation, 1988, 1: 437-439
    [18] Dwolatzky B, Thornton G S, The GEC Tetrabot-a serial-parallel topology robot: control design aspects, International Conference on Control, 1988: 426-431
    [19] Cezary Z, Krzysztof M, Kazimierz N, Wojciech S, A prototype robot for polishing and milling large objects, The Industrial Robot, 2003, 30 (1): 66-76
    [20] Tonshoff H K, Grendel H K R, Structure and characteristics of the hybrid manipulator George V, In: Boer, C R, Molinari-Tosatti, L and Smith, K S, Parallel Kinematic Machines, Springer-Verlag, London, 1999: 365-376
    [21] Jovane F, Negri S P, Fassi I, et al, Design issue for reconfigurable PKMs, In: The 3rd Chemnitz Parallel Kinematics Seminar, Zwickau, Germany, 2002, 17-47
    [22] Wurst K H, Peting U, PKM concept for reconfigurable machine tools, In: The 3rd Chemnitz Parallel Kinematics Seminar, Zwickau, Germany, 2002, 63-66
    [23] Neumann K E, Tricept application, In: The 3rd Chemnitz Parallel Kinematics Seminar, Zwickau, Germany, 2002, 547-551
    [24] Gronbach H, Tricenter-a universal milling machine with hybrid kinematic, In: The 3rd Chemnitz Parallel Kinematics Seminar, Zwickau, Germany, 2002, 595-608
    [25] Marinized Tricept robot cuts cost and risk of welding underwater, Offshore, 2004, 64(7): 58
    [26] Available at: http://www.pkmtricept.com
    [27] Huang, T, Li M, Li Z X, et al, A 5-DOF hybrid robot, Patent Cooperation Treaty, Int. Appl. PCT/CN2004/000479, 2004-05
    [28] Li M, Huang T, et al, Dynamic formulation and performance comparison of the 3-DOF modules of two reconfigurable PKM—the Tricept and the TriVariant, ASME Journal of Mechanical Design, 2005, 127 (6): 1129-1136
    [29] Huang T, Li M, Zhao X M, et al, Conceptual design and dimensional synthesis for a 3-DOF module of the TriVariant—a novel 5-DOF reconfigurable hybrid robot, IEEE Transactions of Robotics and Automation, 2005, 21 (3): 449-456
    [30]李曚,可重构混联机械手??TriVariant的设计理论与方法:[博士学位论文],天津:天津大学,2005
    [31]黄田,刘海涛,李曚,五自由度机器人,国家发明专利,公开号:CN1709657,2005-12
    [32] Liu H T, Huang T, Zhao X M, et al, Optimal design of the TriVariant robot to achieve a nearly axial symmetry of kinematic performance, Mechanism and Machine Theory, 2007, 42 (12): 1643-1652
    [33] Liu H T, Huang T, Mei J P, et al, Kinematic Design of a 5-DOF hybrid robot with large workspace/limb-stroke ratio, ASME Journal of Mechanical Design, 2007, 129 (5): 530-537
    [34] Gosselin C, Determination of the workspace of 6-DOF parallel manipulators, Journal of mechanisms, transmissions, and automation in design 1990,112 (3): 331-336
    [35] Merlet J P, Gosselin, C M, Mouly N, Workspaces of planar parallel manipulators, Mechanism and Machine Theory, 1998, 33 (1-2): 7-20
    [36] Merlet J P, Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries, International Journal of Robotics Research, 1999, 18(9): 902-916
    [37] Bonev I A, Ryu J, Geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators, Mechanism and Machine Theory 2001, 36(1): 1-13
    [38] Bonev I A, Gosselin C M, Analytical determination of the workspace of symmetrical spherical parallel mechanisms, IEEE Transactions on Robotics and Automation, 2006, 22(5):1011-1017
    [39] Kumar, Waldron K J, The workspace of a mechanical manipulator, ASME Journal of Mechanical Design, 1981, 103: 665-672
    [40] Kumar, Vijay, Characterization of workspaces of parallel manipulators, American Society of Mechanical Engineers, Design Engineering, 1990, 25: 321-329
    [41] Gupta K G, Roth B, Design Considerations for Manipulator Workspace, ASME Journal of Mechanical Design, 1982, 104(4): 704-711
    [42] Gupta K C, On the Nature of Robot Workspace, The International Journal of Robotics Research,1986; 5: 112-121
    [43] Vijaykumar R, Waldron K J, Tsai M J, Geometric optimization of serial chain manipulator structures for working volume and dexterity, International Journal of Robotics Research, 1986, 5(2): 91-103
    [44] Lai Z C, Menq C H, Dexterrous workspace of smple manipulators, IEEE Transactions of Robotics and Automation, 1988, 4(1), 99-103
    [45] Geoffrey P, Juan A C, Quantitative dexterous workspace comparison of parallel manipulators, Mechanism and Machine Theory, 2007,42(10): 1388-1400
    [46] Yang D C H, Lai Z C, On the dexterity of robotics manilulators-service angle, ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1985, 107(3): 162~270
    [47] Bonev I A, Ryu J, New approach to orientation workspace analysis of 6-DOF parallel manipulators, Mechanism and Machine Theory, 2001, 36(1): 15-28
    [48] Kim D I, Chungt W K, Youmt Y, Geometrical Approach for the Workspace of 6-DOF Parallel Manipulators, IEEE International Conference on Robotics and Automation,1997,4,2986-2991
    [49] Huang T, Wang J, Gosselin C M, Whitehouse D, Determination of closed form solution to the 2-D orientation workspace of Gough-Stewart parallel manipulators, IEEE Transactions on Robotics and Automation, 1999, 15(6): 1121-1125
    [50] Huang T, Wang J S, Whitehouse D J, Closed form solution to workspace of hexapod-based virtual axis machine tools, ASME Journal of Mechanical Design, 1999, 121(1): 26-31
    [51] Huang T, Wang J S, Whitehouse D J, Closed form solution to the position workspace of Stewart parallel manipulators, Sci. China, (Series E), 1998, 41(4): 394–403
    [52] Monsarrat B, Gosselin, C M, Workspace analysis and optimal design of a 3-Leg 6-DOF parallel platform mechanism, IEEE Transactions on Robotics and Automation, 2003,19 (6): 954-966
    [53] Liu X J, Optimal kinematic design of a three translational DOF parallel manipulator, Robotica, 2004,24(2), 239-250
    [54] Huang T, Li M, Li Z X, Chetwynd D G, Whitehouse D J, Optimal kinematic design of 2-DOF parallel manipulators with well shaped workspace bounded by a specified conditioning index,IEEE Transactions on Robotics and Automation, 2004, 20 (3): 538-543
    [55] Anotaipaiboona W, Makhanova S S, Bohezb E L J, Optimal setup for five-axis machining, International Journal of Machine Tools & Manufacture, 2006, 46: 964-977
    [56] Fukuda T, Kubota N, An intelligent robotic system based on a fuzzy approach Proceedings of the IEEE, 1999, 87(9): 1448-1470
    [57] Wang S Y, Tsuchiya, Takeshi, Fuzzy trajectory planning and its application to robot manipulator path control, Advanced Robotics, 1994, 8(1): 73-93
    [58] Thrun S, Learning metric-topological maps for indoor mobile robot navigation, Artificial Intelligence, 1998, 99(1): 21-71
    [59] Yang S X, Meng M, An efficient neural network approach to dynamic robot motion planning, Neural Networks, 2000, 13(2): 143-148
    [60] Xiao J, Michalewicz Z, Zhang L, Trojanowski K, Adaptive evolutionary planner/navigator for mobile robots, IEEE Transactions on Evolutionary Computation, 1997, 1(1): 18-28
    [61] Hocaogl?u C, Sanderson A C, Planning multiple paths with evolutionary speciation, IEEE Transactions on Evolutionary Computation, 2001, 5(3): 169-191
    [62] Liu G, Li T, Peng Y, Hou X, The ant algorithm for solving robot path planning problem, 3rd International Conference on Information Technology and Applications, 2005, 2: 25-27
    [63] Olson C F, Probabilistic self-localization for mobile robots, IEEE Transactions on Robotics and Automation, 2000, 16(1): 55-66
    [64] Durrant-Whyte H F, An autonomous guided vehicle for cargo handling applications, International Journal of Robotics Research, 1996, 15(5): 407-440
    [65] Liu J T, Sun L, Chen, T, Huang, X B, Zhao C Y, Research on competitive teleoperating robot system, Jiqiren/Robot, 2005, 27(1): 68-72
    [66] Shin K G, McKay N D, Minimum-time Control of Robotic Manipulators with Geometric Path Constraints, IEEE Transaction on Automatic Control, 1985, 30(6): 531-541
    [67] Bobrow J E, Dubowsky S, Gibson J S, Time-Optimal Control of Robotic Manipulators Along Specified Paths, International Journal of Robotic Research, 1985, 4(3): 554-561
    [68] Bazaz S A, Tondu B, Minimum time on-line joint trajectory generator based on low order spline method for industrial manipulators, Robotics and Autonomous Systems, 1999, 29(4): 257-268
    [69]张一巍,张永民,黄元庆,用高阶多项式插值解决机器人运动轨迹规划中的约束问题,机器人技术与应用,2002,2:19-21
    [70] Ozaki H, Lin C J, Optimal B-spline joint trajectory generation for collision-free movements of a manipulator under dynamic constraints, International Journal of Robotics and Automation, 1996, 4: 22-28
    [71] Ude A, Atkeson C G, Riley M, Planning of joint trajectories for humanoid robots using B-spline wavelets, International Journal of Robotics and Automation, 2000, 3: 24-28
    [72]王幼民,机器人关节空间Bezier曲线轨迹优化设计,机械科学与技术,2001,20(3):350-352
    [73] Wang Y M, Optimal design of Bezier curves trajectory in robot joint space, Mechanical Science and Technology, 2001, 20(3): 350-352
    [74] Lin C S, Chang P R, Luh J Y S, Formulation and optimization of cubic polynomial joint trajectories for industrial robots, IEEE Transactions on Automatic Control, 1983, 28(12): 1066-1074
    [75] Sotiris L O, Space curve interpolation for CNC machines, Journal of Materials Processing Technology, 2003, 141: 343-350
    [76] Shpitalni M, Koren Y, Lo C C, Realtime curve interpolators, Computer Aided Design, 1994, 26(11): 832-838
    [77] Soon Y J, Yun J C, PooGyeon P, Parametric interpolation using sampled data, Computer Aided Design, 2006, 38(1): 39–47
    [78] Xu H Y, Dai J S, Three-dimensional implicit curve interpolation, International Journal of Advanced Manufacturing Technology, 2002, 19: 325–329
    [79] Weisel, Walter, Taking advantage of the PC platform, Robotics World, 1999, 17(3): 6
    [80] Available at http://www.abb.com/
    [81] Available at http://www.sg-motoman.com.cn/
    [82] Available at http://www.fanuc.co.jp/
    [83] Available at http://www.deltatau.com/
    [84] Available at http://www.ni.com/
    [85] Available at http://www.parkermotion.com/
    [86] Available at http://www.googoltech.com.cn/
    [87] Available at http://www.softservo.com/
    [88] Toth S J, New PC and LabVIEW based robot control system, Mechanical Engineering, 1999, 43(2), 179-188
    [89] Available at http://www.tayor.com.cn/
    [90] Available at http://www.sihai.com.cn/
    [91] Available at http://www.fincm.com/
    [92]王国栋,阎祥安,肖聚亮等,管端相贯线坡口切割割炬位姿控制,天津大学学报,2005,38(8):684-688
    [93]肖聚亮,阎祥安,王国栋等,火焰数控切管机割炬轨迹研究及仿真,机械工程学报, 2005,41(4), 234-238
    [94]李宝清,贾安东,多板、管相贯坡口切割的数学模型,天津大学学报,2000,33(5):583-586
    [95]葛国政,数控管子相贯线火焰切割机的研制,焊接技术,2006,35(2):45-47
    [96] Weck M, Staimer D, Accuracy issues of parallel kinematic machine tools, International Mechanical Engineering Journal of Multi-body Dynamics, Part K, 2002, 216: 51-57
    [97]黄田,李亚,李思维等,一种三自由度并联机构几何误差建模、灵敏度分析及装配工艺设计,中国科学(E辑),2002,32(5):628-635
    [98] Huang T, Chetwynd D G, Mei J P, et al, Tolerance design of a 2-DOF overconstrained translational parallel robot, IEEE Transactions on Robotics and Automation , 2006, 22(1): 167-172
    [99] Huang T, Whitehouse D J, Chetwynd D, A unified error modeling for tolerance design, assembly and error compensation of a class of parallel kinematic machines with parallelogram struts, Annals of the CIRP, 2002, 52(1): 297-301
    [100] Yiu Y K, Meng J, Li Z X, Auto-calibration for a parallel manipulator with sensor redundancy, IEEE International Conference on Robotics and Automation, 2003, 3660-3665
    [101] Ding Q Y, Sun L N, Ji J H, et al, Calibration of a 2-DOF planar parallel robot: home position identification and experimental verification, IEEE International Conference on Mechatronics and Automation, 2005, 510-515
    [102] Gunnarsson K T, Prinz F B, CAD Model-based localization of parts in manufacturing, Computer, 1987, 20(8): 66-74
    [103] Li Z X, Gou J B, Chu Y X, Geometric algorithms for workpiece localization, IEEE Transactions on Robotics and Automation, 1998, 14(6): 864-878
    [104] Xiong Z H, Chu Y X, Liu G F, et al, Workpiece localization and computer aided setup system, 2001, IEEE International Conference on Intelligent Robots and Systems, 2001, 1141-1146
    [105] Xiong Z H, Li Z X, On the discrete symmetric localization problem, IEEE International Conference on Robotics and Automation, 2002, 4161-4166
    [106] ANSI/API 1104 Welding of pipelines and related facilities - 20th Edition Nov 07, 2005
    [107] Zhu L M, Luo H G, Ding H, Optimal measurement point planning for workpiece localization, IEEE International Conference on Intelligent Robots and Systems, 2004, 2: 1562-1567
    [108] Ting K L, Zhang Y, Bunduwongse R, Characterization and coordination of point-line trajectories, ASME Journal of Mechanical Design, 2005, 127: 502-505
    [109] Sonja M, Elizabeth A C, Jerk-Bounded Manipulator Trajectory Planning Design for Real-Time Applications, IEEE Transactions on Robotics and Automation, 2003, 19(1): 42-52
    [110] John J C, Introduction to Robotics Mechanics and Control, 2nd Edition, California, USA, Addison-Wesley Publishing, 1986
    [111] Taylor R, Planning and Execution of Straight Line Manipulator Trajectories, 265-286, MIT Press, Cambridge,1982
    [112]邱绪云,王玉林,徐家川等,圆柱基本参数的三座标测量方法,山东理工大学学报,2003,17(2):56-58
    [113]刘科,海洋平台导管架构件自动切割系统研究与开发,[硕士学位论文],天津:天津大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700