用户名: 密码: 验证码:
Pseudoalteromonas sp. AJ5-913的κ-卡拉胶酶酶学性质及酶解产物分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文目的是从海洋环境筛选高活性的κ-卡拉胶酶产生菌株,对筛选菌株的产酶培养条件和培养基进行优化,在此基础上对该菌株进行诱变以提高其酶活力,纯化其κ-卡拉胶酶,并研究该酶的酶学性质,利用此酶制备κ-卡拉胶寡糖,并对其酶解产物的组成和结构进行分析,为κ-卡拉胶酶酶制剂和κ-卡拉胶寡糖的工业化生产提供理论和技术支撑。通过富集培养技术、初筛和复筛方法从多种海藻和刺参肠道筛选出33株具有κ-卡拉胶降解活性的菌株,其中从刺参肠道筛选出的AJ5菌株产酶活力最高,为1.274 U/mL。依据形态学和生理学特征及16S rRNA基因序列分析,将该菌株鉴定为假交替单胞菌属(Pseudoalteromonas),通过比较发现该菌株与已报道该属中的惟一一种产κ-卡拉胶酶菌P. carrageenovora有多种生理生化特征不同。通过单因素试验和正交试验对Pseudoalteromonas sp.AJ5菌株产胞外κ-卡拉胶酶的培养条件进行了优化。实验确定Pseudoalteromonas sp. AJ5菌株的最佳培养条件为:250 mL三角瓶装入75 mL发酵培养基、摇床转速150 r/min、接种量7%、pH8.0、培养温度28℃;最佳培养基组成为:κ-卡拉胶1 g/L、牛肉膏2 g/L、NaCl20 g/L、K_2HPO_4·3H_2O 1 g/L、MgSO_4·7H_2O 0.5 g/L、MnCl2·4H_2O 0.2 g/L、FePO_4·4H_2O 0.01 g/L。以Pseudoalteromonas sp.AJ5菌株为出发菌株,经紫外线、甲基磺酸乙酯复合诱变和自然选育,获得一株酶活力显著提高的突变株Pseudoalteromonas sp.AJ5-913,发酵产酶活力达6.788 U/mL,比优化前提高了2.9倍。对该突变株进行液体发酵制备出κ-卡拉胶酶酶液,通过30%-80%硫酸铵分级沉淀、Sephadex G-200凝胶过滤层析和CM-纤维素52阳离子交换层析技术对κ-卡拉胶酶进行纯化和精制,获得电泳纯度的酶蛋白组份,SDS-PAGE确定此κ-卡拉胶酶的分子量为35 kDa。采用Edman降解法测得该酶的N端氨基酸序列为NPTCHIAKPGETTILQECRS,通过与已报道细菌κ-卡拉胶酶的N-末端氨基酸序列比较,没有发现与该酶同样的N-末端氨基酸序列,初步确定为一新κ-卡拉胶酶。采用等电聚焦电泳测得该酶的等电点pI为8.5。通过对该酶酶学性质研究,确定该酶反应的最适pH范围为8,且酶活力在pH6.6-8.6范围内比较稳定,最适温度为55℃,酶活力在28℃下稳定,但经50℃–75℃处理30 min,95%的酶活力丧失,最适NaCl浓度50 mmol/L,金属离子Zn~(2+), Co~(2+)和Cu~(2+)几乎完全抑制酶的活性。动力学参数测定结果表明,AJ5-913菌株的κ-卡拉胶酶水解κ-卡拉胶符合米氏动力学方程,采用双倒数法作图法求得其米氏常数Km值为9.8±0.2 mg/mL。AJ5-913菌株的κ-卡拉胶酶专门水解κ-卡拉胶,对τ-和λ-卡拉胶和琼脂糖没有水解作用。利用AJ5-913菌株所产的κ-卡拉胶酶对κ-卡拉胶进行酶解制备κ-卡拉胶寡糖,通过电喷雾离子化飞行时间质谱(ESI-TOF-MS)和13C-NMR分析该酶的水解产物,确定该κ-卡拉胶酶专门水解κ-卡拉胶3,6-内醚-D-半乳糖残基和4-硫酸基-D-半乳糖之间的β-1,4糖苷键,产生3,6-内醚-D-半乳糖作为非还原端,D-半乳糖作为还原端的κ-新卡拉寡糖,主要产物是κ-新卡拉二糖硫酸盐、κ-新卡拉四糖硫酸盐、κ-新卡拉六糖硫酸盐、κ-新卡拉八糖硫酸盐和κ-新卡拉十糖硫酸盐,与已报道细菌的κ-卡拉胶酶的酶解产物有所不同。寡糖的抗病毒活性实验显示,3.12μg/mL-200μg/mL的κ-新卡拉寡糖对单纯疱疹病毒1型(HSV-1)的吸附有抑制作用,并且呈现明显的量效关系,表明κ-新卡拉寡糖可干扰HSV-1毒株向Vero细胞的吸附。
This paper aims at screening aκ-carrageenase-producing bacterium with high enzyme activity, optimizing its culture conditions and medium components, mutagenizing the bacterium to obtain the mutant with higher activity, purifying theκ-carrageenase from the mutant cultural supernatant, studying the enzymatic properties, preparingκ-carrageenan-derived oligosaccharides fromκ-carrageenan using the enzyme, analyzing the composition and structure of the enzyme hydrolyzed products, providing the theoretical and technological supports for commercial production ofκ-carrageenase andκ-carrageenan oligosaccharides. By enrichment culture technique aκ-carrageenan-degrading bacterium AJ5, capable of utilizingκ-carrageenan as sole source of carbon and energy, was isolated from the intestine of holothurian Apostichopus japonicus. The strain was identified as the genus Pseudoalteromonas sp. according to its morphological and physiological characterization and 16S rRNA gene analysis. It was found that the strain had different physiological characteristics compared with the only one bacterium, P. carrageenovora, in this genus. The culture conditions and medium components for the bacterium have been standardized for the maximal productivity of the extracellularκ-carrageenase using the single factor and orthogonal tests. The optimal culture conditions was found as following:75 mL medium in 250 mL Erlenmeyer flask, shaking speed of 150 r/min, inoculum volume 7%, pH8.0 and temperature 28°C. The optimal medium components were observed as the following:κ-carrageenan 1 g/L, beef extract 2 g/L, NaCl20 g/L, K_2HPO_4·3H_2O 1 g/L, MgSO_4·7H_2O 0.5 g/L, MnCl_2·4H_2O 0.2 g/L, FePO_4·4H_2O 0.01 g/L. By using the complex mutagenesis of UV irradiation and Ethyl Methanesulphonate (EMS) treatment, the mutant Pseudoalteromonas sp.AJ5-913 withκ-carrageenase activity of 6.788 U/mL was obtained from Pseudoalteromonas sp.AJ5, which was 2.9-fold higher than that of the parent culture. An extracellularκ-carrageenase was purified from Pseudoalteromonas sp.AJ5-913 cultural supernatant by ammonium sulfate fractionation, gel filtration chromatography (Sephadex G-200) and cation-exchange chromatography (CM-cellulose 52). The purified enzyme yielded a single band on SDS-PAGE with the molecular mass of 35 kDa. The sequence of the 20 amino acids at the N-terminal of the enzyme was N-P-T-C-H-I-A-K-P-G-E-T-T-I-L-Q-E-C-R-S. Compared with known N-terminal amino acid residues ofκ-carrageenases, noκ-carrageenase with the same corresponding N-terminal amino acid sequence was observed, indicating that this protein might be a novelκ-carrageenase. The pI ofκ-carrageenase was 8.5 on isoelectric focusing. The optimum pH for the enzyme was 8.0 and its activity was stable in the pH range of 6.6–8.6. The optimum temperature was 55°C and the enzyme was stable at 28°C, but 95% of the activity was lost at 50°C-75°C for 30 min. The activity of the enzyme was optimum at the presence of 50 mmol/L NaCl. The enzyme activity was almost completely inhibited by Co~(2+), Cu~(2+) and Zn~(2+) at 1 mmol/L. Thisκ-carrageenase showed Michaelis-type kinetics when hydrolyzing κ-carrageenan, as calculated from Lineweaver plot, the apparent Km value was 9.8±0.2 mg/mL. The enzyme specifically hydrolyzedκ-carrageenan.τ- andλ-carrageenans and agarose were not hydrolyzed by thisκ-carrageenase. The composition and structure of main enzyme hydrolyzed products examined by ESI-TOF-MS and 13C-NMR wereκ-neocarrabiose, -tetraose, -hexaose, -octaose, and -decaose sulfates with 3-linkedβ-D-galactopyranose 4-sulfate as the reducing end, indicating theκ-carrageenase from Pseudoalteromonas sp. AJ5-913 specifically hydrolyzed theβ-1, 4 glycosidic linkage between 3,6-anhydro-D-galactose and D-galactose. The main enzyme hydrolyzed products of this enzyme were different from those ofκ-carrageenases from other bacterial strains. The anti-HSV-1 activities ofκ-neocarraoligosaccharides were determined.κ-Neocarraoligosaccharides (3.12-200μg/mL) could interfere absorption of HSV-1 to Vero cells and there was obvious relationship between the concentrations and the effects ofκ-neocarraoligosaccharides.
引文
[1] Mc Hugh D J. A guide to seaweed industry. In: FAO (ed) FAO fisheries technical paper no 441. FAO, Rome, Italy, 2003
    [2]宁发子,何新益,殷七荣,等.卡拉胶的特性与食品应用.食品科技,2002,(3):36-38
    [3] Van de Velde F, Knusten S H, Usov A I, et al. 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci. Technol., 2002, 13:73-92
    [4]徐强,管华诗.卡拉胶研究的发展及现状.青岛海洋大学学报(海洋药物专辑),1995: 117-124
    [5] Paoletti S, Delben F, Cesaro A,et al. Conformational transition ofκ-.carrageenan in aqueous solutions.Macromolecules,1985,18: 1834-1841
    [6] Therkelsen G H. Carrageenan. in: Whistler R L, BeMiller J N (eds). Industrial gums: polysaccharides and their derivatives. San Diego, CA: Academic Press, 1993,145-180
    [7]纪明侯.海藻化学.科学出版社,1997
    [8]金骏,林美娇.海藻利用与加工.北京:科学出版社,1993
    [9]孟凡玲,罗亮,宁辉,等.κ-卡拉胶研究进展.高分子通报,2003,5:49-56
    [10]隋战鹰.卡拉胶在食品工业中的应用.沈阳师范学院学报,2001,19(1):54-57
    [11] Malfait T, Claewelaert F V. Preparative and analytical separation of oligosaccharides fromκ-carrageenan. J. Chromatogr., 1990, 504: 369-380.
    [12] Rochas C, Heyraud A. Acid and enzymic hydrolysis ofκappa carrageenan. Polym. Bull., 1981, 5: 81-86.
    [13] Knutsen H S, Grasdalen H. Analysis of carrageenans by enzymic degradation, gel filtration and 1H NMR spectroscopy. Carbohydr. Polym., 1992,19: 199-210
    [14] Knutsen H S, Sletmoen M, Kristenden T, et al. A rapid method for the separation and analysis of carrageenan oligosaccharides released by iota- and kappa-carrageenase. Carbohydr. Res., 2001, 331: 101-106
    [15] Ekeberg D, Knutsen H S, Sletmoen M. Negative-ion electrospray ionization-mass spectrometry (ESI-MS) as a tool for analyzing structural heterogeneity in kappa-carrageenan oligosaccharides. Carbohydr. Res., 2001, 334: 49-59
    [16] Yu G L, Guan H S, Ioanoviciu A S, et al. Structural studies onκ-carrageenan derived oligosaccharides. Carbohydr. Res., 2002, 337: 433-440
    [17] Fukuyama Y, Ciancia M, Nonami H, et al. Matrix-assisted ultraviolet laser-desorption ionization andelectrospray-ionization time-of-light mass spectrometry of sulfated neocarrabiose oligosaccharides. Carbohydr. Res., 2002, 337: 1553-1562
    [18] Falshaw R, Furneaus R H. Structural analysis of carrageenans from the tetrasporic stages of the red algae Gigartina lanceata and Gigartina chapmanii. Carbohydr. Res., 1998, 3-4: 325-331
    [19] Turquois T, Acquistapace S, Arce Vera F, et al. Composition of carrageenan blends inferred from 13C-NMR and infrared spectroscopic analysis. Carbohydr. Polym., 1996, 31:269-278
    [20]霍光华,李来生,高荫榆.波谱在多糖结构分析上的应用.生命的化学,2002,22(2):195-196
    [21] Tojo E, Prado J. Chemical composition of carrageenan blends determined by IR spectroscopy combined with a PLS multivariate calibration method. Carbohydr. Res., 2003, 338:1309-1312
    [22] Bazin H G, Wolff M W. Linhardt R J. Exoglycosidase based analysis of fluorescently labeled oligosaccharides by electrospray ionization mass spectrometry and capillary electrophoresis. Biotechnology Techniques, 1999, 13:797-801
    [23] Amimi A, Mouradi A, Givernaud T, et al. Structural analysis of Gigartina pistillata carrageenans (Gigartinaceae, Rhodophyta). Carbohydr. Res., 2001, 333: 271-279
    [24] Usov A I. Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloids, 1998, 12:301-308
    [25] Tojo E, Prado J. A simple 1H-NMR method for the quantification of carrageenans in blends. Carbohydr. Polym., 2003, 53: 25-329
    [26] Van de Velde F, Pereira L, Rollema H S. The revised NMR chemical shift data of carrageenans. Carbohydr. Res., 2004, 339:2309-2313.
    [27] Yuan H, Song J. Preparation, structural characterization and in vitro antitumor activity of kappa-carrageenan oligosaccharide fraction from Kappaphycus striatum. J. Appl. Phycol., 2005, 17: 7–13
    [28] Weigl J, Yaphe W. The enzymatic hydrolysis of carrageenan by Pseudomonas carrageenovora: Purification of aκ-carrageenase. Can. J. Microbiol., 1966, 2: 939-947
    [29] Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol., 1995, 45: 755–761
    [30] Khambhty Y, Mody K, Jha B, et al. Statistical optimization of medium components forκ-carrageenase production by Pseudomonas elongata. Enzyme Microbiol. Tech., 2007, 40: 813–822
    [31] Sarwar G, Sakata T, Kakimoto D. The production and characteristics of carrageenase from marine Cytophaga. Bull. Jap. Soc. Sci. Fish., 1983, 49: 1689-1694
    [32] Araki T, Higashimoto Y. Morishita T. Purification and characterization of kappa- carrageenase from a marine bacterium, Vibrio sp. CA-1004. Fish. Sci., 1999, 65: 937-942
    [33] Barbeyron T, Michel G, Potin P, et al. iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J. Biol. Chem., 2000, 275:35499–35505
    [34] Barbeyron T, L’Haridon S, Corre E,et al. Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga]uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol., 2001, 51: 85–997
    [35] Erasmus J H, Cook P A, Coyne V E. The role of bacteria in the digestion of seaweed by the abalone Haliotis midae. Aquaculture, 1997, 155: 381-390
    [36] Barbeyron T, Gerard A, Potin P, et al. The kappa-carrageenase of the marine bacterium Cytophaga drobachiensis. Structural and phylogenetic relationships within family-16 glycoside hydrolases. Mol. Biol. Evol., 1998, 15(5):528-537
    [37] Guibet M, Colin S, Barbeyron T, et al. Degradation of lambda-carrageenan by Pseudoalteromonas carrageenovora lambda-carrageenase: a new family of glycoside hydrolases unrelated to kappa- and iota-carrageenases. Biochem. J., 2007, 404(1): 105-114
    [38] McLean M W, Williamson F B. kappa-Carrageenase from Pseudomonas carrageenovora. Eur. J. Biochem., 1979. 93(3):553-558
    [39] ?stgaard K, Wangen B F, Knutsen S H, et al. Large-scale production and purification ofκ-carrageenase from Pseudomonas carrageenovora for applications in seaweed biotechnology. Enzyme Microbiol. Tech., 1993, 15:326-333
    [40] Dyrset N, Lystad K Q, Levine D W. Development of a fermentation process for production of a kappa-carrageenase from Pseudomonas carrageenovora. Enzyme Microbiol. Tech., 1997, 20(6): 418-423
    [41] Sarwar G, Oda H, Sakata T. Potentiality of artificial sea water salts for the production of carrageenase by a marine Cytophaga sp. Microbiol. Immunol., 1985, 29(5): 05-411
    [42] Sarwar G, Matayoshi S, Oda H. Purification of aκ-carrageenase from marine Cytophaga species. Microbiol. Immunol., 1987, 31: 869-877
    [43] Potin P, Sanseau A, Le Gall Y, et al. Purification and characterization of a newκ-carrageenase from a marine Cytophaga-like bacterium. Eur. J. Biochem., 1991, 201: 241-247
    [44]牟海津.酶法制备新卡拉四糖六糖的化学及生物学研究,2003,中国海洋大学博士论文。
    [45] Barbeyron T, Henrissat B, Kloareg B. The gene encoding the kappa-carrageenase of Alteromonas carrageenovora is related to beta -1,3-1,4-glucanases. Gene, 1994, 139(1): 105-109
    [46] Potin P, Richard C, Barbeyron T, et al. Processing and hydrolytic mechanism of the cgkA-encodedκ-carrageenase of Alteromonas carrageenovora. Eur. J. Biochem., 1995, 8: 971-975
    [47] Michel G, Barbeyron T. Expression, purification, crystallization and preliminary x-ray analysis of the kappa-carrageenase from Pseudoalteromonas carrageenovora. Acta Crystallogr. D Biol. Crystallogr., 1999, 55 (4): 918-920
    [48] Michel G, Flament D, Barbeyron T, et al. Expression, purification, crystallization and preliminary X-ray analysis of the iota-carrageenase from Alteromonas fortis. Acta Crystallogr. D, 2000, 56: 766-768
    [49] Michel G, Chantalat L, Duee E, et al. Theκ-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of clan-B glycoside hydrolases.Structure, 2001, 9: 513-525.
    [50] Michel G, Helbert W, Kahn R, et al. The structural bases of the processive degradation of iota-carrageenan, a main cell wall polysaccharide of red algae. J. Mol. Biol., 2003, 334: 421–433
    [51] Greer C W, Yaphe W. Purification and properties ofι-carrageenase from a marine bacterium. Can. J. Microbiol., 1984, 30: 1500-1506
    [52] Knutsen S H. Chromatographic separation and high field proton NMR ofκappa-carrageenase treated carrageenans. Oebalia. Taranto; 1991, 17 (Suppl. 2): 387-399
    [53] Greer C W, Rochas C, Yaphe W. Iota-carrageenan oligosaccharides as model compounds for structural analysis of iota-carrageenan by 13C-NMR spectroscopy. Bot. Mar., 1985, 28(1): 1-8
    [54] Vreeland V, Zablackis E. Electrophoretic analysis of carrageenan substructure. Proceedings of the 2nd RP [Republic of the Philippines]-USA Phycology Symposium/Workshop. Los Banos, Laguna (Philippines): PCAMRD, 1993, 119
    [55] Gross W. Preparation of protoplasts from the carrageenophyte Gigartina corymbifera (Kuetz.) J. Ag. (Rhodophyta). J. Microbiol. Meth., 1990, 12(3-4): 217-223
    [56] Le Gall Y, Brown S, Marie D. Production of protoplasts from the red alga Chondrus crispus . Application to the quantification of nuclear DNA and to the evaluation of GC%. Océanis. Série de documents océanographiques. 1991, 18(1): 11-17
    [57] Zablackis E, Vreeland V, Kloareg B. Isolation of protopasts from Kappaphycus alvarezii var. tambalang (Rhodophyta) and secretion of iota-carrageenan fragments by cultured cells. J. Exp. Bot., 1993, 44(266): 1515-1522
    [58] Fleurence J, Massiani L, Guyader O, et al. Use of enzymatic cell wall degradation for improvement of protein extraction from Chondrus crispus, Gracilaria verrucosa and Palmaria palmate, 1995, 7(4):393-397
    [59] Fournet I, Ar Gall E, Deslandes E, et al. In situ measurements of cell wall components in the red alga Solieria chordalis (Solieriaceae, Rhodophyta) by FTIR microspectrometry. Bot. Mar., 1997, 40(1): 45-48
    [60] Mou H J, Jiang X L, Guan H S. Aκ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J. Appl. Phycol., 2003, 15: 297–303
    [61] Gerber P, Dutcher J, Adams E, et al. Protective effect of seaweed extracts for chicken embryos infected with influenza B or mumps virus. Proc. Soc. exp. Biol. Med., 1958, 99: 590–593
    [62] Nakashima H, Kido Y, Kobayashi N, et al. Purification and characterization of an avian myeloblastosis and human immunodeficiency virus reverse transcriptase inhibitor, sulfated polysaccharides extracted from sea algae. Antimicrob. Agents Ch., 1987, 31: 1524-1528
    [63] Yamada T, Ogamo A, Saito T, et al. Preparation of O-acylated low-molecular-weight carrageenans with potent anti-HIV activity and low anticoagulant effect. Carbohydr. Polym., 2000, 41: 115-120
    [64] Carlucci M J, Pujol C A, Ciancia M, et al. Antiherpetic and anticoagulant properties ofcarrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity. Int. J. Biol. Macromol., 1997, 20: 97-105
    [65] Schaeffer D J, Krylov V S. Anti-HIV activity of extracts and compounds from algae and cynobacteria. Ecotox. Environ. Safe., 2000, 45: 208-227
    [66] Noda H. Antitumor activity of marine algae. Int Seaweed Symp, 1990, 13: 577-584
    [67] Zhang L X,Jiang J M, Jia Y F. Effects ofκ-selenocarrageenan on the production of tumor necrosis factor (TNF).J. Chinese Pharm.Sci., 1994, 3(1): 37-42
    [68] Hoffman R, Burns W W, Paper D H. Selective-inhibition of cell-proliferation and DNA-synthesis by the polysulfated carbohydrate iota-carrageenan. Cancer Chem. Pharmacol., 1995, 36: 325-334
    [69]师然新,徐祖洪,李智恩.降解的角叉菜多糖的抗肿瘤活性.海洋与湖沼,2000,31:653-656
    [70] Hu X K, Jiang X L, Aubree E, et al. Preparation and in vivo anti-tumor activity of kappa-carrageenan oligosaccharides. Pharm. Biol., 2006, 44: 646–650
    [71]袁华茂.卡拉胶寡糖与衍生物的制备及生物活性研究,2005,中国科学院海洋研究所博士论文。
    [72] Zhang Q B , Yu P Z, Li Z E, et al. Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis, J. Appl. Phycol., 2003, 15:305-310
    [73] Zhang Q B, Li N, Liu X G, et al. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr. Res., 2004, 339:105-111
    [74]马同江.高膳食纤维功能食品.中国海洋药物,1992,3:39-42
    [75] Anderson W, Duncan J G C. The anticoagulant activity of carrageenan. J. Pharm. Pharmacol., 1965, 17: 647-654
    [76] Hawkins W W, Leonard V G. The antithrombic activity of carrageenan in human blood. Can. J. Biochem. Physiol., 1963, 41: 1325-1327
    [77] Guven K C, Ozsoy Y, Ulutin O N. Anticoagulant, fibrinolytic and antiaggregant activity of carrageenans and alginic acid. Bot. Mar., 1991, 34(5): 429-432
    [78]胡文祥,王来曦,恽榴红.多糖及其衍生物的医药研究.科学(中译本),1994,3:4-8
    [79]梁勇,李涛.一种潜在的药用多糖-卡拉胶.山东医药工业,1998,17:18-19
    [1]Yamada T, Ogamo A, Saito T, et al. Preparation and anti-HIV activity of low-molecular-weight carrageenans and their sulfated derivatives. Carbohydr. Polym., 1997, 32: 51-55
    [2] Yamada T, Ogamo A, Saito T, et al. Preparation of O-acylated low-molecular-weight carrageenans with potent anti-HIV activity and low anticoagulant effect. Carbohydr. Polym., 2000, 41: 115-120
    [3] Mori T. The enzyme catalyzing the decomposition of mucilage of chondrus ocellatus.Ⅲ. Purification, unit determination, and distribution of enzyme. J. Agr. Chem. Soc. Jpn, 1943, 19: 740-742
    [4] Yaphe W, Baxter B. The enzymatic hydrolysis of carrageenin. Appl. Microbiol., 1955, 3: 380–383
    [5] Weigl J, Yaphe W. The enzymic hydrolysis of carrageenan by Pseudomonas carrageenovora: purification of aκappa-carrageenase. Can. J. Microbiol., 1966, 12: 939–947
    [6] Bellion C, Hamer G, Yaphe W. The degradation of Eucheuma spinosum and Eucheuma cottonii carrageenans byι-carrageenases andκ-carrageenases from marine bacteria. Can. J. Microbiol., 1982, 28: 874–880
    [7] Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol., 1995, 45: 755–761
    [8] Araki T., Higashimoto Y. Morishita T. Purification and characterization of kappa- carrageenase from a marine bacterium, Vibrio sp. CA-1004. Fish. Sci., 1999, 65: 937-942
    [9] Barbeyron T, Michel G, Potin P. et al. iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J. Biol. Chem., 2000, 275: 35499–35505
    [10] Khambhty Y, Mody K, Jha B, et al. Statistical optimization of medium components forκ-carrageenase production by Pseudomonas elongata. Enzyme Microb. Tech., 2007, 40: 813–822
    [11] Sarwar G, Sakata T, Kakimoto D. The production and characteristics of carrageenase from marine Cytophaga. Bull. Jap. Soc. Sci. Fish., 1983, 49: 1689-1694
    [12] Sarwar G, Matayoshi S, Oda H. Purification of aκ-carrageenase from marine Cytophaga species. Microbiol. Immunol. 1987, 31: 869-877
    [13] Holt J G, Krieg N R, Sneath P H A, Staley J T, Williams S T(editors). Bergey’s Manual of Determinative Bacteriology, 9th edition. Battimore: Williams & Wilkins, 1994
    [14]东秀珠,蔡妙英.常见细菌系统鉴定手册,科学出版社,2001
    [15] Lane D J. 16S/23S rRNA sequencing. In: Stackebrandt, E, Goodfellow, M. Nucleic acid Techniques in Bacterial Systematics. New York: John Wiley & Sons, 1991
    [16]Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. J. Mol. Biol., 1990, 215: 403–410
    [17] Felsenstein J. PHYLIP (Phylogenetic Inference Package), Version 3.75. Distributed by author, Department of Genetics, Univerity of Washinton, Seattle, WA. 1995
    [18] Kimura M. A simple method for estimating evolutionary rate of base substitution through comparative studies on nucleotide sequence. J. Mol. Evol., 1980, 2: 87-90
    [19] Potin P, Sanseau A, Le Gall Y, et al. Purification and characterization of a new kappa-carrageenase from a marine Cytophaga-like bacterium. Eur. J. Biochem., 1991, 201: 241–247
    [20]牟海津,江晓路,蒋萱,等.卡拉胶降解菌M-2的筛选与产酶性质.中国水产科学,2002,9:251-254
    [21] Erasmus J H, Cook P A, Coyne V E. The role of bacteria in the digestion of seaweed by the abalone Haliotis midae. Aquaculture, 1997, 155: 377-386
    [22] Alekseeva S A, Bakunina I Y, Nedashkovskaya O I, et al. Introcelluar alginolytic enzymes of the marine bacterium Pseudoalteromonas citrea KMM3297. Biochemistry (Moscow), 2004, 69: 262-269
    [23] Sakai T, Ishizuka K, Kato I. Isolation and characterization of a fucoidan-degrading marine bacterium. Mar. Biotechnol., 2003, 5: 409-416
    [24] Akagawa-Matsushita, M., Matsuo, M., Koga, Y. et al. Alteromonas atlantica sp. nov. and Alteromonas carrageenovora sp. nov., bacteria that compose algal polysaccharides. Int. J. Syst. Bacteriol., 1992, 42: 621-627
    [25] Romanenko L A, Zhukova N V, Lysenko, A M, et al. Assignment of‘Alteromonas marinoglutinosa’NCIMB 1770 to Pseudoalteromonas mariniglutinosa sp. nov., nom. rev., comb. nov. Int. J. Syst. Evol. Microbiol., 2003, 53: 1105–1109
    [26] Romanenko L A, Zhukova N V, Rohde M, et al. Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium. Int. J. Syst. Evol. Microbiol., 2003, 53: 125–131
    [27] Ohta Y, Hatada Y. A novel enzyme,λ-carrageenase, isolated from a deep-sea bacterium. J. Biochem. (Tokyo), 2006, 140: 175-181
    [28] Vera J, Alvarez R, Murano E, et al. Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Appl. Environ. Microbiol., 1998, 64: 4378-4383
    [29] Ivanova E P, Sawabe T, Alexeeva Y V, et al. Pseudoalteromonas issachenkonii sp. nov., a bacterium that degrades the thallus of brown alga Fucus evanescens. Int. J. Syst. Evol.Microbiol., 2002b, 52: 229–232
    [30] Gauthier M J, Breittmayer V A. A new antibiotic-producing bacterium from seawater: Alteromonas aurantia sp. nov.. Int. J. Syst. Bacteriol., 1979, 29: 366-372
    [31] Gauthier M J, Flatau G N. Antibacterial activity of marine violet-pigmented Alteromonas with special reference to the production of brominated compounds. Can. J. Microbiol., 1976, 22: 1612-1619
    [32] Gauthier M J. Alteromonas rubra sp. nov., a new marine antibiotic-producing bacterium. Int. J. Syst. Bacteriol., 1979, 26: 459-466
    [33] Ivanova E P, Kiprianova E A, Mikhailov V V, et al. Phenotypic diversity of Pseudoalteromonas citrea from different marine habitats and emendation of the description.Int. J. Syst. Bacteriol., 1998, 48: 247-256
    [34] Gauthier M J. Alteromonas citrea, a new Gram-negative, yellow-pigmented species from seawater. Int. J. Syst. Bacteriol., 1977, 27: 349-354
    [35] Yoshikawa K, Takadera T, Adachi K, et al. Koromicin, a novel antibiotic specifically active against marine Gram-negative bacteria, produced by amarine bacterium. J. Antibiot., 1997, 50: 949-953
    [36] Lovejoy C, Bowman J P, Hallegrae? G M. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium and Heterosigma. Appl. Environ. Microbiol. 1998, 64: 2806-2813
    [37] Simidu U, Kita-Tsukamoto K, Yasumoto T, et al. Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int. J. Syst. Bacteriol., 1990, 40: 331-336.
    [38] Szewzyk U, Holmstr?m C, Wrangstadh M, et al. Relevance of the exopolysaccharide of marine Pseudomonas sp. strain S9 for attachment of Ciona intestinalis larvae. Mar. Ecol. Prog.Ser., 1991, 75: 259-265
    [39] Weiner R M, Segall A M, Colwell, R R. Characterization of a marine bacterium associated with Crassostrea virginica (the eastern oyster). Appl. Environ. Microbiol., 1985, 49: 83-90
    [40] Maeda M, Nogami K, Kanematsu M., et al. The concept of biological control methods in aquaculture. Hydrobiologia, 1997, 358: 285-290
    [41] Uchida M, Nakata K, Maeda M. Conversion of Ulva fronds to a hatchery diet for Artemia nauplii utilizing the degrading and attaching abilities of Pseudoalteromonas espejiana. J. Appl. Phycol., 1997, 9: 541-549
    [42] Leitz T. Wagner R T. The marine bacterium Alteromonas espejiana induces metamorphosis of the hydroid Hydractinia echinata. Mar. Biol., 1993, 115: 173-178
    [43] Holmstr?m, C, James S, Neilan, B A, et al. Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int. J. Syst. Bacteriol., 1998, 48: 1205-1212
    [44] Enger O, Nygaard H, Solberg M, et al. Characterization of Alteromonas denitrificans sp. nov.. Int. J. Syst. Bacteriol., 1987, 37: 416-421
    [45] Ivanova E P, Kiprianova E A, Mikhailov V V, et al. Characterization and identification of marine Alteromonas nigrifaciens strains and emendation of the description. Int. J. Syst. Bacteriol., 1996, 46: 223-228
    [1] Khambhaty Y, Mody K, Jha B, et al. Statistical optimization of medium components forκ-carrageenase production by Pseudomonas elongata. Enzyme Microbl. Tech., 2007, 40: 813-822
    [2]牟海津.酶法制备新卡拉四糖六糖的化学及生物学研究,2003,中国海洋大学博士论文。
    [3] Hu X K, Jiang X L, Hwang H M. Purification and characterization of an alginate lyase from marine bacterium Vibrio sp. mutant Strain 510-64. Curr. Microbiol., 2006, 53: 135–140
    [4] Sarwar G, Matayoshi S, Oda H. Purification of aκappa-carrageenase from marine Cytophaga species. Microbiol. Immuno., 1987, 31: 869-877
    [5] Potin P, Sanseau A, LeGall Y, et al. Purification and characterization of a newκappa-carrageenase from a marine Cytophaga-like bacterium. Eur. J. Biochem., 1991, 201: 241-247
    [6]牟海津,江晓路,蒋萱,等.卡拉胶降解菌M-2的筛选与产酶性质.中国水产科学,2002,9:251-254
    [7] Yaphe W, Baxter B. The enzymatic hydrolysis of carrageenin. Appl. Microbiol. 1955, 3: 380–383
    [8] Saini A, Slabyi B M. Enzymic hydrolysis of sub (k) carrageenan Fifteenth Annual Conference: Tropical and Subtropical Fisheries Technological Conference of the Americas, in second Joint Meeting with Atlantic Fisheries Technology Conference, Orlando, Florida, 1991,532
    [9] ?stgaard K, Wangen BF, Knutsen SH, et al. Large-scale production and purification ofκappa-carrageenase from Pseudomonas carrageenovora for applications in seaweed biotechnology. Enzyme Microb. Tech., 1993, 15: 326-333
    [10] Barbeyron T, L’Haridon S, Corre E, et al. Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov.. Int. J. Syst. Evol. Microbiol, 2001, 51: 985-997
    [11] McLean M W, Williamson F B.κ-Carrageenase from Pseudomonas carrageenovora. Eur. J. Biochem., 1979, 93: 553-558
    [12] Sarwar G, Oda H, Sakata T, et al. Potentiality of artificial sea water salts for the production of carrageenase by a marine Cytophaga sp.. Microbiol. Immuno., 1985, 29: 405 - 411
    [13]施巧琴,吴松刚.工业微生物育种学.北京:科学出版社,1999
    [1] McLean M W, Williamson F B.κ-Carrageenase from Pseudomonas carrageenovora. Eur. J. Biochem., 1979, 93: 553-558
    [2] Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J.Syst. Bacteriol., 1995, 45: 755–761
    [3] Guibet M, Colin S, Barbeyron T, et al. Degradation of lambda-carrageenan by Pseudoalteromonas carrageenovora lambda-carrageenase: a new family of glycoside hydrolases unrelated to kappa- and iota-carrageenases. Biochem. J., 2007, 404(1): 105-114
    [4] Sarwar G, Matayoshi S, Oda H. Purification of a kappa-carrageenase from marine Cytophaga species. Microbiol. Immuno., 1987, 31: 869–877
    [5] Araki T, Higashitomo Y, Morishita T. Purification and characterization ofκ-carrageenase from a marine bacterium Vibrio sp.CA-1004. Fisheries Sci., 1999, 65: 937–942
    [6] Potin P, Sanseau A, Le Gall Y, et al. Purification and characterization of a new kappa-carrageenase from a marine Cytophaga-like bacterium. Eur. J. Biochem., 2001, 201: 241–247
    [7] Barbeyron T, L’Haridon S, Corre E, et al. Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol., 2001, 51: 985–997
    [8] Barbeyron T, Michel G, Potin P, et al. iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J. Biol. Chem., 2000, 275: 35499–35505
    [9] Khambhty Y, Mody K, Jha B, et al. Statistical optimization of medium components forκ-carrageenase production by Pseudomonas elongata. Enzyme Microbl. Tech., 2007, 40: 813–822
    [10] Vreeland V, Zablackis E. Electrophoretic analysis of carrageenan substructure. Proceedings of the 2nd RP [Republic of the Philippines]-USA Phycology Symposium/Workshop. Los Banos, Laguna (Philippines): PCAMRD, 1993, 119
    [11] Zablackis E, Vreeland V, Kloareg B. Isolation of protoplasts from Kappaphycus alvarezii var. tambalang (Rhodophyta) and secretion of iota -carrageenan fragments by cultured cells. J. Exp. Bot., 1993, 44(266):1515-1522
    [12]牟海津.酶法制备新卡拉四糖六糖的化学及生物学研究,2003,中国海洋大学博士论文。
    [13] Mou H J, Jiang X L, Guan H S. Aκ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J. Appl. Phycol., 2003, 15: 297–303
    [14] Hu X K, Jiang X L, Aubree E, et al. Preparation and in vivo anti-tumor activity ofkappa-carrageenan oligosaccharides. Pharm. Biol., 2006, 44: 646–650
    [15] Barbeyron T, Henrissat B, Kloareg B. The gene encoding the kappa-carrageenase of Alteromonas carrageenovora is related to beta-1,3-1,4-glucanases. Gene. 1994, 139(1): 105-109
    [16] Barbeyron T, Gerard A, Potin P, et al. The kappa-carrageenase of the marine bacterium Cytophaga drobachiensis. Structural and phylogenetic relationships within family-16 glycoside hydrolases. Mol. Biol. Evol. 1998. 15(5):528-537
    [17]牟海津,江晓路,蒋萱,等.卡拉胶降解菌M-2的筛选与产酶性质.中国水产科学,2002,9:251-254
    [1] Malfait T, Claewelaert F V. Preparative and analytical separation of oligosaccharides from carrageenan. J. Chromatogr., 1990, 504: 369-380
    [2] Rochas C, Heyraud A. Acid and enzymic hydrolysis of kappa carrageenan. Polym. Bull., 1981, 5: 81-86
    [3] Knutsen H S, Grasdalen H. Analysis of carrageenans by enzymic degradation, gel filtration and 1H NMR spectroscopy. Carbohydr. Polym., 1992, 19: 199-210
    [4] Knutsen H S, Sletmoen M, Kristenden T, et al. A rapid method for the separation and analysis of carrageenan oligosaccharides released by iota- and kappa-carrageenase. Carbohydr. Res., 2001, 331:101-106
    [5] Yu G L, Guan H S, Ioanoviciu A S, et al. Structural studies onκ-carrageenan derived oligosaccharides. Carbohydr. Res., 2002, 337: 433-440
    [6] Ekeberg D, Knutsen H S, Sletmoen M. Negative-ion electrospray ionization-mass spectrometry (ESI-MS) as a tool for analyzing structural heterogeneity in kappa-carrageenan oligosaccharides. Carbohydr. Res., 2001, 334: 49-59
    [7] Fukuyama Y, Ciancia M, Nonami H, et al. Matrix-assisted ultraviolet laser-desorption ionization and electrospray-ionization time-of-light mass spectrometry of sulfated neocarrabiose oligosaccharides. Carbohydr. Res., 2002, 337: 1553-1562
    [8] McLean M W, Williamson F B.κ-Carrageenase from Pseudomonas carrageenovora. Eur. J. Biochem., 1979, 93: 553-558
    [9] Potin P, Sanseau A, Le Gall Y, et al. Purification and characterization of a new kappa-carrageenase from a marine Cytophaga-like bacterium. Eur. J. Biochem., 2001, 201: 241–247
    [10] Barbeyron T, L’Haridon S, Corre E, et al. Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol., 2001, 51: 985–997
    [11] Rochas C, Rinaudo M, Vincendon M. Spectroscopy characterization and conformation of oligo kappa carrageenans. Int. J. Biol. Macromol., 1983, 5:111-115
    [12] Caram-Lelham N, Sunde?f L O, Anderson T. Preparative separation of oligosaccharides fromκ-carrageenan, sodium hyaluronate, and dextran by SuperdexTM 30 Prap grade. Carbohydr. Res., 1995, 273: 710-76
    [13] Yuan H, Song J. Preparation, structural characterization and in vitro antitumor activity of kappa-carrageenan oligosaccharide fraction from Kappaphycus striatum. J. Appl. Phycol., 2005, 17: 7–13
    [14] Araki T, Higashitomo Y, Morishita T. Purification and characterization ofκ-carrageenase from a marine bacterium Vibrio sp.CA-1004. Fish. Sci., 1999, 65: 937–942
    [15]于广利.系列硫酸寡糖的制备及其结构与序列分析,2004,中国海洋大学博士论文。
    [16] Mou H J, Jiang X L, Guan H S. Aκ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J. Appl. Phycol., 2003, 15: 297–303
    [17] Hu X K, Jiang X L, Aubree E, et al. Preparation and in vivo anti-tumor activity of kappa-carrageenan oligosaccharides. Pharm. Biol., 2006, 44: 646–650
    [18] Yamada T, Ogamo A, Saito T, et al. Preparation of O-acylated low-molecular-weight carrageenans with potent anti-HIV activity and lowanticoagulant effect. Carbohydr. Polym., 2000, 41: 115–120
    [19] Yamada T, Ogamo A, Saito T, et al. Preparation and anti-HIV activity of low-molecular-weight carrageenans and their sulfated derivatives. Carbohydr. Polym., 1997, 32: 51–55
    [20] Yuan H, Song J, Zhang W, et al. Antioxidant activity and cytoprotective effect ofκ-carrageenan oligosaccharides and their different derivatives. Bioorg. Med. Chem. Lett., 2006, 16: 1329–1334
    [21] Yuan H, Zhang W, Li X, et al. Preparation and in vitro antioxidant activity ofκ-carrageenan oligosaccharides and their oversulfated, acetylated, and hosphorylated derivatives. Carbohydr. Res., 2005, 340: 685–692
    [22] Yuan H, Song J, Li X, et al. Immunomodulation and antitumor activity of k-carrageenan oligosaccharides. 2006, Cancer Lett., 243: 228–234
    [1]闻玉梅.现代医学微生物学.上海:上海医科大学出版社,1999,1227-1244
    [2] Corey L, Spear P G. Infection with herpes simplex viruses (1) New Engl J Med., 1986. 314: 686-691
    [3] Alban S, Schauerte A, Franz G. Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure-activity relationships of new pullulan sulfates. Carbohydr. Polym., 2002,47: 267–276
    [4] Caceres P J, Carlucci M J, Damonte E B, et al. Carrageenans from chilean samples of Stenogramme interrupta (Phyllophoraceae): Structural analysis and biological activity.Phytochemistry, 2000, 53: 81–86
    [5] Carlucci M J, Pujol C A, Ciancia M, et al. Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity. Int. J. Biol. Macromol., 1997, 20: 97-105
    [6] Mou H J, Jiang X L, Guan H S. Aκ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J. Appl. Phycol., 2003, 15: 297–303
    [7] Hu X K, Jiang X L, Aubree E, et al. Preparation and in vivo anti-tumor activity of kappa-carrageenan oligosaccharides. Pharm. Biol., 2006, 44: 646–650
    [8] Duarte M E R., Noseda D G., Noseda M D, et al. Inhibitory effect of sulfated galactans from the marine alga Bostrychia montagnei on herpes simplex virus replication in vitro. Phytomedicine, 2001, 8(1): 53–58
    [9]傅传华.病毒学实用实验技术.济南:山东科学技术出版社,2001,61–63
    [10]黄祯祥.医学病毒学基础及实验技术.北京:北京科学技术出版,1990,661-693
    [11] Gonzalez M E., Alarcon B, Carrasco L. Polysaccharides as antiviral agents: antiviral activity of carrageenan. Antimicrob. Agents Chemother., 1987,31: 1388-1393
    [12] Nakashima H, Kido Y, Kobayashi N, et al. Purification and characterization of avian myeloblastosis and human immunodeficiency virus reverse transcriptase inhibitor, sulphated polysaccharides extracted from sea algae. Antimicrob. Agents Chemother., 1987, 31: 1524–1528
    [13] Neushul M. Antiviral carbohydrates from marine red algae. Hydrobiologia, 1990, 205: 99–104
    [14] Wang S C, Bligh S W A, Shi S S,et al. Structural features and anti-HIV-1 activity of novel polysaccharides from red algae Grateloupia longifolia and Grateloupia filicina. Int. J. Biol. Macromol., 2007, 41: 369–375
    [15] Biesert L, Suhartono H, Winkler I, et al. Inhibition of HIV and virus replication by polysulphated Polyxylan: HOE/BAY 946, a new antiviral compound. AIDS, 1988, 2: 449–457
    [16] Moelling K, Schulze T, Divinger H. Inhibition of human immuno-deficiency virus type 1 RNase H by sulfated polyanions. J. Virol., 1989, 63: 5489–5491
    [17] Hatch M, Ehresmann D, Deig E, et al. Further studies on the chemical compostion and an initial in vivo evaluation of antiviral material in extracts of macroscopic algae. J. Phycol. Suppl. 1977, 13: 28–35
    [18] Yamada T, Ogamo A, Saito T, et al. Preparation and anti-HIV activity of low-molecular-weight carrageenans and their sulfated derivatives. Carbohydr. Polym., 1997, 32: 51-55
    [19] Yamada T, Ogamo A, Saito T, et al. Preparation of O-acylated low-molecular-weight carrageenans with potent anti-HIV activity and low anticoagulant effect. Carbohydr. Polym., 2000, 41: 115-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700