用户名: 密码: 验证码:
水性超薄型钢结构防火涂料的制备及防火作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶剂型超薄钢结构防火涂料含有大量的挥发性有机物(VOC),其应用越来越受到限制,甚至被发达国家禁用。水性超薄型钢结构防火涂料以水性聚合物作为成膜物质,减少了VOC的排放量,降低了涂料在生产、施工、应用等环节中对人体的危害和对环境的污染,符合节能减排、绿色环保的发展趋势,是防火涂料研究的重点。本论文针对水性超薄型钢结构防火涂料的防火性能差、膨胀倍率低、膨胀层结构强度低、耐水性差等问题进行了深入研究,并对成膜物质(醋叔聚合物)的热分解过程和成炭机理、聚磷酸铵对醋叔聚合物热分解过程的影响进行了讨论;探索性地研究了纳米二氧化锆及水性含磷聚合物在防火涂料中地应用。主要研究工作如下:
     (1)从热分解特性、动态流变性能和复合黏度的角度研究了成膜物质对防火涂料膨胀防火性能的影响。研究结果表明:纯丙和苯丙聚合物熔体的储存模量(G')大于损耗模量(G"),以弹性流动为主,复合黏度高(>1000Pa·s);醋叔聚合物熔体的G"大于G',以粘性流动为主,复合黏度低(33Pa·s)。具有热稳定性好、成炭能力强、复合黏度低、粘性流体特性的聚合物适合作为防火涂料的成膜物质,有利于涂层的膨胀和防火性能的提高。
     (2)以醋叔聚合物(VAc-VeoVa)作为成膜物质,聚磷酸铵/季戊四醇/三聚氰胺/可膨胀石墨(APP/PER/MEL/EG)作为膨胀阻燃体系(IFR),研究了IFR及其与VAc-VeoVa的配比对防火涂料性能的影响。正交实验直观分析结果表明,IFR中各组分对防火涂料性能的影响顺序依次为:APP>EG>PER>MEL,最佳配比为APP:PER:MEL:EG=22:8:8:4.5。当VAc-VeoVa用量为30%,IFR用量为40%时,防火涂层的防火性能最佳(燃烧30min后钢板背温为262℃)。
     (3)研究了无机填料的组成、颗粒大小及形态等因素对防火涂料的影响。TG、毛细管流变测试、防火性能测试等研究结果表明:以TiO_2/SAp/HNTs (8/1/1)作为无机填料时,防火涂料的防火性能优异(3327s),膨胀倍率较高(28.14),膨胀层结构好、强度高。无机填料通过限制成膜聚合物分子链的松弛和旋转,以及降低APP对PER和VAc-VeoVa的催化脱水效率来影响防火涂料的膨胀倍率与防火性能。同时在黏度较高时,无机填料难以迁移到膨胀层表面聚集形成无机隔热层,导致防火涂料的防火性能下降。通过配方优化,自制水性防火涂料的性能已超过国外知名品牌。
     (4)研究了纳米二氧化锆(nano-ZrO_2)在防火涂料中的作用。研究结果表明:硅烷偶联剂γ-甲基丙烯酰氧基丙基三甲氧基硅烷(Z-6030)改性后的nano-ZrO_2在VAc-VeoVa乳液中具有良好的分散性。在不含EG的无卤防火涂料中,加入nano-ZrO_2后膨胀层不再具有连续致密的结构,且结构强度降低,防火性能随着nano-ZrO_2用量地增加反而下降。在含有EG的有卤防火涂料中,EG穿插在膨胀层中,起到结构支撑的作用;ZrO_2在膨胀层中起到隔热和防止热氧化分解的作用,防火时间达到3837s。XRD结果表明膨胀层中生成了焦磷酸钛(TiP2O7)、焦磷酸锆(ZrP2O7)和焦磷酸锆钛固溶体(Ti0.8Zr0.2P2O7)。
     (5)研究了Vac-VeoVa的热分解过程及APP对VAc-VeoVa热分解过程的影响。研究结果表明:在空气氛围中VAc-VeoVa的热氧化分解过程分为三个阶段:(1)脱除醋酸和叔碳酸基团,生成不饱和碳链;(2)不饱和碳链的氧化脱氢、环化、芳构化,生成六方晶系碳;(3)六方晶系碳的热氧化。在氮气氛围中VAc-VeoVa热分解过程分为两个阶段:(1)脱除醋酸和叔碳酸基团,生成不饱和碳链;(2)不饱和碳链的断链或者环化、芳构化,生成六方晶系碳。密度泛函理论(DFT)计算结果表明VAc-VeoVa分子中叔碳酸与醋酸基团的脱除为竞争断裂的关系。TG和FTIR结果表明,APP降低了VAc-VeoVa的热分解温度,加快了VAc-VeoVa侧链基团的脱除速度。此外,APP热分解生成的聚磷酸与VAc-VeoVa分子脱除乙烯酮后生成的侧链羟基反应生成P-O-C键。P-O-C键将不饱和烯烃芳构化后生成的产物连接成为交联网络状结构,使炭残余物具有更好的热稳定性。
     (6)合成了水性含磷苯丙聚合物P(MMA/St/BA/MAA/PAM100),并以此作为成膜物质,研究了其在防火涂料中的应用。研究结果表明,乙烯基烷氧基磷酸酯(PAM100)提高了聚合物的热稳定性,属于凝聚相作用机理。防火性能测试结果表明,以StA-P1.5作为成膜物质制备的防火涂料的防火性能最佳。Flymn-Wall-Ozawa(FWO)方法与Kissinger-Akahira-Sunose(KAS)方法计算结果表明,PAM100显著地增大了聚合物的热分解活化能,但活化能随PAM100用量地增加而减小。聚合物热分解的机理函数分别为g(α)=-ln(1-α),f(α)=1-α,反应级数n=1,热分解速率表达式为d
     dt A exp E/RT1。
Solventborne ultra-thin fire retardant coatings for steel structure has been limited, evenforbidden in many developed countries owing to its high content of volatile organiccompounds (VOC). In reverse, waterborne ultra-thin fire retardant coatings for steel structurewith polymer latex as binder have become the emphasis of modern research works, as it cutsdown the emissions of VOC, reduces the health hazards and environmental pollution duringthe production, construction and application, being in accordance with the trend of energyconservation and environmental protection. In order to improve the fire retardant property ofcoatings, the intumescent ratio and the structural strength of char layer, and the water-resistantof the coating film, etc., in this dissertation, studies about the preparation and performance ofwaterborne ultra-thin steel structure fire retardant coatings are carried out, and the thermaldegradation and char formation mechanism of vinyl acetate-vinyl ester of versatic acid(VAc-VeoVa) polymer, the influences of ammonium polyphosphate (APP) on the thermaldegradation of VAc-VeoVa are investigated. Moreover, the application of nanosized zirconiaand waterborne phosphorus-containing polymer in fire retardant coatings are also exploratorystudied. The main research works are as follows:
     In part one, the effects of binder on the intumescent and fire retardant performance offire retardant coatings were intensively studied in terms of thermal degradation characteristic,dynamic rheology and composite viscosity. The results revealed that, for acrylic,styrene-acrylic molten polymers, the elastic modulus (G') were larger than the viscousmodulus (G"), which meant the elastic behavior was predominant in these melts, and thecomplex viscosity was high up to1000Pa·s. While for VAc-VeoVa molten polymer, G"waslarger than G', which meant the viscous behavior was predominant in this melt, and thecomplex viscosity was low as33Pa·s. Polymer with good thermal stability, strongcarbonization capacity, low complex viscosity, and significant viscous flow behavior, wassuitable as the binder for improving the fire retardancy of coatings.
     In part two, when VAc-VeoVa latexes was used as the binder, and ammoniumpolyphosphate/pentaerythritol/melamine/expandable graphite (APP/PER/MEL/EG) were usedas the intumescent flame retardant (IFR) system, the effects of IFR and its proportion with VAc-VeoVa latexes on fire retardant performance, intumescent ratio, structure and strength ofswollen layers were studied. The orthogonal direct analysis showed that the effect order ofIFR on fire retardant coatings was APP>EG>PER>MEL, and the optimal ratio wasAPP:PER:MEL:EG=22:8:8:4.5. When the weight content of VAc-VeoVa latexes and the IFRsystem was30%and40%, respectively, the coatings films presented excellent fire retardantproperty (the temperature of steel backside was262℃after exposing to fire for30min).
     In part three, the effects of the component, size and morphology of inorganic fillers onthe fire retardant coatings were investigated. The results of thermogravimetry (TG), capillaryrheometer, fire retardant test, etc., demonstrated that, the coatings using TiO_2/SAp/HNTs(8/1/1) as multiple fillers presented outstanding fire retardant performance (3327s), and highintumescent ratio (28.14). The structure and strength of the intumescent layer was alsoexcellent. The inorganic fillers immobilized the relaxation and rotation of polymer chain, andreduced the catalytic dehydration efficiency of APP with PER and VAc-VeoVa, which, as aresult, affected the intumescent ratio and fire retardant performance of coatings. Moreover,under high melt viscosity, it was not easy for the filler to transfer to the surface to form aninorganic layer, which reduced the fire retardant performance of the coatings. Theperformance of home-made waterborne fire retardant coatings with optimized recipe wasbetter than that of the world famous brand one.
     In part four, the effects of nano-ZrO_2on the performance of fire retardant coatings wereinvestigated. The results demonstrated that, nano-ZrO_2had excellent dispersion property inVAc-VeoVa polymer emulsion after surface modified by silicate coupling agent γ-methacryl-oxypropyltrimethoxysilane (Z-6030). In halogen-free fire retardant coatings and withoutexpandable graphite (EG), the addition of nano-ZrO_2resulted in the formed intumescent layerwas not compact, and the structural strength was decreased, so the fire retardant performancewas decreased as the content of nano-ZrO_2increased. But in the halogen fire retardantcoatings containing EG, EG penetrated in the intumescent char layer and supported itsstructural strength, nano-ZrO_2stayed in the intumescent char layer, prevented itsthermal-oxidative degradation and insulated heat, and the fire retardant time of the coatingswas3837s. XRD results demonstrated that titanium pyrophosphate (TiP2O7), zirconiumpyrophosphate (ZrP2O7), zirconate titanate pyrophosphate solid solution (Ti0.8Zr0.2P2O7) were formed in high temperature during fire.
     In part five, the thermal degradation and the effect of APP on the thermal degradation ofVAc-VeoVa polymer were studied. The results revealed that, at air atmosphere, thethermal-oxidative degradation of VAc-VeoVa had three steps,(1) elimination of acetic acidand versatic acid to form unsaturated olefin carbon chain;(2) oxidative dehydrogenation,cyclization and aromatization of unsaturated olefin carbon chain to form hexagonal systemcarbon;(3) thermal oxidative of hexagonal system carbon. At nitrogen atmosphere, its thermaldegradation contained two steps,(1) elimination of acetic acid and versatic acid to formunsaturated olefin carbon chain;(2) scission or cyclization and aromatization of unsaturatedolefin carbon chain to form hexagonal system carbon. The results of density functional theory(DFT) revealed that the elimination of versatic acid was competing with acetate acid. Theresults of thermogravimetry-fourier transform infrared (TG-FTIR) analysis of VAc-VeoVa/APP at nitrogen atmosphere indicated that APP has reduced the thermal degradationtemperature and accelerated the side group elimination rate of VAc-VeoVa polymer. Moreover,the polyphosphate acid, formed by APP thermal degradation, reacted with the sidechainhydroxyl of VAc-VeoVa which was formed by eliminating ketene, to form P-O-C bond. ThisP-O-C bond could connect the aromatic product, formed by unsaturated olefin aromatizationreaction, into a crosslinked network structure, therefore improving the thermal stability ofcarbonate redidue.
     In part six, waterborne phosphorus-containing styrene-acrylic polymer P(MMA/BA/MAA/PAM100), which was synthesized by free radical emulsion polymerization, was used asbinder in fire retardant coatings and the performance was evaluated. It was found that thethermal stability of the polymer was improved by phosphate esters of polyethylene glycolmonomethacrylate (PAM100), through condensed phase mechanism. The results of fireretardant test showed that the fire retardant coatings with StA-P1.5as binder processed the bestfire retardant performance. The calculation results from Kissinger-Akahira-Sunose (KAS)method and Flynm-Wall-Ozawa (FWO) method revealed that the thermal degradationactivation energy (Ea) of polymer was remarkably improved by PAM100, but Eawasdecreased as the weight content of PAM100increased. The thermal degradation mechanismfunctions of polymer were g(α)=-ln(1-α),f(α)=1-α, respectively, the order of reaction was n=1, the thermal degradation rate expression wasdt|da=A·exp(-E/RT).(1-a).
引文
[1]张运田,郁银泉.钢结构住宅建筑体系研究进展[J].钢结构,2002,6:22-23
    [2]张爱兰.建筑钢结构的发展现状[J].新型建筑材料,2002,10:93-99
    [3]覃文清,李风.材料表面涂层防火阻燃技术[M].北京:化学工业出版社,2004,99-134
    [4]何亚东.水性无卤超薄型钢结构防火涂料试验研究[D].长沙:湖南大学,2007
    [5]袁凤林.钢结构防火保护的一种新型板材[J].建筑结构,2001,31(8):56-57
    [6]赵宗治.我国钢结构防火涂料发展回眸与展望[J].消防技术与产品信息,1999,12:10-14
    [7]张泽江.国内钢结构防火涂料及其生产工艺的现状与发展[J].消防技术与产品信息,2000,7:13-15
    [8]徐晓楠,周政楺.防火涂料[M].北京:化学工业出版社,2003,10
    [9]崔学军,李国军,任瑞铭.无机非膨胀型防火涂料的现状及发展的可能性[J].上海涂料,2007,45(1):30-33
    [10] Pirig W. D., Thewes V. Flame-retardant coating[P]. US Patent:6251961,2001-06-26
    [11] Gottfried S. Fire and heat protection wrap for structural steel columns, beams and open joists[P]. USPatent:6074714,2000-06-13
    [12] Alexandrovich A., Alexandro N., Alexandrovna T., et al. Composition for fire-protection coating[P].European Patent:1136529,2001-09-26
    [13] Muraoka H., Tono M., Okada K. Fire-resistant coating material[P]. European Patent:1055714,2006-07-06
    [14] Sinclair M. J., Edward W. J. Flame-retardant intumescent coating[P]. UK Patent:2377223A,2003-01-08
    [15] Sinclair M. J., Edward W. J. Flame-retardant intusescent coating[P]. UK Patent:2377223B,2005-01-12
    [16] Huckstepp B. Fire-resistant coating[P]. UK Patent:2329389,1999-03-24
    [17] Sinclair M. J., Edward W. J. Flame-retardant intumescent coating[P]. WO Patent:02077110,2002-10-03
    [18] Johannes C. W., Macdonald S. R. Fire retardant coating[P]. WO Patent:0196074,2001-12-20
    [19]赵艳红.水性超薄型钢结构防火涂料制备与性能研究[D].西安:西安科技大学,2006
    [20]王国建,张小翠,汪新民.乳液型膨胀防火涂料的研究[J].建筑材料学报,1999,2(1):57-63
    [21] Allman F. Intumeseent Coating: Porteetion of Steel[J]. Journal of the Oil Colour Chemists’ Association,1989,72(5):181-184
    [22] Dany F. J., Wortmann J., Kandler J. Intumescent flame-retardant coating compositions[P]. US Patent:4009137,1977-02-22
    [23]肖新颜,涂伟萍,杨卓如,等.阻燃剂在膨胀型防火涂料中的应用[J].涂料工业,1999,7:19-22
    [24] Andersson A., Lundmark S., Maurer F. Evaluation and characterization of ammoniumpolyphosphate-pentaerythritol based systems for intumescent coatings[J]. Journal of AppliedPolymer Science,2007,104(2):748-753
    [25] Przybylak M. W., Kozlowski R. The thermal characteristics of different intumescent coatings[J]. Fireand Materials,1999,23(1):33-43
    [26]汪源,朱金华.防火涂料的研究现状与发展趋势[J].材料保护,2006,39(3):39-41
    [27]王农,李静萍,施琪.防火涂料的研究现状及其发展[J].兰州铁道学院学报,2002,2(6):106-108
    [28]王贤明,王华进,胡静.环保型防火涂料发展现状[J].涂料工业,2002,12:48-51
    [29] Duquesne S., Magnet S., Jama C., et al. Intumescent paints: fire protective coatings for metallicsubstrates[J]. Surface&Coatings Technology,2004,180-181:302-307
    [30] Duquesne S., Magnet S., Jama C., et al. Thermoplastic resins for thin film intumescentcoatings-towards a better understanding of their effect on intumescent efficiency[J]. PolymerDegradation and Stability,2005,88(1):63-69
    [31] Wang Z. Y., Han E. H., Ke W. Effect of acrylic polymer and nanocomposite with nano-SiO2onthermal degradation and fire resistance of APP-DPER-MEL coating[J]. Polymer Degradation andStability,2006,(96):1937-1947
    [32]王铁宝,王国建,刘琳,等.树脂基料对超薄钢结构防火涂料性能的影响[J].上海涂料,2004,42(1):1-4
    [33]许乾慰,陆彬,王国建,等.聚丙烯酸酯结构对防火涂料防火性能的影响[J].涂料工业,2009,39(6):1-5
    [34] Wang G. J., Yang J. Y. Influences of binder on fire protection and anticorrosion properties ofintumescent fire resistive coating for steel structure[J]. Surface&Coatings Technology,2010,204(8):1186-1192
    [35] Mukhopadhyay S. K., Basu D., Banerjee A. N., et al. Study of fire retardancy and thermal stability ofvinyl acetate-2-ethylhexyl acrylate copolymer by blending with amino resin in aqueous medium[J].Journal of Applied Polymer Science,1997,63(8):985-990
    [36] Lu S. Y., Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers[J]. Progress in Polymer Science,2002,27(8):1661-1712
    [37] Wang G. A., Cheng W. M., Tu Y. L., et al. Characterizations of a new flame-retardant polymer[J].Polymer Degradation and Stability,2006,91(12):3344-3353
    [38] Chen X. L., Hu Y., Jiao C. M., et al. Preparation and thermal properties of a novel flame-retardantcoating[J]. Polymer Degradation and Stability,2007,92(6):1141-1150
    [39] Kannan A. G., Choudhury N. R., Dutta N. K. Synthesis and characterization of methacrylatephosphor-silicate hybrid for thin film applications[J]. Polymer,2007,48(24):7078-7086
    [40] Liang H. B., Shi W. F. Thermal behaviour and degradation mechanism of phosphate di/triacrylate usedfor UV curable flame-retardant coatings[J]. Polymer Degradation and Stability,2004,84(3):525-532
    [41] Zhu S. W., Shi W. F. Thermal degradation of a new flame retardant phosphate methacrylatepolymer[J]. Polymer Degradation and Stability,2003,80(2):217-222
    [42] Zhu S. W., Shi W. F. Flame retardance of UV cured epoxy acrylate blended with different states ofphosphated methacrylate[J]. Polymer Degradation and Stability,2003,82(3):435-439
    [43] Ebdon J. R., Price D., Hunt B. J., et al. Flame retardance in some polystyrenes and poly(methylmethacrylate)s with covalently bound phosphorus-containing groups: initial screening experimentsand some laser pyrolysis mechanistic studies[J]. Polymer Degradation and Stability,2000,69(3):267-277
    [44] Ebdon J. R., Hunt B. J., Joseph P., et al. Thermal degradation and flame retardance in copolymers ofmethyl methacrylate with diethyl(methacryloyl-oxymethyl)phosphonate[J]. Polymer Degradation andStability,2000,70(3):425-436
    [45] Price D., Pyrah K., Hull T. R., et al. Ignition temperatures and pyrolysis of a flame retardant methylmthacrylate copolymer containing diethyl(methacryloyl-oxymethyl)phosphonate units[J]. PolymerInternational,2000,49(10):1164-1168
    [46] Price D., Pyrah K., Hull T. R., et al. Flame retarding poly(methyl methacrylate) withphosphorus-containing compounds: comparison of an additive with a reactive approach[J]. PolymerDegradation and Stability,2001,74(3):441-447
    [47] Price D., Pyrah K., Hull T. R., et al. Flame retardance of poly(methyl methacrylate) modified withphosphorus-containing compounds[J]. Polymer Degradation and Stability,2002,77(2):227-233
    [48] Price D., Bullett K. J., Cunliffe L. K., et al. Cone calorimetry studies of polymer systems flameretarded by chemically bonded phosphorus[J]. Polymer Degradation and Stability,2005,88(1):74-79
    [49] Price D., Bullett K. J., Cunliffe L. K., et al. Thermal behavior of covalently bonded phosphate andphosphonate flame retardant polystyrene systems[J]. Polymer Degradation and Stability,2007,92(6):1101-1114
    [50] Price D., Cunliffe L. K., Bullett K. J., et al. Thermal behavior of covalently bonded phosphonate flameretarded poly(methyl methacrylate) systems[J]. Polymers for Advanced Technologies,2008,19(6):710-723
    [51] Kahraman M. V., Apohan N. K., Arsu N., et al. Flame retardance of epoxy acrylate resin modified withphosphorus containing compounds[J]. Progress in Organic Coatings,2004,51(3):213-219
    [52] Wyman P., Crook V. L., Hunt B. J., et al. Improved synthesis of phosphorus-containing styrenicmonomers[J]. Designed Monomers and Polymers,2004,7(3):301-309
    [53] DelDonno T. A. Phosphorus-containing polymer compositions containing water-soluble polyvalentmetal compounds. US Patent:5191029,1993-03-02
    [54] Betremieux I., Duque B., Saija L. Aqueous dispersion of polymer, useful in coating of metallic orplastic substrates, comprises polymer obtained from a mixture of monomers[P]. FR Patent:2867478,2005-09-16
    [55] Hui S. Y., Adam H., Kiplinger J. Phosphate polymerizable adhesion promoters[J]. JTC CoatingsTechnololy,2005,2(13):44-52
    [56] Gonzalez I., Mestach D., Leiza J. R., et al. Adhesion enhancement in waterborne acrylic latex binderssynthesized with phosphate methacrylate monomers[J]. Progress in Organic Coatings,2008,61(1):38-44
    [57] Klingsch W. Fire resistance of solid steel columns[J]. Fire Safety Journal,1981-1982,4(4):237-241
    [58] Bhatnagar V. M., Vergnaud J. M. Clear intumescent fire retardant coating consisting of chlorinatedparaffins and polyurethanes[J]. Fire Safety Journal,1981-1982,4(3):163-167
    [59] Troitzsch J. H. Methods for the fire protection of plastics and coatings by flame retardant andintumescent systems[J]. Progress in Organic Coatings,1983,11(1):41-69
    [60] Camino G., Costa L., Trossarelli L. Study of the mechanism of intumescence in fire retardantpolymers: Part I-Thermal degradation of ammonium polyphosphate-pentaerythritol mixtures [J].Polymer Degradation and Stability,1984,6(4):243-252
    [61] Camino G., Costa L., Trossarelli L. Study of the mechanism of intumescence in fire retardantpolymers: Part II-Mechanism of action in polypropylene-ammonium polyphosphate-pentaerythritolmixtures[J]. Polymer Degradation and Stability,1984,7(1):25-31
    [62] Camino G., Costa L., Trossarelli L. Study of the mechanism of intumescence in fire retardantpolymers: part III-effect of urea on the ammonium polyphosphate-pentaerythritol system[J]. PolymerDegradation and Stability,1984,7(4):221-229
    [63] Camino G., Costa L., Trossarelli L., et al. Study of the mechanism of intumescence in fire retardantpolymers: Part IV-Evidence of ester formation in ammonium polyphosphate-pentaerythritol mixtures[J]. Polymer Degradation and Stability,1984,8(1):13-22
    [64] Camino G., Costa L., Trossarelli L., et al. Study of the mechanism of intumescence in fire retardantpolymers: Part VI-mechanism of ester formation in ammonium polyphosphate-pentaerythritolmixtures[J]. Polymer Degradation and Stability,1985,12(3):213-228
    [65] Camino G., Costa L., Martinasso G. Intumescent fire-retardant systems[J]. Polymer Degradation andStability,1989,23(4):359-376
    [66] Camino G., Martinasso G., Costa L. Thermal degradation of pentaerythritol diphosphate, modelcompound for fire retardant intumescent systems: Part1-overall thermal degradation [J]. PolymerDegradation and Stability,1990,27(3):285-296
    [67] Camino G., Martinasso G., Costa L., et al. Thermal degradation of pentaery-thritol diphosphate, modelcompound for fire retardant intumescent systems: Part II-intumescence step[J]. Polymer Degradationand Stability,1990,28(1):17-38
    [68] Bourbigot S., Le Bras, M., Delobel R. Carbonization mechanisms resulting from intumescenceassociation with the ammonium polyphosphate-pentaerythritol fire retardant system[J]. Carbon,1993,31(8):1219-1230
    [69] Bourbigot S., Le Bras, M., Delobel R., et al. Carbonization mechanisms resulting from intumescencePart II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fireretardant system[J]. Carbon,1995,33(3):283-294
    [70] Bourbigot S., Le Bras, M., Gengembre L., et al. XPS study of an intumescent coating application tothe ammonium polyphosphate/pentaerythritol fire-retardant system[J]. Applied Surface Science,1994,81(3):299-307
    [71] Levchik S. V., Costa L., Camitio G. Effect of the fire-retardant, ammonium polyphosphate, on thethermal decomposition of aliphatic polyamides: Part II-polyamide6[J]. Polymer Degradation andStability,1992,36(3):229-237
    [72] Levchik S. V., Camitio G., Costa L. Mechanism of action of phosphorus-based flame retardants inNylon6. Ⅰ. Ammonium Polyphosphate[J]. Fire and materials,1995,19(1):1-10
    [73] Werner P. Hydrolysis stable finely divided flame-resistant agent based on ammonium polyphosphate[P]. DE Patent:3531500,1986-05
    [74]芦笑梅. EVA对膨胀型阻燃聚丙烯吸潮性的改性研究[J].阻燃材料与技术,2002,(3):1-5
    [75]郝冬梅,林倬仕,伊亮.微胶囊化膨胀阻燃剂及膨胀阻燃聚丙烯性能的研究[J].工程塑料应用,2007,35(5):12-15
    [76]刘琳,王国建,王铁宝.室外钢结构防火涂料的耐湿热性能研究[J].涂料工业,2004,34(3):1-5
    [77] Cheng W. J., Lin Y. S., Guang L., et al. Synthesis of a new-type carbonific and its application inintumescent polyurethane coatings[J]. Journal of Fire Sciences,2003,21(4):245-266
    [78] Cheng W. J., Guang L., Lin Y. S., et al. New intumescent flame-retardant agent: application topolyurethane coatings[J]. Journal of Applied Polymer Science,2004,91(2):1193-1206
    [79] Chen Y. G., Liu Y., Wang Q., et al. Performance of intumescent flame retardant master batchsynthesized throught winscrew reactively extruding technology: effect of component ratio[J]. PolymerDegradation and Stability,2003,81(2):215-224
    [80] Wang Q., Chen Y. G., Liu Y., et al. Performance of an intumescent-flame retardant master batchsynthesized by twinscrew reactive extrusion: effect of the polypropylene carrier resin[J]. PolymerInternational,2004,53(4):439-448
    [81] Liang H. B., Asif A., Shi W. F. Thermal degradation and flame retardancy of a novel methacrylatedphenolic melamine used for UV curable flame retardant coatings[J]. Polymer Degradation andStability,2005,87(3):495-501
    [82] Liang H. B., Shi W. F., Gong M. Expansion behaviour and thermal degradation of tri(acryloyloxyethyl)phosphate/methacrylated phenolic melamine intumescent flame retardant system[J]. PolymerDegradation and Stability,2005,90(1):1-8
    [83]张泽江,邱发礼.新型超薄型钢结构防火涂料[J].消防技术与产品信息,2003,(1):68-69
    [84] Hill Jr J. E. Intumescent coating and method of manufacture[P]. US Patent:5225464,1993-07-06
    [85] Mi G. M. New method to synthesize expandable graphite with less pollution[J]. Journal WuhanUniversity of Technology(Materials Science Edition),1994,9(3):144-148
    [86] Chen X. L. Preparation of lower-sulfur content and expandable graphite[J]. Carbon,1996,34(12):1599-1600
    [87] Camino G., Duquesne S., Delobel R., et al. Mechanism of expandable graphite fire retardant action inpolyurethanes[J]. Polymer Materials Science and Engineer,2000,83(1):42-43
    [88] Duquesne S., Le Bras, M., Bourbigot S., et al. Thermal degradation of polyurethane and polyurethane/expandable graphite coatings[J]. Polymer Degradation and Stability,2001,74(3):493-499
    [89] Buxton R. L., Parker E. M. Flame-retardant coating and building product[P]. US Patent:6245842,2001-6-12
    [90] Liu F., Zhu W. Fire retardant intumescent coating of lignocellulosic materials[P]. US Patent:5968669,1999-10-19
    [91]薛恩任,曾敏修.阻燃科学及其应用[M].北京:国防工业出版社,1988:47-51
    [92]张龙,王建祺.新型无卤可膨胀石墨防火涂料[J].北京理工大学学报,2001,21(10):649-652
    [93]刘学军,付若愚,咸才军,等.可膨胀石墨在膨胀型钢结构防火涂料中的应用[J].精细化工,2005,22(5):328-331
    [94]王震宇,韩恩厚,柯伟.可膨胀石墨改性APP-PER/EN防火涂料热降解行为[J].复合材料学报,2005,22(5):52-59
    [95]李国新,梁国正,杨秦莉,等.可膨胀石墨改性APP/PER/MEL防火涂料的热降解研究[J].涂料工业,2006,36(11):11-14
    [96]李国新,梁国正,杨秦莉,等. MoO3与可膨胀石墨改性聚磷酸铵/季戊四醇/三聚氰胺防火涂料研究[J].现代化工,2006,26(8):28-31
    [97] Li G. X., Yang J. F., He T. S., et al. An investigation of the thermal degradation of the intumescentcoating containing MoO3and Fe2O3[J]. Surface&Coatings Technology,2008,202(13):3121-3128
    [98]杨秦莉,李国新,周文英,等. MoO3对膨胀型防火涂料残碳的影响[J].涂料工业,2006,36(5):52-56
    [99] Li G. X., Liang G. Z., He T. S., et al. Effects of EG and MoSi2on thermal degradation of intumescentcoating[J]. Polymer Degradation and Stability,2007,92(4):569-579
    [100]李国新,何廷树,梁国正. Fe2O3与可膨胀石墨对膨胀防火涂料热降解与防火性能的影响[J].涂料工业,2010,40(5):37-41
    [101] Zhu J.,Uhl F. M., Morgan A. B., et al. Studies on the mechanism by which the formation ofnanocomposites enhances thermal stability[J]. Chemistry of Materials,2001,13(12):4649-4654
    [102] Zanetti M., Camino G., Canavese D., et al. Fire retardant halogen-antimony-clay synergism inpolypropylene layered silicate nanocomposites[J]. Chemistry of Materials,2002,14(1):189-193
    [103] Bodzay B., Bocz K., Barkai Zs., et al. Influence of rheological additives on char formation and fireresistance of intumescent coatings[J]. Polymer Degradation and Stability,2011,96(3):355-362
    [104] Krylov O. V. Catalysis by non-metals: rules for catalyst selection[M]. Academic Press, London,1970
    [105] McKee D. W. The catalyzed gasification reactions of carbon[A], in Chemistry and Physics ofCarbon[C], Walker P. L. and Thrower P. A.(eds.), Marcel Dekker, New York,1981, Volume16
    [106] Wang X. L., Wu L. H., Li J. Synergistic flame retarded poly(methyl methacrylate) by nano-ZrO2andtriphenyphosphate[J]. Journal of Thermal Analysis and Calorimetry,2010,10:1-6
    [107] Camino G., Riva A., Vizzini D., et al. Effect of hydroxides on fire retardance mechanism ofintumescent EVA composition[A], in Fire retardancy of polymers[C], Le Bras M., Wilkie A. C.,Bourbigot S., et al.(eds.), Athenaeum, Gateshead, U.K.,2005, Chapter18
    [108] Duquesne S., Bourbigot S. Char formation and characterization[A], In: Wilkie, C. and Morgan, A.(eds), Fire Retardancy of Polymeric Materials[C], CRC Press, Boca Raton, FL.2nd edn, p.239-260
    [109] Gu J. W., Zhang G. C., Dong S. L., et al. Study on preparation and fire-retardant mechanism analysisof intumescent flame-retardant coatings[J]. Surface&Coatings Technology,2007,201(18):7835-7841
    [110] Horacek H. Reactions of stoichiometric intumescent paints[J]. Journal of Applied Polymer Science,2009,113(3):1745-1756
    [111] Scharf D., Nalepa R., Heflin R., et al. Studies on flame retardant intumescent char: part1[J]. FireSafety Journal,1992,19(1):103-117
    [112] Ellard J. A. Performance of intumescent fire barriers, Division of Organic Coatings and PlasticsChemistry, ACS165th Meeting, Dallas, TX,1973, April8-13
    [113] Bourbigot S., Le Bras M., Dabrowski F., et al. PA-6clay nanocomposite hybrid as char formingagent in intumescent formulations[J]. Fire and materials,2000,24:201-208
    [114] Okada A., Usuki A. The chemistry of polymer-clay hybrids[J]. Materials Science and Engineering: C,1995,(3)2:109-115
    [115] Lee J., Takekoshi T., Giannelis E. P. Fire retardant polyetherimide nanocomposites[J]. MaterialsResearch Society Symposium Proceeding,1997,457:513-518
    [116] Kawasumi M., Hasegawa N., Kato K., et al. Preparation and mechanical properties of polypropylene-clay hybrids[J]. Macromolecules,199730(20):6333-6338
    [117] Reichert P., Kressler J., Thomann R., et al. Nanocomposites based on a synthetic layer silicate andpolyamide-12[J]. Acta Polymerica,1998,49(2-3):116-123
    [118] Hassan M., Kozlowski R., Obidzinski B. New fire-protective intumescent coatings for wood[J].Journal of Applied Polymer Science,2008,110(1):83-90
    [119] Fina A., Camino G. New perspectives in fire retardant coatings[J]. Pitture e Vernici: EuropeanCoatings,2008,7(64):1-5
    [120] Green J., Allen W., Taylor A., et al. Intumescent coating compositions[P]. WO Patent:067478,2006-06-29
    [121] Koo J., Ng P. Cheung F. Effect of high temperature additives in fire resistant materials[J]. Journal ofFire Sciences,1997,15(6):488-504
    [122] Wang, Z. Y., Han, E. H., Ke, W. Effect of nanoparticles on the improvement in fire-resistant andanti-ageing properties of flame-retardant coating[J]. Surface&Coatings Technology,2006,200(20-21):5706-5716
    [123] Hornsby P. R., Mthupha A. Analysis of fire retardancy in magnesium hydroxide filled polypropylenecomposites[J]. Plastics Rubber and Composites Processing and Applications,1996,25(7):347-355
    [124] Hornsby P. R., Wang J., Jackson G., et al. Analysis of fire retardancy in polyamides modified withmagnesium hydroxide filler, in Proceedings from Society of Plastics Engineers Ammual TechnicalConference (ANTEC94), May1-5,1994, San Francisco, p2834-2839
    [125] Wang J. Mechanism of flame retardancy in polyamides containing magnesium hydroxide, PhD thesis,Brunel University, U.K.,1994
    [126] Fujiwara S., Sakmaoto T. Method for manufacturing a clay-polyamide composite[P]. JP Patent:109998,1976-09-02
    [127] Okada A., Fukushima Y., Kawasumi M., et al. Composite material and process for manufacturingsame[P]. US Patent:4739007,1988-04-19
    [128] Usuki A., Kojima Y., Kawasumi M., et al. Synthesis of nylon6-clay hybrid[J]. Journal of MaterialsResearch,1993,8(5):1179-1184
    [129] Gilman J. W. Kashiwagi T., Lichtenhan J. D. Nanocomposites: a revolutionary new flame retardantapproach[J]. SAMPE Journal,1997,33(4):40-46
    [130] Gilman J. W. Flammability and thermal stability studies of polymer layered-silicate(clay)nanocomposites[J]. Applied Clay Science,1999,15(1-2):31-49
    [131] Gilman J. W., Jackson C. L., Morgan A. B., et al. Flammability properties of polymer-layered-silicatenanocomposites. Polypropylene and polystyrene nanocomposites[J]. Chemistry of Materials,2000,12(7):1866-1873
    [132]唐勇.无卤阻燃聚丙烯/粘土纳米复合材料的制备、性能及其机理研究[D].合肥:中国科学技术大学博士论文,2005
    [133] Lu H. D., Hu Y., Xiao J. F., et al. Magnesium hydroxide sulfate hydrate whisker flame retardantpolyethylene/montmorillonite nanocomposites[J]. Journal of Materials Science,2006,41(2):363-367
    [134] Kashiwagi T., Grulke E., Hilding J., et al. Thermal and flammability properties ofpolypropylene/carbon nanotube nanocomposites[J]. Polymer,2004,45(12):4227-4239
    [135] Nour H. A., Hassanien M. M. Effect of copper chelate of pyridineanilide modified montmorilloniteon the flammability and thermal stability of polypropylene[J]. Polymer,2005,50(5):371-373
    [136] Zammarano M., Franceschi M., Bellayer S., et al. Preparation and flame resistance properties ofrevolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides[J].Polymer,2005,46(22):9314-9328
    [137] Pereira C. M. C., Herrero M., Labajos F. M., et al. Preparation and properties of new flame retardantunsaturated polyester nanocomposites based on layered double hydroxides[J]. Polymer Degradationand Stability,2009,94(6):939-946
    [138] Costache M. C., Wang D. Y., Heidecker M. J., et al. The thermal degradation of poly(methylmethacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbonnanotubes[J]. Polymer for Advanced Technologies,2006,17(4):272-280
    [139] Song P. A., Xu L. H., Guo Z. H., et al. Flame-retardant-wrapped carbon nanotubes for simultaneouslyimproving the flame retardancy and mechanical properties of polypropylene[J]. Journal of MaterialsChemistry,2008,18(42):5083-5091
    [140] Tang Y., Hu Y., Li B. G., et al. Polypropylene/montmorillonite nanocomposites and intumescent,flame-retardant montmorillonite synergism in polypropylene nanocomposites[J]. Journal of PolymerScience Part A: Polymer Chemistry,2004,42(23):6163-6173
    [141] Kong Q. H., Hu Y., Song L., et al. Synergistic flammability and thermal stability ofpolypropylene/aluminum trihydroxide/Fe-montmorillonite nanocomposites[J]. Polymer forAdvanced Technologies,2009,20(4):404-409
    [142]邹敏,王琪琳,马光强,等.纳米TiO2改善钢结构防火涂料的性能研究[J].四川大学学报(自然科学版),2006,43(4):864-867
    [143] Wang Z. Y., Han E. H., Liu F. C. Fire and corrosion resistances of intumescent nano-coatingcontaining nano-SiO2in salt spray condition[J]. Journal of Materials Science and Technology,2010,26(1):75-81
    [144] Wang Z. Y., Han E. H., Ke W. Fire-resistant effect of nanoclay on intumescent nanocompositecoatings[J]. Journal of Applied Science,2007,103(3):1681-1689
    [1]王国建,张小翠,汪新民.乳液型膨胀防火涂料的研究[J].建筑材料学报,1999,2(1):57-63
    [2] Duquesne S., Magnet S., Jama C., et al. Intumescent paints: fire protective coatings for metallicsubstrates[J]. Surface&Coatings Technology,2004,180-181:302-307
    [3] Duquesne S., Magnet S., Jama C., et al. Thermoplastic resins for thin film intumescent coatings-towardsa better understanding of their effect on intumescent efficiency[J]. Polymer Degradation and Stability,2005,88(1):63-69
    [4] Wang Z. Y., Han E. H., Ke W. Effect of acrylic polymer and nanocomposite with nano-SiO2on thermaldegradation and fire resistance of APP-DPER-MEL coating[J]. Polymer Degradation and Stability,2006,(96):1937-1947
    [5]王铁宝,王国建,刘琳,等.树脂基料对超薄钢结构防火涂料性能的影响[J].上海涂料,2004,42(1):1-4
    [6]许乾慰,陆彬,王国建,等.聚丙烯酸酯结构对防火涂料防火性能的影响[J].涂料工业,2009,39(6):1-5
    [7]游潘丽,郑群茹.膨胀防火涂料阻燃性能与乳液玻璃化温度研究[J].涂料工业,2006,(36)11:26-28
    [8]陈中华,李崇裔.水性超薄型钢结构防火涂料的研制与性能研究[J].涂料工业,2011,(41)4:26-30
    [9]龚建清,赵雷.树脂基料对水性超薄型钢结构防火涂料性能的影响[J].企业技术,2009,(28)1:18-20
    [10] Delobel R., Le Bras M., Ouassou N., et al. Thermal behaviors of ammonium polyphosphate-pentaerythritol and ammonium pyrophosphate-pentaerythritol intumescent additives in polypropyleneformulations[J]. Journal of Fire Sciences,1990,8(2):85-108
    [11] Bourbigot S., Le Bras M., Delobel R., et al. Synergistic effect of zeolite in an intumescence process:study of the carbonaceous structures using solid-state NMR[J]. Journal of the Chemical Society,Faraday Transactions,1996,92(1):149-158
    [12] Lu S. Y., Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers[J]. Progress in Polymer Science,2002,27(8):1661-1712
    [13] Wang G. A., Cheng W. M., Tu Y. L., et al. Characterizations of a new flame-retardant polymer[J].Polymer Degradation and Stability,2006,91(12):3344-3353
    [14] Chen X. L., Hu Y., Jiao C. M., et al. Preparation and thermal properties of a novel flame-retardantcoating[J]. Polymer Degradation and Stability,2007,92(6):1141-1150
    [15] Kannan A. G., Choudhury N. R., Dutta N. K. Synthesis and characterization of methacrylatephosphor-silicate hybrid for thin film applications[J]. Polymer,2007,48(24):7078-7086
    [16]许乾慰,陈志梅,王国建,等.树脂基料的表观粘度对防火涂料发泡成炭过程的影响[J].上海涂料,2006,(44)2:1-4
    [17]肖新颜,涂伟萍,杨卓如,等.膨胀型防火涂料的阻燃机理研究[J].华南理工大学学报(自然科学版),1998,26(12):77-82
    [18]杜建科,卢艳萍,陈健.差示扫描热量法分析防火涂料的膨胀体系[J].材料保护,2002,35(8):5-7
    [19] Wang Z. Y., Han E. H., Ke W. Influence of expandable graphite on fire resistance and water resistanceof flame-retardant coatings[J]. Corrosion Science,2007,49(5):2237-2253
    [1]何亚东.水性无卤超薄型钢结构防火涂料试验研究[D].长沙:湖南大学,2007
    [2]王国建,张小翠,汪新民.乳液型膨胀防火涂料的研究(Ⅱ)-防火助剂对涂料防火性能的影响[J].建筑材料学报,1999,2(2):142-146
    [3] Bourbigot S., Le Bras M., Duquesne S., et al. Recent advantages for intumescent polymers[J].Macromolecular Material Engineering,2004,289(6):499-511
    [4]于永忠,吴启鸿,葛世成.阻燃材料手册,北京:群众出版社,1997
    [5] Zhang R., Hu Y., Xu J. Y., et al. Flammability and thermal stability studies of styrene-butyl acrylatecopolymer/graphite oxide nanocomposite[J]. Polymer Degradation and Stability,2004,85(1):583-588
    [6] Wang Z. Y., Han E. H., Ke W. Influence of expandable graphite on fire resistance and water resistanceof flame-retardant coatings[J],.Corrosion Science,2007,49:2237-2253
    [7] Wu X. F., Wang L. C., Wu C., et al. Influence of char residues on flammability of EVA/EG, EVA/NGand EVA/GO composites[J]. Polymer Degradation and Stability,2012,97:54-63
    [8] Duquesne S., Le Bras M., Bourbigot S., et al. Mechanism of fire retardancy of polyurethanes usingammonium polyphosphate[J]. Journal of Applied Polymer Science,2001,82(13):3262-3274
    [9] Scharf D., Nalepa R., Heflin R., et al. Studies on flame retardant intumescent char: part1[J]. Fire SafetyJournal,1992,19(1):103-117
    [1] Wang X., Song L., Yang H. Y., et al. Synergistic effect of graphene on antidripping and fire resistance ofintumescent flame retardant poly(butylene succinate) composites[J]. Industrial and EngineeringChemistry Research,2011,50(9):5376-5383
    [2] Xiong M. N., Wu L. M., Zhou S. X., et al. Preparation and characterization of acrylic latex/nano-SiO2composites[J]. Polymer International,2002,51(8):693-698
    [3] Rong M. Z., Zhang M. Q., Zheng Y. X., et al. Structure-property relationships of irradiation graftednano-inorganic particle filled polypropylene composites[J]. Polymer,2001,42(1):167-183
    [4] Orhan T., Isitman N. A., Hacaloglu J., et al. Thermal degradation of organophosphorus flame-retardantpoly(methyl methacrylate) nanocomposites containing nanoclay and carbon nanotubes[J]. PolymerDegradation and Stability,2012,97(3):273-280
    [5] Almeras X., Le Bras M., Hornsby P., et al. Effect of fillers on the fire retardandy of intumescentpolypropylene compounds[J]. Polymer Degradation and Stability,2003,82(2):325-331
    [6] Bourbigot S., Le Bras M., Delobel R., et al. Synergistic effect of zeolite in an intumescence process:study of the carbonaceous structures using solid-state NMR[J]. Journal of the Chemical Society,Faraday Transactions,1996,92(1):149-158
    [7] Bourbigot S., Le Bras M., Delobel R., et al. Synergistic effect of zeolite in an intumescent process.Study of the interactions between the polymer and the additives[J]. Journal of Chemical Society,Faraday Transactions,1996,92(18):3435-3444
    [8] Morgan A. B., Harris Jr. R. H., Kashiwagi T., et al. Flammability of polystyrene layered silicate (clay)nanocomposites: carbonaceous char formation[J]. Fire and Materials,2002,26(6):247-253
    [9]中国防火建材产品技术手册[S].国家防火建材质检中心,1997, p62
    [10] Wang Z. Y., Han E. H., Ke W. Influence of expandable graphite on fire resistance and water resistanceof flame-retardant coatings[J]. Corrosion Science,2007,49(5):2237-2253
    [11] Cho J. W., Paul D. R. Nylon6nanocomposites by melt compounding[J]. Polymer,2001,42(3):1083-1094
    [12] Hertlein T., Fritz H. G. Measuring the uniformity of dispersion of pigment concentrates during thecompounding process[J]. Kunststoffe-German Plastics,1991,81(1):71-75
    [13] Han C. D. Multiphase flow in polymer processing[M]. Academic Press (New York),1981, p100
    [14] Tanaka H., White J. L. Experimental investigations of shear and elongational flow properties ofpolystyrene melts reinforced with calcium carbonate, titanium dioxide, and carbon black[J]. PolymerEngineering and Science,1980,20(14):949-956
    [15] Suetsugu Y., White J. L. The influence of particle size and surface coating of calcium carbonate on therheological properties of its suspensions in molten polystyrene[J]. Journal of Applied Polymer Science,1983,28(4):1481-1501
    [16] Camino G., Riva A., Vizzini D., et al. Effect of hydroxides on fire retardance mechanism ofintumescent EVA composition[A], in Fire retardancy of polymers[C], Le Bras M., Wilkie A. C.,Bourbigot S., et al.(eds.), Athenaeum, Gateshead, U.K.,2005, Chapter18
    [17] Wang Z. Y., Han E. H., Ke W. Effect of nanoparticles on the improvement in fire-resistant andanti-ageing properties of flame-retardant coating[J]. Surface&Coatings Technology,2006,200(20-21):5706-5716
    [18] Olcese T., Pagella C. Vitreous fillers in intumescent coatings[J]. Progress in Organic Coatings,1999,36(4):231-241
    [19] Laachachi A., Cochez M., Leroy E., et al. Fire retardant systems in poly (methy methacrylate):Interactions between metal oxide nanoparticles and phosphinates[J]. Polymer Degradation andStability,2007,92(1):61-69
    [20] Isitman N. A., Kaynak C. Tailored flame retardancy via nanofiller dispersion state synergistic actionbetween a conventional flame-retardant and nanoclay in high-impact polystyrene[J]. PolymerDegradation and Stability,2010,95(9):1759-1768
    [21] Zanetti M., Bracco P., L. Costa. Thermal degradation behaviour of PE/clay nanocomposites [J].Polymer Degradation and Stability,2004,85(1):657-665
    [22] Gilman J. W., Harris Jr. R. H., Sheilds J. R., et al. A study of the flammability reduction mechanism ofpolystyrene-layered silicate nanocomposite: layered silicate reinforced carbonaceous char[J]. Polymerfor Advanced Technologies,2006,17(4):263-271
    [1] Reichiert P., Nitz H., Klinke S., et al. Poly(propylene)/organoclay nanocomposite formation: Influenceof compatibilizer functionality and organoclay[J]. Macromolecular Materials and Engineering,2000,275(2):8-17
    [2] Liu L. M., Qi Z. M., Zhu X. G. Studies on nylon-6/clay nanocompisites by melt-intercalation process[J].Journal of Applied Polymer Science,1999,71(7):1133-1138
    [3] Cavani F., Trifiro F., Vaccari A. Hydrotalcite-type anionic clays: preparation, properties andapplications[J]. Catalysis Today,1991,11:173-301
    [4] Srivastava S. K., Pramanik M., Acharya H. J. Ethylene/vinyl acetate copolymer/clay nanocomposites[J].Journal of Polymer Science Part B-Polymer Physics,2006,44(3):471-480
    [5] Lee W. D., Im S. S., Lim H. M., et al. Preparation and properties of layered doublehydroxide/poly(ethylene terephthalate) nanocomposites by direct melt compounding[J]. Polymer,2006,47(4):1364-1371
    [6] Gilman J. W. Flammability and thermal stability studies of polymer layered-silicate(clay)nanocomposites[J]. Applied Clay Science,1999,15(1-2):31-49
    [7] Zanetti M., Kashiwagi T., Falqui L., et al. Cone calorimeter combustion and gasification studies ofpolymer layered silicate nanocomposites[J]. Chemistry Materials,1999,14(2):881-887
    [8] Alexandre M., Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of anew class of meterials[J]. Material Science Engineer,2000,28(1-2):1-63
    [9] Yeh J. M., Liou S. J., Lai C. Y., et al. Enhancement of corrosion protection effect in polyaniline via theformation of polyaniline clay nanocomposite materials[J]. Chemistry of Materials,2001,13(3):1131-1136
    [10] Yeh J. M., Liou S. J., Lin C. Y., et al. Anticorrosively enhanced PMMA-clay nanocomposite materialswith quaternary alkylphosphonium salt as an intercalating agent[J]. Chemistry of Materials,2002,14(1):154-161
    [11] Yeh J. M., Chen C. L., Chen Y. C., et al. Enhancedment of corrosion protection effect ofpoly(o-ethoxyaniline) via the formation of poly(o-ethoxyaniline)-clay nanocomposite materials[J].Polymer,2002,43(9):2729-2736
    [12] Kim J. W., Kim S. G., Choi H. J., et al. Synthesis and electrorheological properties of polyaniline-Na-montmorillonite suspensions[J]. Macromolecular Rapid Communication,1999,20(8):450-452
    [13] Cho M. S., Choi H. J., To K. W. Effect of ionic pendent groups on a polyaniline-basedelectrorheological fluid[J]. Macromolecular Rapid Communication,1998,19(6):271-273
    [14]邹敏,王琪琳,马光强,等.纳米TiO2改善钢结构防火涂料的性能研究[J].四川大学学报(自然科学版),2006,43(4):864-867
    [15] Wang Z. Y., Han E. H., Ke W. Effect of acrylic polymer and nanocomposite with nano-SiO2onthermal degradation and fire resistance of APP-DPER-MEL coating[J]. Polymer Degradation andStability,2006,(96):1937-1947
    [16] Wang, Z. Y., Han, E. H., Ke, W. Effect of nanoparticles on the improvement in fire-resistant andanti-ageing properties of flame-retardant coating[J]. Surface&Coatings Technology,2006,200(20-21):5706-5716
    [17] Wang X. L., Wu L. H., Li J. Synergistic flame retarded poly(methyl methacrylate) by nano-ZrO2andtriphenyphosphate[J]. Journal of Thermal Analysis and Calorimetry,2010,10:1-6
    [18] Ellard J. A. Performance of intumescent fire barriers, Division of Organic Coatings and PlasticsChemistry, ACS165th Meeting, Dallas, TX,1973, April8-13
    [19] Bourgeat-Lami, E., Espiard, Ph., Guyot, A. Poly(ethyl acrylate) latexes encapsulating nanoparticles ofsilica:1. Functionalization and dispersion of silica[J]. Polymer,1995,36(23):4385-4389
    [20] Espiard, Ph., Guyot, A. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica:2. Graftingprocess onto silica[J]. Polymer,1995,36(23):4391-4395
    [21]中国防火建材产品技术手册[S].国家防火建材质检中心,1997, p62
    [22] Laachachia A., Cocheza M., Ferriola M. Influence of TiO2and Fe2O3fillers on the thermal propertiesof poly(methyl methacrylate)(PMMA). Materials Letters,2005,59(1):36-39
    [23] Qin H. L., Zhang S. M., Zhao C. G. Thermal stability and flammability of polypropylene/montmorillonite composites[J]. Polymer Degradation and Stability,2004,85(2):807-813
    [24] Scharf D., Nalepa R., Heflin R., et al. Studies on flame retardant intumescent char: part1[J]. FireSafety Journal,1992,19(1):103-117
    [1] Grassie N. The thermal degradation of polyvinyl acetate.Ⅰ. Products and reaction mechanism at lowtemperatures[J]. Transactions of the Faraday Society,1952,48:379-387
    [2] Costa L., Avataneo M., Bracco P., et al. Char formation in polyvinyl polymers Ⅰ. Polyvinyl acetate[J].Polymer Degradation and Stability,2002,77(3):503-510
    [3] Eyring H. The activated complex and the absolute rate of chemical reactions[J]. Chemical Review,1935,17(1):65-77
    [4] McNeill I. C., Ahmed S., Memetea L. Thermal degradation of vinyl acetate-methacrylic acid copolymerand homopolymers.Ⅰ. An FTIR spectroscopic investigation of structural changes in the degradingmaterial[J]. Polymer Degradation and Stability,1995,47(3):423-433
    [5] Westrum Jr. E. F., Stull D. R., Sinke G. C. The chemical thermodynamics of organic compounds[M].New York: John Wiley and Sons;1969
    [6] Costa L., Camino G., Quenneson M. E., et al. Thermal behaviour of polybenzhydrolimides[J]. Journalof Analytical and Applied Pyrolysis,1987,11:251-261
    [7] McNeill I. C., Polishchuk A. Ya., Zaikov G. E. Thermal degradation studies of alternating copolymers:Ⅰ-melaic anhydride-vinyl acetate[J]. Polymer Degradation and Stability,1992,37(3):223-232
    [8] Benson S. W., Nangia P. S. Some unresolved problems in oxidation and combustion[J]. Accounts ofChemical Research,1979,12(7):223-228
    [9] Levchik S. V., Levchik G. F., Camino G., et al. Fire retardant action of potasssium nitrate in polyamide6[J]. Die Angewandte Makromolekulare Chemie,1997,245(1):23-35
    [10] Camino G., Costa L., Trossarelli L. Study of the mechanism of intumescence in fire retardantpolymers: part Ⅴ-Mechanism of formation of gaseous products in the thermal degradation ofammonium polyphosphate[J]. Polymer Degradation and Stability,1985,12(3):203-211
    [11] Levchik S. V., Camitio G., Costa L. Mechanism of action of phosphorus-based flame retardants in
    Nylon6. Ⅰ. Ammonium Polyphosphate[J]. Fire and materials,1995,19(1):1-10
    [1] Wang G. J., Yang J. Y. Influences of binder on fire protection and anticorrosion properties ofintumescent fire resistive coating for steel structure[J]. Surface&Coatings Technology,2010,204(8):1186-1192
    [2] Gu J. W., Zhang G. C., Dong S. L., et al. Study on preparation and fire-retardant mechanism analysis ofintumescent flame-retardant coatings[J]. Surface&Coatings Technology,2007,201(18):7835-7841
    [3] Ebdon J. R., Price D., Hunt B. J., et al. Flame retardance in some polystyrenes and poly(methylmethacrylate)s with covalently bound phosphorus-containing groups: initial screening experiments andsome laser pyrolysis mechanistic studies[J]. Polymer Degradation and Stability,2000,69(3):267-277
    [4] Ebdon J. R., Hunt B. J., Joseph P., et al. Thermal degradation and flame retardance in copolymers ofmethyl methacrylate with diethyl(methacryloyl-oxymethyl)phosphonate[J]. Polymer Degradation andStability,2000,70(3):425-436
    [5] Price D., Pyrah K., Hull T. R., et al. Ignition temperatures and pyrolysis of a flame retardant methylmthacrylate copolymer containing diethyl(methacryloyl-oxymethyl)phosphonate units[J]. PolymerInternational,2000,49(10):1164-1168
    [6] Price D., Pyrah K., Hull T. R., et al. Flame retarding poly(methyl methacrylate) withphosphorus-containing compounds: comparison of an additive with a reactive approach[J]. PolymerDegradation and Stability,2001,74(3):441-447
    [7] Price D., Pyrah K., Hull T. R., et al. Flame retardance of poly(methyl methacrylate) modified withphosphorus-containing compounds[J]. Polymer Degradation and Stability,2002,77(2):227-233
    [8] Price D., Bullett K. J., Cunliffe L. K., et al. Cone calorimetry studies of polymer systems flame retardedby chemically bonded phosphorus[J]. Polymer Degradation and Stability,2005,88(1):74-79
    [9] Price D., Bullett K. J., Cunliffe L. K., et al. Thermal behavior of covalently bonded phosphate andphosphonate flame retardant polystyrene systems[J]. Polymer Degradation and Stability,2007,92(6):1101-1114
    [10] Price D., Cunliffe L. K., Bullett K. J., et al. Thermal behavior of covalently bonded phosphonate flameretarded poly(methyl methacrylate) systems[J]. Polymers for Advanced Technologies,2008,19(6):710-723
    [11] Delaviz Y., Gungor A., McGrath J. E., et al. Phosphine oxide containing aromatic polyester[J].Polymer,1992,33(24):5346-5347
    [12] Ma Z. L., Zhao W. G., Liu Y. F., et al. Synthesis and properties of intumescent, phosphorus-containing,flame-retardant polyesters[J]. Journal of Applied Polymer Science,1997,63(12):1511-1515
    [13] Sivriev, C., Zabski, L. Flame retarded rigid polyurethane foams by chemical modification withphosphorus-and nitrogen-containing polyols[J]. European Polymer Journal,1994,30(4):509-514
    [14] Liu Y. L., Hsiue G. H., Lee R. H., et al. Phosphorus-containing epoxy for flame retardant. Ⅲ: Usingphosphorylated diamines as curing agents[J]. Journal of Polymer Science,1997,63(7):895-901
    [15] Wang C. S., Shieh J. Y. Synthesis and properties of epoxy resins containing2-(6-oxid-6H-dibenz〈c,e〉〈1,2〉oxaphosphorin-6-yl)1,4-benzenediol[J]. Polymer,1998,39(23):5819-5826
    [16] Buckingham, M. R., Lindsay, A. J., Stevenson, et al. Synthesis and formulation of novelphosphorylated flame retardant curatives for thermoset resins[J]. Polymer Degradation and Stability,1996,54(2-3):311-315
    [17] Levchik S. V., Camino G., Luda M. P., et al. Epoxy resins cured with aminophenylmethylphosphineoxide1: Combustion performance[J]. Polymers for Advanced Technologies,1996,7(11):823-830
    [18]中国防火建材产品技术手册[S].国家防火建材质检中心,1997, p62
    [19] Lindsay C. I., Hill S. B., Hearn M., et al. Mechanisms of action of phosphorus based flame retardantsin acrylic polymers[J]. Polymer international,2000,49(10):1183-1192
    [20] Duquesne S., Magnet S., Jama C., et al. Intumescent paints: fire protective coatings for metallicsubstrates[J]. Surface&Coatings Technology,2004,180-181:302-307
    [21] Duquesne S., Magnet S., Jama C., et al. Thermoplastic resins for thin film intumescentcoatings-towards a better understanding of their effect on intumescent efficiency[J]. PolymerDegradation and Stability,2005,88(1):63-69
    [22]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985,125-128
    [23] Orfao J. J., Martins M. F. G. Kinetic analysis of thermogravimetric data obtained under lineartemperature programming--a method based on calculations of the temperature integral byinterpolation[J]. Thermochimica Acta,2002,390(1-2):195-211
    [24] Krzysztof P., Kinga F. Non-oxidative thermal degradation of poly(ethylene oxide): kinetic andthermoanalytical study[J]. Journal of Analytical and Applied Pyrolysis,2005,73(1):131-138
    [25]徐丽.三元共聚改性酚醛树脂的制备及性能研究[D].广州:华南理工大学,2009
    [26] Coats A. W., Redfern J. P. Thermal studies on some metal complexes of hexamethyl leniminecarbodithioate[J]. Nature,1964,201(1):68-69
    [27] Achar B. N. N., Bridley G. W., Sharp J. H. Kinetics and mechanism of dehydroxylation processes. Ⅲ.Applications and limitations of dynamic methods[J]. Proceeding International Clay Conference,Jerusalem,1966,1:67-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700