用户名: 密码: 验证码:
miR-100调控PLK1基因在膀胱癌中的生物学功能及膀胱癌尿液miRNA标志物的筛选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膀胱癌是人类最常见的恶性肿瘤之一,其发病机制复杂,涉及大量基因表达、功能异常及多种信号通路的改变。目前,膀胱癌发生发展的分子遗传学机制还很不清楚。近年来,microRNA (miRNA)在膀胱癌发生发展中的作用及意义受到了越来越多的关注。本论文探讨了miR-100及下游的靶基因PLK1在膀胱癌发生发展及侵袭转移中的生物学功能,对其相关的分子作用机制进行了较为深入的研究。此外,我们也筛选出了膀胱癌的尿液miRNA生物标志物,对发展新的膀胱癌临床无创性诊断的方法具有一定的参考价值。
     首先,我们通过膀胱癌组织及癌旁正常粘膜的miRNA表达谱芯片分析,发现miRNA下调可能是膀胱癌发生发展的重要机制。通过进一步的筛选和验证,我们揭示了miR-100在膀胱癌中普遍下调,其表达水平与膀胱癌肿瘤分期、肿瘤分级和淋巴结转移相关。我们通过在体外过表达miR-100,发现其能够抑制膀胱癌细胞的增殖,迁移和侵袭能力,并能调控膀胱癌的细胞周期,使细胞周期阻滞在G2/M期,并能促进细胞凋亡。通过进一步构建miR-100慢病毒过表达载体,我们发现其能在体内抑制肿瘤的生长,这个新发现阐释了膀胱癌发生发展侵袭转移的分子机制,为临床治疗膀胱癌提供了新的思路。
     其次,我们通过生物信息学方法预测了miR-100的靶基因,然后再经过生物学实验方法,我们确定了PLK1是膀胱癌中miR-100的靶基因。通过荧光定量RT-PCR,Western Blotting,免疫组化技术和荧光素酶报告基因的方法,我们发现了miR-100通过与PLK1基因mRNA3’UTR序列的不完全互补结合,抑制PLKl的翻译,从而在转录后水平调控PLK1蛋白的表达水平,膀胱癌组织中miR-100表达与PLK1蛋白表达呈现负相关。我们进一步使用PLK1抑制剂(BI2536),发现PLK1直接参与了miR-100诱导的膀胱癌细胞增殖,迁移和侵袭过程,为BI2536针对PLK1靶点治疗膀胱癌提供了切实的理论依据。
     最后,我们建立了简单、易行、重复性好的尿液细胞外miRNA提取流程。通过膀胱癌及对照正常人群的尿液miRNA表达谱分析,筛选出了一些在膀胱癌患者尿液中高表达的miRNA,并发现U6可以作为尿液miRNA荧光定量RT-PCR的内参基因。通过验证20个尿液miRNA标志物,我们发现尿液miR-509-5p/miR-124比值显示了较高的准确性,可能是膀胱癌诊断的无创性生物标志物。
     综上所述,我们发现了miR-100在膀胱癌中普遍下调,其表达水平与膀胱癌肿瘤分期、肿瘤分级和淋巴结转移相关,过表达miR-100能够抑制膀胱癌细胞的增殖,迁移和侵袭能力,并能调控细胞周期,促进细胞凋亡和抑制膀胱肿瘤的生长。PLK1基因直接参与了miR一100诱导的膀胱癌细胞增殖,迁移和侵袭过程。尿液miR一509-5p/miR-124比值可能是膀胱癌诊断的无创性生物标志物。这些发现为膀胱癌的分子遗传学提供了一个新的视野,也为膀胱癌的临床诊断和治疗提供了新的途径。
Bladder cancer is one of the most common human malignancies, and its pathogenesis is complex, involving a large number of genes'expression, aberrant functions and changes in multiple signaling pathways. At present, the molecular genetics of development and progression of bladder cancer is still unclear. In recent years, the pathological relevance and significance of microRNAs (miRNAs) in bladder cancer have attracted more and more attention. In the present study, we comprehensively studied the expression, biological function and molecular mechanisms of miR-100and its downstream target gene, PLK1, in the pathogenesis of bladder cancer. In addition, we also screened urine based miRNA biomarkers to develop a new clinical non-invasive diagnostic method in bladder cancer.
     Firstly, we used miRNA microarray in bladder cancer tissues and adjacent normal mucosa, and found miRNAs'down-regulation was likely an important mechanism of bladder cancer development. After further screening and validation, we revealed miR-100was generally down-regulated and its expression level, was correlated to tumor stage, tumor grade and lymph node metastasis in bladder cancer. The gain of function study showed enhanced expression of miR-100could not only inhibit cell proliferation, migration, invasion, arrest cell cycle in G2/M phase and promote apoptosis in vitro but also inhibit tumor growth in vivo. These discoveries illustrated new molecular mechanisms of development, invasion and metastasis of bladder cancer, and provided a new therapeutic target for clinical treatment in bladder cancer.
     Secondly, we predicted target genes of miR-100by bioinformatics, then identified PLK1was a target gene of miR-100in bladder cancer through biological experimental methods. By quantitative RT-PCR, Western Blotting,
     immunohistochemical techniques and luciferase reporter gene method, we found
     miR-100was partially complement to PLK1mRNA3' UTR sequence and inhibited the
     translation of PLK1mRNA, which regulated PLK1in the post-transcriptional
     level. The expression level of miR-100was negatively correlated to PLK1
     protein expression in bladder cancer. In addition, we used one of PLK1
     inhibitors (BI2536) and found PLK1was directly involved in miR-100induced
     cell proliferation, migration and invasion in bladder cancer. This could
     provide a practical theoretical basis for BI2536in the clinical treatment
     of bladder cancer. Finally, we established a simple, easy and reproducible urine based
     extracellular miRNA extraction process. By urine miRNA microarray, we filtered
     out a series of high expression miRNA in the urine of patients with bladder
     cancer. We also found U6can be used as a reference gene in urine miRNA qRT-PCR.
     After validation of20urine miRNA markers, we found miR-509-5p/miR-124ratio
     showed high accuracy, and therefore could be a non-invasive urine biomarker
     for the diagnosis of bladder cancer. In summary, we found that miR-100was generally down-regulated and its
     expression level was correlated to tumor stage, tumor grade and lymph node
     metastasis in bladder cancer. The gain of function study showed enhanced
     expression of miR-100could not only inhibit cell proliferation, migration,
     invasion, arrest cell cycle in G2/M phase and promote apoptosis in vitro but
     also inhibit tumor growth in vivo. PLK1was directly involved in miR-100induced
     cell proliferation, migration and invasion in bladder cancer. miR-509-5p/
     miR-124ratio could be a non-invasive urine biomarker for the diagnosis of
     bladder cancer. These findings provided a new perspective for the molecular
     genetics of bladder cancer pathogenesis and also provided new targets and
     methods for the clinical diagnosis and treatment of bladder cancer.
引文
[1]JEMAL A, BRAY F, CENTER M M, et al. Global cancer statistics [J]. CA Cancer J Clin,2011,61(2):69-90.
    [2]杨玲,李连弟,陈育德,等.中国2000年及2005年恶性肿瘤发病死亡的估计与预测[J].中国卫生统计,2005,22(4):218-21.
    [3]上海市疾病预防控制中心.2008年上海市区恶性肿瘤发病率[J].肿瘤,2011,31(10):964.
    [4]KNOWLES M A. The genetics of transitional cell carcinoma:progress and potential clinical application [J]. BJU international,1999,84(4):412-27.
    [5]YING S Y, CHANG D C, LIN S L. The microRNA (miRNA):overview of the RNA genes that modulate gene function [J]. Molecular biotechnology,2008,38(3): 257-68.
    [6]ESQUELA-KERSCHER A, SLACK F J. Oncomirs-microRNAs with a role in cancer [J]. Nature reviews,2006,6(4):259-69.
    [7]PILLAI R S, BHATTACHARYYA S N, FILIPOWICZ W. Repression of protein synthesis by miRNAs:how many mechanisms? [J]. Trends in cell biology,2007, 17(3):118-26.
    [8]TANG G, TANG X, MENDU V, et al. The art of microRNA:various strategies leading to gene silencing via an ancient pathway [J]. Biochimica et biophysica acta,2008,1779(11):655-62.
    [9]LEWIS B P, BURGE C B, BARTEL D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell,2005,120(1):15-20.
    [10]CALIN G A, DUMITRU C D, SHIMIZU M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia [J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(24):15524-9.
    [11]CIMMINO A, CALIN G A, FABBRI M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2 [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(39):13944-9.
    [12]CHAN J A, KRICHEVSKY A M, KOSIK K S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells [J]. Cancer research,2005,65(14):6029-33.
    [13]IORIO M V, FERRACIN M, LIU C G, et al. MicroRNA gene expression deregulation in human breast cancer [J]. Cancer research,2005,65(16): 7065-70.
    [14]HE L, THOMSON J M, HEMANN M T, et al. A microRNA polycistron as a potential human oncogene [J]. Nature,2005,435(7043):828-33.
    [15]BAUDINO T A, MACLEAN K H, BRENNAN J, et al. Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2fl loss [J]. Molecular cell,2003,11(4):905-14.
    [16]METZLER M, WILDA M, BUSCH K, et al. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma [J]. Genes, chromosomes & cancer,2004,39(2):167-9.
    [17]MICHAEL M Z, SM 0 C, VAN HOLST PELLEKAAN N G, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia [J]. Mol Cancer Res,2003,1(12): 882-91.
    [18]TAKAMIZAWA J, KONISHI H, YANAGISAWA K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival [J]. Cancer research,2004,64(11):3753-6.
    [19]JOHNSON S M, GROSSHANS H, SHINGARA J, et al. RAS is regulated by the let-7 microRNA family [J]. Cell,2005,120(5):635-47.
    [20]DYRSKJOT L, OSTENFELD M S, BRAMSEN J B, et al. Genomic profiling of microRNAs in bladder cancer:miR-129 is associated with poor outcome and promotes cell death in vitro [J]. Cancer research,2009,69(11):4851-60.
    [21]LIN T, DONG W, HUANG J, et al. MicroRNA-143 as a tumor suppressor for bladder cancer [J]. The Journal of urology,2009,181(3):1372-80.
    [22]ICHIMI T, ENOKIDA H, OKUNO Y, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer [J]. International journal of cancer,2009,125(2):345-52.
    [23]NEELY L A, RIEGER-CHRIST K M, NETO B S, et al. A microRNA expression ratio defining the invasive phenotype in bladder tumors [J]. Urol Oncol,2010, 28(1):39-48.
    [24]HANKE M, HOEFIG K, MERZ H, et al. A robust methodology to study urine microRNA as tumor marker:microRNA-126 and microRNA-182 are related to urinary bladder cancer [J]. Urol Oncol,2010,28(6):655-61.
    [25]UENO K, HIRATA H, MAJID S, et al. Tumor suppressor microRNA-493 decreases cell motility and migration ability in human bladder cancer cells by downregulating RhoC and FZD4 [J]. Mol Cancer Ther,2012,11(1):244-53.
    [26]MATTIE M D, BENZ C C, BOWERS J, et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies [J]. Molecular cancer,2006,5(24.
    [27]GUO L, LU Z. The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule? [J]. PLoS One,2010,5(6):e11387.
    [28]WANG G, ZHANG H, HE H, et al. Up-regulation of microRNA in bladder tumor tissue is not common [J]. Int Urol Nephrol,2010,42(1):95-102.
    [29]CHIYOMARU T, ENOKIDA H, TATARANO S, et al. miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer [J]. Br J Cancer,2010,102(5):883-91.
    [30]SONG T, XIA W, SHAO N, et al. Differential miRNA expression profiles in bladder urothelial carcinomas [J]. Asian Pac J Cancer Prev,2010,11(4): 905-11.
    [31]CATTO J W, MIAH S, OWEN H C, et al. Distinct microRNA alterations characterize high-and low-grade bladder cancer [J]. Cancer research,2009, 69(21):8472-81.
    [32]SIMON R, BURGER H, SEMJONOW A, et al. Patterns of chromosomal imbalances in muscle invasive bladder cancer [J]. Int J Oncol,2000,17(5):1025-9.
    [33]LOBERT S, JEFFERSON B, MORRIS K. Regulation of beta-tubulin isotypes by micro-RNA 100 in MCF7 breast cancer cells [J]. Cytoskeleton (Hoboken),2011, 68(6):355-62.
    [34]SUN D, LEE Y S, MALHOTRA A, et al. miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation [J]. Cancer research,2011,71(4):1313-24.
    [35]NAGARAJA A K, CREIGHTON C J, YU Z, et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer [J]. Mol Endocrinol,2010,24(2): 447-63.
    [36]ONEYAMA C, IKEDA J, OKUZAKI D, et al. MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways [J]. Oncogene,2011,30(32):3489-501.
    [37]HENSON B J, BHATTACHARJEE S,O' DEE D M, et al. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy [J]. Genes, chromosomes & cancer,2009,48(7):569-82.
    [38]ZHENG Y S, ZHANG H, ZHANG X J, et al. MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia [J]. Oncogene,2012,31(1):80-92.
    [39]NG W L, YAN D, ZHANG X, et al. Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line:M059J [J]. DNA Repair (Amst),2010,9(11):1170-5.
    [40]STEIN J P, LIESKOVSKY G, COTE R, et al. Radical cystectomy in the treatment of invasive bladder cancer:long-term results in 1,054 patients [J]. J Clin Oncol,2001,19(3):666-75.
    [41]YOSHINO H, CHIYOMARU T, ENOKIDA H, et al. The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer [J]. Br J Cancer,2011,104(5):808-18.
    [42]HIRATA H, HINODA Y, UENO K, et al. MicroRNA-1826 targets VEGFC, beta-catenin (CTNNB1) and MEK1 (MAP2K1) in human bladder cancer [J]. Carcinogenesis,2012,33(1):41-8.
    [43]CALIN G A, SEVIGNANI C, DUMITRU C D, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(9):2999-3004.
    [44]LIM L P, GLASNER M E, YEKTA S, et al. Vertebrate microRNA genes [J]. Science,2003,299(5612):1540.
    [45]BARTEL B, BARTEL D P. MicroRNAs:at the root of plant development? [J]. Plant Physiol,2003,132(2):709-17.
    [46]PILLAI R S, BHATTACHARYYA S N, ARTUS C G, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells [J]. Science,2005, 309(5740):1573-6.
    [47]HWANG H W, MENDELL J T. MicroRNAs in cell proliferation, cell death, and tumorigenesis [J]. Br J Cancer,2006,94(6):776-80.
    [48]CHENG A M, BYROM M W, SHELTON J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis [J]. Nucleic Acids Res,2005,33(4):1290-7.
    [49]CROCE C M, CALIN G A. miRNAs, cancer, and stem cell division [J]. Cell, 2005,122(1):6-7.
    [50]MA L, TERUYA-FELDSTEIN J, WEINBERG R A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer [J]. Nature,2007,449(7163):682-8.
    [51]HOFACKER I L. How microRNAs choose their targets [J]. Nat Genet,2007, 39(10):1191-2.
    [52]JOHN B, ENRIGHT A J, ARAVIN A, et al. Human MicroRNA targets [J]. PLoS Biol,2004,2(11):e363.
    [53]LI D, LIU X, LIN L, et al. MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma [J]. J Biol Chem,2011,286(42):36677-85.
    [54]DOGHMAN M, EL WAKIL A, CARDINAUD B, et al. Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors [J]. Cancer research,2010,70(11):4666-75.
    [55]SHI W, ALAJEZ N M, BASTIANUTTO C, et al. Significance of Plkl regulation by miR-100 in human nasopharyngeal cancer [J]. International journal of cancer, 2010,126(9):2036-48.
    [56]PETRELLI A, PERRA A, SCHERNHUBER K, et al. Sequential analysis of multistage hepatocarcinogenesis reveals that miR-100 and PLK1 dysregulation is an early event maintained along tumor progression [J]. Oncogene,2012,
    [57]KNOWLES M A. Novel therapeutic targets in bladder cancer:mutation and expression of FGF receptors [J]. Future Oncol,2008,4(1):71-83.
    [58]SCHEDEL F, PRIES R, THODE B, et al. mTOR inhibitors show promising in vitro activity in bladder cancer and head and neck squamous cell carcinoma [J]. Oncol Rep,2011,25(3):763-8.
    [59]METALLI D, LOVAT F, TRIPODI F, et al. The insulin-like growth factor receptor I promotes motility and invasion of bladder cancer cells through Akt-and mitogen-activated protein kinase-dependent activation of paxillin [J]. Am J Pathol,2010,176(6):2997-3006.
    [60]JOYCE E F, PEDERSEN M, TIONG S, et al. Drosophila ATM and ATR have distinct activities in the regulation of meiotic DNA damage and repair [J]. J Cell Biol,2011,195(3):359-67.
    [61]SONG B, LIU X S, LIU X. Polo-like kinase 1 (Plkl):an Unexpected Player in DNA Replication [J]. Cell Div,2012,7(1):3.
    [62]STREBHARDT K, ULLRICH A. Targeting polo-like kinase 1 for cancer therapy [J]. Nature reviews,2006,6(4):321-30.
    [63]LIU L, ZHANG M, ZOU P, et al. [Effect of PLK1 gene silence on cell cycle, proliferation and drug resistance in K562/A02 cells] [J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2006,14(2):241-6.
    [64]RIZKI A, MOTT J D, BISSELL M J. Polo-like kinase 1 is involved in invasion through extracellular matrix [J]. Cancer research,2007,67(23):11106-10.
    [65]WU Z Q, YANG X, WEBER G, et al. Plkl phosphorylation of TRF1 is essential for its binding to telomeres [J]. J Biol Chem,2008,283(37):25503-13.
    [66]ANDO K, OZAKI T, YAMAMOTO H, et al. Polo-like kinase 1 (Plkl) inhibits p53 function by physical interaction and phosphorylation [J]. J Biol Chem,2004, 279(24):25549-61.
    [67]YIM H, ERIKSON R L. Polo-like kinase 1 depletion induces DNA damage in early S prior to caspase activation [J]. Mol Cell Biol,2009,29(10):2609-21.
    [68]WOLF G, ELEZ R, DOERMER A, et al. Prognostic significance of polo-like kinase (PLK) expression in non-small cell lung cancer [J]. Oncogene,1997, 14(5):543-9.
    [69]TAKAHASHI T, SANO B, NAGATA T, et al. Polo-like kinase 1 (PLK1) is overexpressed in primary colorectal cancers [J]. Cancer Sci,2003,94(2): 148-52.
    [70]WEICHERT W, KRISTIANSEN G, WINZER K J, et al. Polo-like kinase isoforms in breast cancer:expression patterns and prognostic implications [J]. Virchows Arch,2005,446(4):442-50.
    [71]WEICHERT W, SCHMIDT M, GEKELER V, et al. Polo-like kinase 1 is overexpressed in prostate cancer and linked to higher tumor grades [J]. Prostate,2004,60(3):240-5.
    [72]STREBHARDT K, KNEISEL L, LINHART C, et al. Prognostic value of pololike kinase expression in melanomas [J]. JAMA,2000,283(4):479-80.
    [73]MITO K, KASHIMA K, KIKUCHI H, et al. Expression of Polo-Like Kinase (PLK1) in non-Hodgkin's lymphomas [J]. Leuk Lymphoma,2005,46(2):225-31.
    [74]YAMAMOTO Y, MATSUYAMA H, KAWAUCHI S, et al. Overexpression of polo-like kinase 1 (PLK1) and chromosomal instability in bladder cancer [J]. Oncology, 2006,70(3):231-7.
    [75]ZHANG Z, ZHANG G, KONG C. High expression of polo-like kinase 1 is associated with the metastasis and recurrence in urothelial carcinoma of bladder [J]. Urol Oncol,2011,
    [76]FENG B, WANG R, CHEN L B. MiR-100 resensitizes docetaxel-resistant human lung adenocarcinoma cells (SPC-A1) to docetaxel by targeting Plkl [J]. Cancer Lett,2012,317(2):184-91.
    [77]LI B H, ZHOU J S, YE F, et al. Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein [J]. Eur J Cancer,2011,47(14):2166-74.
    [78]MROSS K, FROST A, STEINBILD S, et al. Phase I dose escalation and pharmacokinetic study of BI 2536, a novel Polo-like kinase 1 inhibitor, in patients with advanced solid tumors [J]. J Clin Oncol,2008,26(34):5511-7.
    [79]QIAN Y, HUA E, BISHT K, et al. Inhibition of Polo-like kinase 1 prevents the growth of metastatic breast cancer cells in the brain [J]. Clin Exp Metastasis,2011,28(8):899-908.
    [80]SETH S, MATSUI Y, FOSNAUGH K, et al. RNAi-based therapeutics targeting survivin and PLK1 for treatment of bladder cancer [J]. Mol Ther,2011,19(5) 928-35.
    [81]BUDMAN L I, KASSOUF W, STEINBERG J R. Biomarkers for detection and surveillance of bladder cancer [J]. Can Urol Assoc J,2008,2(3):212-21.
    [82]STEFANI G, SLACK F J. Small non-coding RNAs in animal development [J]. Nat Rev Mol Cell Biol,2008,9(3):219-30.
    [83]LU J, GETZ G, MISKA E A, et al. MicroRNA expression profiles classify human cancers [J]. Nature,2005,435(7043):834-8.
    [84]JANNOT G, SIMARD M J. Tumour-related microRNAs functions in Caenorhabditis elegans [J]. Oncogene,2006,25(46):6197-201.
    [85]MANIKANDAN J, AARTHI J J, KUMAR S D, et al. Oncomirs:the potential role of non-coding microRNAs in understanding cancer [J]. Bioinformation,2008, 2(8):330-4.
    [86]CHO W C. OncomiRs:the discovery and progress of microRNAs in cancers [J]. Molecular cancer,2007,6(60.
    [87]HUANG Z, HUANG D, NI S, et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer [J]. International journal of cancer,2010,127(1):118-26.
    [88]ASAGA S, KUO C, NGUYEN T, et al. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer [J]. Clin Chem,2011,57(1): 84-91.
    [89]ZHANG H L, YANG L F, ZHU Y, et al. Serum miRNA-21:Elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy [J]. Prostate,2011,71(3):326-31.
    [90]XIE Y, TODD N W, LIU Z, et al. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer [J]. Lung Cancer,2010,67(2):170-6.
    [91]PARK N J, ZHOU H, ELASHOFF D, et al. Salivary microRNA:discovery, characterization, and clinical utility for oral cancer detection [J]. Clin Cancer Res,2009,15(17):5473-7.
    [92]BARANISKIN A, KUHNHENN J, SCHLEGEL U, et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system [J]. Blood,2011,117(11):3140-6.
    [93]YAMADA Y, ENOKIDA H, KOJIMA S, et al. MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma:correlation with stage and grade, and comparison with urinary cytology [J]. Cancer Sci, 2011,102(3):522-9.
    [94]WEBER J A, BAXTER D H, ZHANG S, et al. The microRNA spectrum in 12 body fluids [J]. Clin Chem,2010,56(11):1733-41.
    [95]PUERTA-GIL P, GARCIA-BAQUERO R, YUANYUAN JIA A, et al. miR-143, miR-222, and miR-452 Are Useful as Tumor Stratification and Noninvasive Diagnostic Biomarkers for Bladder Cancer [J]. Am J Pathol,2012,
    [96]ZEN K, ZHANG C Y. Circulating MicroRNAs:a novel class of biomarkers to diagnose and monitor human cancers [J]. Med Res Rev,2012,32(2):326-48.
    [97]CARLSSON J, HELENIUS G, KARLSSON M, et al. Validation of suitable endogenous control genes for expression studies of miRNA in prostate cancer tissues [J]. Cancer Genet Cytogenet,2010,202(2):71-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700