用户名: 密码: 验证码:
千岛湖保水渔业及其对湖泊生态系统的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
千岛湖,位于人口稠密经济发达的长江三角洲地区西南缘,是我国的一座特大型水库,在水力发电、水资源供应、旅游、防洪和水产养殖等多方面发挥着重要作用。千岛湖的生态环境,不但是区域社会和经济发展的支柱,同时也对保障钱塘江中下游的环境质量和水体功能具有举足轻重的意义。尽管其面积(583km~2)仅为太湖的约1/4,但其储蓄的水量(176×10~8m~3)却在太湖的3倍以上,因此在水体富营养化日益严重、许多城市纷纷面临水质型缺水的长江三角洲地区,千岛湖的水资源日显珍贵。此外,千岛湖生态系统还要为10,442 km~2流域的社会发展无可推卸地继续承担污染物净化等生态服务,维护和保障千岛湖生态系统的健康和稳定具有重要意义。
     近几十年来,虽然和我国的大多数湖泊(水库)一样,随着社会的发展,输入千岛湖的营养物也在不断增加,从而构成了对水体生态系统持续不断的环境压力。但是,和许多其他湖泊不同的是,千岛湖的水环境保护一直受到了当地政府和人民的高度重视,不但点源污染得到了很好的控制,而且千岛湖周围培植的茂密森林,也极大地削减了输入千岛湖的各种面源污染,从而得以使千岛湖的水质长期以来一直保持在国家Ⅰ类地表水标准。
     然而就是环境如此优异的千岛湖,还是在1998、1999年连续2年暴发了大面积的蓝藻水华,并使水质产生了严重异味,从而引起了社会各界对千岛湖水环境保护的广泛关注和重视。水华的暴发也使湖泊渔业发展和水环境保护的关系问题再次成为争议的焦点。湖泊的渔业发展因此面临了生死存亡的抉择。
     为了探寻千岛湖生态健康迅速恶化的成因,解决湖泊渔业发展和环境保护的矛盾,本研究以千岛湖各种历史资料为依据,对千岛湖水华的形成原因进行了深入的探讨,提出了对千岛湖水华形成机制的全新认识;在此基础上本研究也提出了以水环境保护为目的而开展渔业利用的保水渔业基本构想,并在千岛湖开展了长达数年的原位实验研究。同时,针对千岛湖生态学研究历史资料相对缺乏的现状,又开展了对千岛湖的基础生态学研究,就千岛湖的各种理化环境因子和生物群落特征进行了深入的调查,特别是对千岛湖的各种生态因子的垂直变动规律进行了探究,从而弥补了千岛湖这些方面研究的历史空白。同时,这些研究结果,不但为了解实施保水渔业对千岛湖的影响提供了佐证,同时也为了解和预测千岛湖生态系统的发育和演化提供了历史资料,为千岛湖水环境和渔业的科学管理和
Lake Qiandaohu, located at the southwest edge of the Chinese most populated and economically developed Region, the Yangtze Delta, is one of the largest reservoirs in China. It has been playing a significant role in electric power generating, water supply, tourism, flood prevention and fishery etc., since its foundation in 1959. The lake ecosystem, not only serves as the underpinning to the regional social and economical development, but is also of great significance to assure the better environment quality and the water function of the mid-lower reaches of the Qiantangjiang River. The volume of L. Qiandaohu (176×10~8 m~3) is over 3 times as large as that of Lake Taihu, the Chinese third largest lake in the same region, though its surface area (583 km~2) is only about 1/4 of Lake Taihu. Thus water resources in L. Qiandaohu are becoming even more important, due to the widely water shortage faced in the region caused by poor water quality resulted from the increasing aquatic eutrophication. In addition, the lake ecosystem would inevasibly continue the ecological service such as pollutants purification etc. to the whole 10,442 km~2 drainage basin. So it is important to maintain and safeguard the health and stability of the lake ecosystem.In the recent decades, L. Qiandaohu, like most other lakes (and/or reservoirs) in China, has been continually challenged by the increasing influx of allochthonous nutrients, as the social development such as the rapid growth of human population, urbanization, and the development of both agriculture and industry. However, the stress of L. Qiandaohu by the increasing nutrients loading has been greatly reduced by the continual efforts paid by the local government and people through the control of point source of pollution and the shrinkage of non-point source of pollution by establishing forests round the lakes, which is quite different from most other lakes. It is these efforts that make the lake water quality to be continually maintained at the national surface water Class I.Unfortunately, even in such well-protected Lake Qiandaohu, a large algal (cyanobacterial) bloom had still repeatedly occurred in 1998 and 1999 and produced severe off-flavors to the water, which stimulated a wide concern for the better protection of lake environment and an urgent call for the exploration to the possible
    cause of algal bloom and the corresponding technology of bloom control and prevention. The repeated outbreak of algal bloom also made the relationship between lake fishery development and aquatic environment protection to be the focus of dispute. "To be, or not to be", it was then a question for the lake fishery.In order to explore the cause of the rapid ecological deterioration of the lake ecosystem, and to find out a solution to harmonize lake fishery and environment protection, this study, based on historical data, made a scrutiny to all the blooming-related ecological factors and finalized a hypothesis to interpret the ecological mechanism of algal bloom occurred in the lake. This new interpretation of algal bloom mechanism, led us to the formulation of the theory, which we called aquatic environment protection oriented (AEPO) fishery, to develop lake fishery for the purpose of environment protection, that is, to improve the balance between top down and bottom up effects for the algae by stocking filter feeding Chinese carps, the silver carp and bighead carp for algal bloom prevention. We tested this theory by using an in-situ experiment in the lake in years. Meanwhile, due to the shortage of historical ecological study in the lake, a further ecological study on the basic chemophysical environment, and plankton community was carried out, especially the vertical variations of the major parameters were investigated, which not only supplied a gap to the ecological study of the lake, but also served as an evident of the effects resulted from the trial experiment of AEPO fishery in the lake. Besides, it would no doubt serve for the future research as historical reference data to the better understanding o
引文
1.陈德富、韦肖杭、张敏等。千岛湖银鱼调查报告。广西水产科技。2003,1:65-70
    2.陈洪达。养鱼对东湖生态系统的影响。水生生物学报。1989,13(4):359-368.
    3.陈洪达。三、放养草鱼对东湖生态系统的影响。见:刘建康主编,东湖生态学研究(一)。北京:科学出版社。1990,388-394。
    4.陈马康、童合一、俞泰济等。钱塘江鱼类资源。上海科学技术文献出版社。1990。
    5.陈清潮。我国海洋鱼类资源面临的问题和出路。南海研究与开发。2001,1:45-47。
    6.陈宜瑜。序。见:梁彦龄、刘伙泉主编,草型湖泊资源、环境与渔业生态学管理(一)。北京:科学出版社。1994。
    7.董双林、李德尚。机械作用在鲢摄食、消化藻类中的作用。中国水产学会首届青年学术研讨会论文集。中国农业出版社,1994。
    8.杜宝汉,李永安。洱海鱼类多样性危机及解危对策。环境科学研究。2001,14(3):42-43,55.
    9.高志发、尤洋。太湖新银鱼食性。科学养鱼。1998,10:23。
    10.龚志军,谢平,阎云君.底栖动物次级生产力研究的理论与方法.湖泊科学.2001,13(1):79-88.
    11.韩伟明、胡水景、金卫等。千岛湖水环境质量调查与保护对策研究。环境科学研究。1997,10(6):20-26。
    12.何光喜,洪荣华,桑传其。千岛湖捕鳡渔具渔法研究。水利渔业。2002,22(5):39-40。
    13.何志辉。淡水生态学。北京:中国农业出版社。2000。
    14.胡鸿钧,中国淡水藻类。上海科学技术出版社。1980。
    15.胡著邦、徐建民、全为民。模糊评价法在湖泊富营养化评价中的应用。农业环境保护,2002,21(6):535-536,539.
    16.黄根田、谢平。武汉东湖鱼类群落结构的变化及其原因的分析。水生生物学报,1996,20(增刊):38-46。
    17.蒋燮治、堵南山,中国动物志,淡水枝角类,科学出版社,1979。
    18.金相灿,屠清英。湖泊富营养化调查手册(第二版)。北京:中国环境科学出版社。1990。
    19.金相灿,刘树坤,章宗涉等。中国湖泊环境(第一册)。北京:海洋出版社。[M]1995a。291-301。
    20.金相灿,刘树坤,章宗涉等。中国湖泊环境(第三册)。北京:海洋出版社。[M]1995b。
    21.李共国,虞左明。千岛湖枝角类的群落结构。浙江万里学院学报。2001,14(2):51-55.
    22.李共国,虞左明。千岛湖浮游动物的群落结构。生态学报。2002a,22(2):156-162.
    23.李共国,虞左明。大型深水湖泊——千岛湖枝角类的多样性。2002b,37(3):41-44.
    24.李共国,虞左明。浙江千岛湖桡足类的群落结构。生物多样性。2002c,10(3):305-310.
    25.李共国,虞左明。千岛湖轮虫群落结构及水质生态学评价。湖泊科学。2003,15(2):169-176.
    26.李共国,虞左明,方志发。千岛湖浮游动物多样性的时空变化。当代生态农业。2001,3:69-71.
    27.李琪,李德尚,熊邦喜等。放养鲢鱼(Hypophthalmichthys molitrix)对水库围隔浮游生物群落的影响。生态学报,1993。13:30-37。
    28.李思发、周碧云、凌去非。新安江水库主要经济鱼类的产量和生长。亚洲水产科学,1990。(又见:新安江水库渔业科技,第一集,1960-1990,浙江省淳安县水产局、浙江省淳 安县新安江开发公司等)
    29.林颂光、徐成钰、杨绍光。新安江水库渔业资源调查。淡水渔业。1974,11:。
    30.林玉娣,俞顺章,徐明等。无锡太湖水域藻类毒素污染与人类健康关系研究。上海预防医学。2003,15(9):435-437
    31.刘建康。东湖生态学研究(一)。北京:科学出版社。1990。
    32.刘建康。东湖生态学研究(二)。北京:科学出版社。1995。
    33.刘建康,谢平。揭开武汉东湖蓝藻水华消失之谜。长江流域资源与环境。1999。8(3):312-314。
    34.刘其根、沈建忠、陈马康等。天然经济鱼类小型化问题的研究进展。上海水产大学学报。2005,14(1):74-78。
    35.刘瑞秋、张水元。西凉湖水质理化特性及其渔业评价。见:梁彦龄、刘伙泉主编,草型湖泊资源、环境与渔业生态学管理。北京:科学出版社。1995,48-60。
    36.刘衢霞,张水元。湖水的理化性质。见:刘建康主编,东湖生态学研究(一)。北京:科学出版社。1990,10-46.
    37.刘正文、朱松泉。滇池产太湖新银鱼食性与摄食行为的初步研究。动物学报。1994,40(3):253-261.
    38.陆开宏、晏维金、苏尚安。富营养水体治理与修复的环境生态工程——利用明矾浆和鱼类控制桥墩水库蓝藻水华。环境科学学报,2002,22:732-737。
    39.罗仙池.千岛湖银鱼资源变动的基本规律。科学养鱼。2001,11:27-28。
    40.罗仙池、吴振兴。千岛湖黄尾密鲴年龄与生长的初步研究。浙江水产学院学报。1994,13(3):210-213.
    41.罗仙池、吴振兴、何斌超等。千岛湖黄尾密鲴产卵场及繁殖生态条件。水产科技情报。1993,20(4):173-176.
    42.吕焕春,陈英旭,方志发等。千岛湖水体营养物质的主导因子分析。农业环境保护。2002,21(4):318-321。
    43.吕焕春,陈英旭,虞左明等。千岛湖水体主要污染物动态变化及其成因分析。浙江大学学报(农业与生命科学版)。2003,29(1):87-92.
    44.吕焕春,王飞儿,陈英旭等。千岛湖水体叶绿素a与相关环境因子的多元分析。应用生态学报。2003,14(8):1347-1350.
    45.吕勋治。刺鳃的食性分析和生长繁殖。动物学杂志。1976,4:75-76.
    46.马国备。新安江水库渔业生产的回顾和现状。水利渔业。1982,1:
    47.倪乐意。武汉东湖水生植被退化过程机理和恢复生态学。中国科学院水生生物研究所博士学位论文。1997。
    48.秦伯强,胡维平,陈伟民等。太湖水环境演化过程与机理。北京:科学出版社。2004。
    49.全为民。千岛湖富营养化评价及其模型应用研究。浙江大学硕士研究生学位论文。2002。
    50.全为民,严力蛟、沈新强。磷模型在千岛湖水体污染预测中的应用研究。生物数学学报。2004,19(1):98-102。
    51.饶钦止、章宗涉。武汉东湖浮游植物的演变(1955-1975年)和富营养化问题。水生生物集刊。1980,7:1-17.
    52.阮景荣、戎克文、王少梅。鲢、鳙对微型生态系统结构与功能的影响。见:刘建康主编:东湖生态学研究(二)。北京:科学出版社。1995,360-375。
    53.史为良、金文洪。放养鲢鳙对水体富营养化的影响。大连水产学院学报。1989,4(3):11-23.
    54.宋兵。太湖渔业和环境的生态系统模型研究。华东师范大学博士学位研究论文。2004。
    55.隋海霞,陈艳,严卫星等。淡水湖泊中微囊藻毒素的污染。中国食品卫生杂志。2004, 16(2):112-114。
    56.孙燕生。水獭的生物学特性及其捕杀方法的研究。水利渔业。1986,2:26-29.
    57.孙燕生。野生鸬鹚的生物学特性及其捕杀方法的研究。水利渔业。1987,2:43-47。
    58.孙燕生。新安江水库水鸟的种类及其对鱼类资源的影响。渔业经济研究。1988,2:12-16。
    59.谭玉均、李家乐、康春晓。利用隔离水界研究池塘施磷肥的效果和鲢、鳙控制水域富营养化的作用。见:朱学宝、施正峰主编,中国鱼池生态学研究。上海科学技术出版社。1995,10-19。
    60.仝龄,唐启升,Pauly D.渤海生态通道模型初探.应用生态学报.2000,11(3):435-440.
    61.王飞儿,吕焕春,陈英旭等。千岛湖叶绿素a浓度动态变化及其影响因素分析。浙江大学学报(农业与生命科学版)。2004,30(1):22-26.
    62.王骥、梁彦龄。保安湖着生藻类结构与丰度的初步研究。见:梁彦龄、刘伙泉主编。草型湖泊资源、环境与渔业生态学管理(一)。北京:科学出版社。1995,109-119。
    63.王建、王骥。浮游植物叶绿素和脱镁叶绿素的测定方法。武汉植物学研究。1984,2:321-328.
    64.王苏民、窦鸿身。中国湖泊志。北京:科学出版社。1998。
    65.王苏民等,岱海:湖泊环境和气候变化。合肥:中国科学技术大学出版社。1990。
    66.王炜、余卫东。千岛湖蓝藻生物量制约因素分析。云南环境科学。2002,21(4):44-46.
    67.王炜、方志发、余卫东。千岛湖蓝藻密度制约因素分析。黑龙江环境通报。2003,27(2):60-63.
    68.王玉纲。滆湖青虾种群结构及其数量变动的初步研究。见:朱成德、王玉纲、余宁主编,滆湖渔业高产模式及生态渔业研究论文集。北京:中国农业出版社。1997,198-202。
    69.吴常文、王伟宏。浙江近海棘头梅童鱼分布生物学和资源动态研究。海洋渔业。1991,13(1):6-10。
    70.伍献文,王祖熊,饶钦止等。五里湖1951年湖泊学调查。水生生物学集刊。1962,1:63-113。
    71.项卫民、蔡茂胜、徐田祥等。千岛湖银鱼资源下降的原因分析与增殖途径探讨。科学养鱼。2002,11:6-7。
    72.谢平。鲢、鳙与藻类水华控制。北京:科学出版社。2003。
    73.闫云军,梁彦龄。扁担塘底栖动物群落的能量流动。生态学报。2003,23(3):527-538.
    74.杨清心。太湖水华成因及控制途径初探。湖泊科学。1996,8(1):67-74.
    75.杨秋玲、刘其哲。我国湖泊渔业存在的问题及其发展途径。淡水渔业。1992。2:43-45,26。
    76.严力蛟、焦荔、金晓辉等。千岛湖水体营养主控因素分析。当代生态农业。2001,3:89-93.
    77.严力蛟、俞新华、方志发。影响千岛湖的主要环境问题和富营养化防治对策。当代生态农业。2001,3:94-96.
    78.严力蛟、虞左明、黄迅刃。千岛湖浮游藻类的群落结构与优质种。当代生态农业。2001,3:84-88.
    79.余宁、陆全平、周刚。滆湖红鳍鲌和黄颡鱼的生物学及食物生态位特征的初步研究。见:朱成德,王玉纲、余宁。滆湖渔业高产模式及生态渔业研究论文集。中国农业出版社。1997,191-197。
    80.张国华,曹文宣,陈宜瑜。湖泊放养渔业对我国湖泊生态系统的影响。水生生物学报。1997,21(3):271-280。
    81.张觉民,何志辉。内陆水域渔业自然资源调查手册。农业出版社。[M]1991:12-169
    82.张水元,刘瑞秋。保安湖水化学特性及其动态。见:梁彦龄、刘伙泉主编,草型湖泊资 源、环境与渔业生态学管理。北京:科学出版社。1995,23-47。
    83.张雅燕、吴志旭、朱溆君。千岛湖藻类及相关环境因子多元线性回归和鱼腥藻预测模型的建立。中国环境监测。2002,18(3):37-41。
    84.章宗涉、黄祥飞。浮游生物研究方法。北京:科学出版社。1991。
    85.朱成德,王玉纲、余宁。滆湖渔业高产模式及生态渔业研究论文集。中国农业出版社。1997,1-256
    86.中国科学院动物研究所甲壳动物研究组,中国动物志(淡水桡足类)。北京:科学出版社。1979。
    87.中国科学院水生生物研究所洪湖课题组著。洪湖水体生物生产力综合开发及湖泊生态环境优化研究.北京:海洋出版社.1991.
    88. Andersson G, Berggren H, Cronberg G, et al. Effects of planktivorous and benthivorous fish on organisms and freshwater chemistry in eutrophic lakes. Hydrobiologia. 1978, 59: 9-15.
    89. Arias-Gonzalez J E, Nunez-Lara E, Gonzalez-Salas C, et al. Trophic models for investigation of fishing effect on coral reef ecosystems. Ecological Modelling. 2004, 172: 197-212.
    90. Barel, C. D. N., Dorit R., Greenwood P. H. et al. Destruction of fisheries in Africa's lakes. Nature. 1985, 315(2): 19-20.
    91. Beverton R J H and Holt S J. On the dynamics of exploited fish populations. Chapman and Hall, London. 1957, 533p.
    92. Blanchard J L, Pinnegar J K and Mackinson S. Exploring marine mammal-fishery interactions using "Ecopath with Ecosim": modeling the Barents Sea ecosystem. Sci. Ser. Tech Rep., CEFAS Lowestoft. 2002, 117: 52.
    93. Bortsford L W, Castilla J C and Peterson C H. The management of fisheries and marine ecosystems. Science. 1997, 277: 509-515.
    94. Brando V E, Ceccarelli R, Libralato S, Ravagnan, G. Assessment of environmental management effects in a shallow basin using mass-balance models. Ecol. Model. 2004, 172, 213-232.
    95. Brett J R and Groves T D D. Physiological energetics. In: fish Physiology(Hoars W S eds). New York: Academic Press. 1979, 8: 279-352.
    96. Brey T. Estimating production of macrobenthic invertebrates from biomass and mean individual weight. Meeresforsch, 1999, 32: 329-343.
    97. Brooks J. L. and Dodson S. I. Predation, body size, and composition of plankton. Science. 1965, 150: 28-35.
    98. Burke J S, Bayne D R and Rea H. Impact of silver and bighead carp on plankton communities of channel catfish pond. Aquaculture. 1986, 55: 59-68.
    99. Burn C W. Direct observation of mechanisms regulating feeding behavior of Daphnia in lake water. Int. Revue ges. Hydrobiol. 1968, 55: 59-68.
    100. Caddy J F, Csirke J, Garcia S M and Grainger, R J R. How pervasive is "Fishing down marine food webs". Science. 1998, 282: 1839.
    101. Caddy J F and Cochrane K L. A review of fisheries management past and present and some future perspectives for the third millennium. Ocean and Coastal Management. 2001, 44: 653-682.
    102. Cao G. The definition of the niche by fuzzy set theory. Ecological Modelling. 1995, 77: 65-71.
    103. Carlson R E. A trophic state index for lakes. Limnology and Oceanography. 1977, 22: 361-369.
    104. Carpenter S R, Kitchell J F, Hodgson J R, et al. Regulation of lake primary productivity by food web structure. Ecology. 1987, 68: 1863-1876.
    105. Carrer S and Opitz S. Trophic network model of a shallow water area in the northern part of the lagoon of Venice. Ecol. Model. 1999, 124: 193-219.
    106. Christensen V. Ecosystem maturity-towards quantification. Ecol. Modelling. 1995, 77: 3-32.
    107. Christensen V. Fishery-induced changes in a marine ecosystem: insights for models of the Gulf of Thailand. J. of Fish Biol., 1998, 53 (Suppl A): 128-142.
    108. Christensen V and Pauly D. ECOPATH Ⅱ-a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol. Model. 1992a, 61: 169-185.
    109. Christensen V and Pauly D. A guide to the ECOPATH II software system (ver 2.1). ICLARM Software 6. 1992b.
    110. Christensen V and Pauly D. Trophic models of aquatic ecosystems. ICLARM Conference Proceedings No. 26. ICLARM Manila, Philippines. 1993, 390p.
    111. Christensen V and Pauly D. Placing fisheries in their ecosystem context, an introduction. Ecologica Modelling. 2004, 172: 103-107.
    112. Christensen V, Walters C J and Pauly D. Ecopath with Ecosim: a User's Guide, October 2000 Edition. Fisheries Centre, University of British Columbia, Vancouver, Canada and ICLARM, Penang, Malaysia. 2000, 130p.
    113. Cobb S E and Watzin M C. Trophic interactions between yellow perch (Perca flavescens) and their benthic prey in a littoral zone community. Can. J. Fish. Aquat. Sci. 1998, 55: 28-36.
    114. Dalsgaard J P T, Lightfoot C and Christensen V. Towards quantification of ecological sustainability in farming systems analysis. Ecological Engineering. 1995, 4: 181-189.
    115. Dayton P K, Aquatic Conservation: Marine and Freshwater Ecosystems, Wiley New York, 1995, 5, 205-232.
    116. DeMelo R., France R. and Mcqueen K. J. Biomanipulation: Hit or Mith? Limnol. Oceanogr. 1992, 37:192-207.
    117. Domaizon I and devaux J. Experimental study of the impacts of silver carp on plankton communities of eutrophic Villerest reservoir (France). Aqu. Ecol., 1999, 33: 193-204.
    118. Drenner R and Hambright K D. Review: biomanipulation of fish assemblages as a lake restoration technique. Arch. Hydrobiol. 1999, 146: 129-165.
    119. Drenner R and Hambright K D. Piscivores, trophic cascades, and lake management. Sci. World J, 2002, 2: 284-307.
    120. Elton C. Animal Ecology. MacMillan Company, New York. 1927.
    121. FAO. Aquaculture Production 1984~1993. FAO fisheries Circular. No. 815, FIDI/C 815(Rev. 1), FAO,Rome, 1995.
    122. FAO, Fisheries Series No. 40, Fisheries Statistics Series No. 111. 1993, 72.
    123. FAO. The State of World Fisheries and Aquaculture. Rome, Italy. 2002.
    124. Field J G, Wulff F, Mann K H. The need to analyze ecological networks. In: Wulff F, Field J G, Mann K H (eds.). Network Analysis in Marine Ecology: Methods and Applications. Coast. Estuar. Stud. Springer Verlag, Berlin. 1989, pp3-12
    125. Finn J T. Measurements of ecosystem structure and function derived from analysis of flows. J. Theor. Biol. 1976, 56: 363-380.
    126. Finn J T. Flow analysis of models of the Hubbard Brook ecosystem. Ecology. 1980, 6: 562-571.
    127. Froese R and Binohlan. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J. Fish. Biol. 2000, 56: 758-773.
    128. Gasalla M A and Rossi-Wongtschowski C L D B. Contribution of ecosystem analysis to investigating the effects of changes in fishing strategies in the South Brazil Bight coastal ecosystem. 2004, 172: 283-306.
    129. Geller W and Muller H. The filtration apparatus of Cladocera: filter mesh-sizes and their implications of food selectivity. Oecologia. 1981, 49: 316-321.
    130. Giller P S. Community structure and niche. Chapman and Hall, London. 1984.
    131. Gliwicz Z M. Food size selection and seasonal succession of filter feeding zooplankton in an eutrophic lake. Ekol. Pol. 1977, 25: 179-225.
    132. Gophen M. Biomanipulation: retrospective and future development. Hydrobiologia. 1990, 200/201:1-11.
    133. Grinell J. The niche relationships of the California Thrasher. Auk. 1917, 34: 427-433.
    134. Gulland, J A. Fish population dynamics. Wiley, Chichester, UK, 1977. 283-308.
    135. Halfon E, Schito N, Ulanowicz R E. Energy flow through the lake Ontario food web conceptual model and an attempt at mass balance. Ecological Modelling. 1996, 86: 1-36.
    136. Hannon B. The structure of ecosystems. J. Theor. Biol. 1973, 41: 535-546.
    137. Hannon B and Joiris C. A seasonal analysis of the southern North Sea ecosystem. Ecology. 1989, 70(6): 1916-1934.
    138. Hansson L A, Annadotter H, Bergman E, et al. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems. 1998, 1: 558-574.
    139. Hanson M A and Butler M G. Responses of plankton, turbidity, and macrophytes to biomanipulation in a shallow prairie lake. Can. J. Fish. Aquat. Sci. 1994, 51: 1180-1188.
    140. Hay M E. Patterns of fish and urchin grazing on Caribbean reef: Are previous results typical? Ecology. 1984, 65, 446-454.
    141. Herath G Freshwater algal blooms and their control: comparison of the European and Australian management. J. of Envir. Management. 1997, 51: 217-227.
    142. Heymans J J, Shannon L J and Jarre A. Changes in the northern Benguela ecosystem over three decades: 1970s, 1980s and 1990s. Ecological Modelling. 2004,172: 175-195.
    143. Heymans J J and Ulanowicz R E. Network analysis of the Everglades graminoid and cypress ecosystems. Ecological Modelling. 2002, 49(1/2): 5-23.
    144. Horppila J. and Kairesalo T. A fading recovery: the role of roach (Rutilus rutilus L.) in maintaining high phytoplankton productivity and biomass in Lake Vesijarvi, southern Finland. Hydrobiologia. 1990,200/201: 153-165.
    145. Hrbacek J, Dvorakova M., Korinek V and Prochazkova L. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton assemblage. Verh. Int. Ver. Theoret. Angew. Limnol. 1961, 14: 192-195.
    146. Hurlbert S H. The measurement of niche overlap and some relatives. Ecology. 1978, 59: 67-77.
    147. Hurlbert S. H., Zedler J. and Fairbanks D. Ecosystem alteration by mosquitofish (Gambusia affinis) predation. Science. 1972, 175: 639-641.
    148. Hutchings J A. Spatial and temoral variation in the density of northern cod and a review of hypotheses for the stock collapse. Can. J. Fish. Aquat. Sci. 1996, 53: 943-962.
    149. Hutchinson G E. Concluding remarks. Cold Spring Harbor Symposium. Quant. Biol., 1957, 22: 415-427.
    150. Jackson J, Kirby M, Berger W et al. Historical overfishing and the recent collapse of coastal ecosystems. Science. 2001, 293: 629-637.
    151. Januszko M. The effect of three species of phytophagous on algae development. Pol. Arch. Hydrobiol. 1974,21:431-454.
    152. Kajak Z, Rybak J I, Spodniewska I, et al. Influence of the planktonivorous fish Hypophthalmichthys molitrix (Val.) on the plankton and benthos of eutrophic lake. Pol. Arch. Hydrobiol. 1975, 22: 301-310.
    153. Karjalainen J, Leppa M, Rahkola M, et al. The role of benthivorous and planktivorous fish in a mesotrophic lake ecosystem. Hydrobiologia. 1999, 408/409: 73-84.
    154. Kitchell J F. Food web management: A case study of Lake Mendota. Wisconsin. Springer. 1992.
    155. Kitchell J F, Cox S P, Harvey C J, et al. Sustainability of the lake superior fish community: interactions in a food web context. Ecosystems. 2000, 3: 545-560.
    156. Krebs C J. Ecology: the experimental analysis of distribution and abundance (2~(nd) edition). Harper & Row, Publishers, New York. 1978.
    157. Lindeman R L. The trophic-dynamic aspect of ecology. Ecology. 1942,23: 399-418.
    158. Liu Q, Chen M, Tong H, et al. Study on the possible cause of water blooming and the bloom-prevention technology in Lake Qiandaohu. Agricultural Sciences in China. 2004, 3(8): 627-633.
    159. Liu Z. contribution to the ecology of icefish Neosalan taihuensis Zhang, a commercial exploited zooplanktivorous fish, in Xujiahe Reservoir (central China). PhD. thesis. University of Vienna, Austria. 2000, 1-106.
    160. Liu Z. Changes in abundance of the icefish Neosalan taihuensis Zhang (Salangidae) and the impact on the zooplankton community in Xujiahe Reservoir, central China. Hydrobiologia, 2001, 445: 193-198.
    161.Loman J. Use of overlap indices as competition coefficients: tests with field data. Ecol. Modelling. 1986, 34: 231-243.
    162. Lorenzen C J. Determination of Chlorophyll and Phaeopigments: spectrophotometric equations. Limnol. Oceanogr. 1967, 12: 343-346.
    163. Ludwig D, Hilborn R and Walters C. Uncertainty, Resource Exploitation and Conservation: Lessons from History. Science, 1993,260(17): 17-18.
    164. Luecke C, Vanni M J, Magnuson J J, et al. Seasonal regulation of Daphnia populations by planktivorous fish: implications for the spring clear-water phase. Limnol. Oceanogr. 1990, 35: 1718-1733.
    165. Mann K H and Breen P A. The relation between lobster abundance, sea urchins, and kelp beds. J Fish. Res. Bd. Can. 1972, 29, 603-605.
    166. McClanahan T R. A coral reef ecosystem-fisheries dodel: impacts of fishing intensity and catch selection on reef structure and processes. Ecol. Modelling. 1995, 80: 1-19.
    167. McQueen, D. J. Manipulating lake community structure: Where do we go from here? Freshwater Biology. 1990, 23: 613-620.
    168. Meijer M L, de Haan M W, Breukelaar A W, et al. Is reduction of the benthivorous fish an important cause of high transparence following biomanipulation in shallow lakes? Hydrobiologia. 1990, 200/201: 303-315.
    169. Meyers R A, Hutchings J A and barrowman N J. Why do fish stocks collapse? The example of cod in Eastern Canada. Ecol. Appl. 1997, 7: 91-106.
    170. Micheli F. Eutrophication, Fisheries, and Consumer-Resource Dynamics in Marine Pelagic Ecosystems. Sciene. 1999, 285: 1396-1398.
    171. Moreau J, Mavuti K, Daufresne T. A Synoptic Ecopath model of biomass flows during two different static ecological situations in Lake Nakuru(Kenya). Hydrobiologia. 2001, 458: 63-74.
    172. Moss B. Ecology of fresh waters. Blackwell Scientific Publications. 1980.
    173. Neira S, Arancibia H, Cubillos L. Comparative analysis of trophic interactions and community structure of the Central Chile marine ecosystem in 1992 and 1998. Ecol. Model. 2004, 172, 233-248.
    174. Northcote T G. Fish in the structure and function of freshwater ecosystem: a "top-down" view. Can. J. Fish. Aquat. Sci. 1988, 45: 361-379.
    175. Odum E P. The strategy of ecosystem development. Science. 1969, 104: 262-270.
    176. Odum E P. Fundamental Ecology. W B Saunders Co, Philadelphia. 1971, 574p.
    177. Odum W E and Heald E J. The detritus-based food web of an estuarine mangrove community. In: L E Cronin(ed.) Estuarine research, Vol. 1. Academic Press, New York. 1975, pp265-286.
    178. Opuszynski K. Silver carp, Hypophthalmichthys molitrix(Val.), in carp ponds, 3. Influence on ecosystem. Ekol. Pol. 1979, 27: 117-133.
    179. Opuszynski K and Shireman J V. Food habits, feeding behaviour and impact of triploid bighead carp, Hypophthalmichthys nobilis, in experimental ponds. J. Fish Biol. 1995, 42: 517-530.
    180. Pace M., Cole J., Carpenter S., et al. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature. 2004, 427(6971): 240-243.
    181. Palomares M. L. D. and D. Pauly. A multiple regression model for predicting the food consumption of marine fish populations. Journal of Marine and Freshwater Research. 1989, 40: 259-273.
    182. Palomares M. L. D. and D. Pauly. Predicting food consumption of fish populations as functions of mortality, food type, morphometrics, temperature and salinity. Mar. Freshwater Res. 1998, 49: 447-453.
    183. Park R A, O'Neill R V, Bloomfield J A, et al. A generalized model for simulating lake ecosystem. Simulation, 1974, 23: 33-50.
    184. Pauly D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. int. Explor. Mer. 1980, 39: 175-192.
    185. Pauly D, Christensen V, Dalsgaard J, et al. Fishing Down Marine Food Webs. Science, 1998, 279(6): 860-863.
    186. Pauly D, Christensen V and Waiters C. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. J. of Marine Science. 2000, 57: 697-706.
    187. Pauly, D., Soriano M and Palomares M L. On improving the construction, parametrization and interpretation of steady-state multi species models. In V. Christensen and D. Pauly(eds.) Trophic models of aquatic ecosystems. ICLARM Conference Proceedings. 1993, No. 26.90 p. ICLARM, Manila, Philippines.
    188. Perrow M R, Meijer M L, Dawidowicz P, et al. Biomanipulation in the shallow lakes-state of the art. Hydrobiologia. 1997, 342: 355-365.
    189. Pianka E R. The structure of lizard communities. Ann. Rev. Ecol. Syst. 1973, 4: 53-74.
    190. Pianka E R. Evolutionary Ecology. Harper and Row Publishers, New York, 1978.
    191. Pierce C L and Hinrichs B D. Response of littoral invertebrates to reduction of fish density: simultaneous experiments in ponds with different fish assemblages. Freshwater Biology. 1997, 37: 397-408.
    192. Pizzolon, L., B. Tracanna, and C. Prosperi. Cyanobacterial blooms in Argentinean inland waters. Lakes & Reservoirs: Research and Management. 1999, 4: 101-105.
    193. Polovina J J. Model of a coral reef ecosystems Ⅰ. The ECOPATH model and its application to French Frigate Shoals. Coral Reefs. 1984a, 3(1): 1-11.
    194. Polovina J J. An overview of the ECOPATH model. Fishbyte. 1984b, 2(2): 5-7.
    195. Radke R and Kahl U. Effects of a filter-feeding fish [silver carp, Hypophthalmicthys molitrix(Val.)] on phytoplankton in a mesotrophic reservoir: results from an enclosure experiment. Freshwater Biology. 2002, 47: 2337-2344.
    196. Richardson W B, Wickham, S. A., Threlkeld, S. T. Foodweb response to the experimental manipulation of a benthivore(Cyprinus carpio), a zooplanktivore(Menidia beryllina) and benthic insects. Arch. Hydrobiol. 1990, 119: 143-165.
    197. Sarkar R. R. and Chattopadhyay J. Occurrence of planktonic blooms under environmental fluctuations and its possible control mechanism—mathematical models and experimental observations[J]. J. of Theoretical Biology, 2003, 224: 501-516.
    198. Scavia D, Bloomfield J A, Fisher J S, et al. Documentatyion of CLEANX: a generalized model for simulating the open-water ecosystems of lakes. Simulation, 1974, 23: 51-56.
    199. Shannon L J, Cury P M, and Jarre A. Modelling effects of fishing in the Southern Benguela ecosystem. ICES Journal of Marine Science. 2000, 57: 720-722.
    200. Shapiro J Lamarra V and Lynch M. biomanipulation: an ecosystem approach to lake restoration. In: brezonik, P L and Fox J L (eds.), Proceeding of a Symposium on Water Quality Management through biological Control. University of Florida, Gainesville. 1975, 85-89.
    201. Shapiro J. and Wright D. I. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwater Biology. 1984, 14: 371-383.
    202. Siegfried W R. Rocky shores exploitation in Chile and South Africa. Springer-Verlag, Berlin. 1994
    203. Simenstad C A, Estes J A, Kenyon K W. Aleuts, sea otters and alternate stable-state communities. Science. 1978, 200(4340): 403-411.
    204. Smith D W. Biological control of extensive phytoplankton growth and the enhancement of aquaculture production. Can. J. Fish. Aquat. Sci. 1985, 42: 1940-1945.
    205. Smith D W. Phytoplankton and catfish culture: a review. Aquaculture. 1988, 74: 167-189.
    206. Smith D W. The feeding selectivity of siver carp, Hypophthalmichthys molitrix Val. J. Fish. Biol. 1989, 34: 819-828.
    207. Spataru P and Gophen M. Feeding behaviour of silver carp Hypophthalmichthys molitrix Val. and its impact on the food web in Lake Kinneret. Israel. Hydrobiologia, 1985, 120: 53-61.
    208. Starling F L R and Rocha A J A. Experimental study of the impacts of planktivorous fishes on plankton community and eutrophication of a tropical Brazilian reservoir. Hydrobiologia, 1990,200/201:581-591.
    209. Stokes T K, McGlade J M and Law R. The exploitation of Evolving Resources. Springer - Verlag, Berlin, 1993.2-18.
    210. Straskraba M. The effect of fish on the number of invertebrate in ponds and streams. Mitt. Int. Ver. Limnol. 1965, 13: 106-127.
    211. Ulanowicz R E. Growth and vevelopment: ecosystem phenomenology. Springer Verlag, New York. 1986, 203p.
    212. Ulanowicz R E. The part-whole relation in ecosystems. In Patten B C and Jorgensen (eds), Comples ecology. Prentice-Hall, Englewood Cliffs, New Jersey. 1995, pp549-560.
    213. Ulanowicz R E and Norden. Symmetrical overhead in flow and networks. Int. J. Systems Sci. 1990, 21(2): 429-437.
    214. Ulanowicz R E and Puccia C J. Mixed trophic impacts in ecosystems. Coenoses. 1990, 5: 7-16.
    215. Vasconcellos M, Mackinson S, Sloman K et al. The stability of trophic mass-balance models of marine ecosystems: a comparative analysis. Ecol. Model. 1997, 100: 125-134.
    216. Vitousek P M, Mooney H A, Lubechenco J et al. Human Domination of Earth's Ecosystems. Science. 1997, 277:494.
    217. Wang J. The models of niche and their application. Ecological Modelling. 1995, 80: 279-291.
    218. Wetzel, R G. Limnology. Philadelphia, London, Toronto. 1975.
    219. Wetzel R. G. Freshwater ecology: Changes, requirements, and future demands. Limnology. 2000,1:3-9.
    220. Winberg G G. Rate of metabolism and food requirements of fishes. Transl. Fish. Res. Board Can. 1956, 253.
    221. Wong A H, Williams D D, McQueen D J et al. Macroinvertebrate abundance in two lakes with contrasting fish communities. Arch. Hydrobiol. 1998, 141:283-302.
    222. Xie P. Gut contents of silver carp, Hypopthalmichthys molitrix, and the disruption of a centric diatom, Cyclotella, on passage through the esophagus and intestine. Aquaculture. 1999, 180: 295-305.
    223. Xie P. Gut content of bighead carp (Aristichthys nobilis) and the process and digestion of algal cells in the alimentary canal. Aquaculture. 2001, 195: 149-161.
    224. Xie P and Liu J. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms: a synthesis of decades of research and application in a subtropical hypereutrophic lake. Sci. World J. 2001, 1: 337-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700