用户名: 密码: 验证码:
基于亲水作用色谱和串联质谱联用的细胞分裂素分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然的细胞分裂素是七大植物激素的一种,在植物的生长和发育过程中起重要作用。它能够促进细胞分裂和分化,促进根的形成和生长,消除顶端优势,延缓叶片衰老等,几乎影响着植物体从胚胎形成到衰老的整个生长发育过程。精确测定植物组织中细胞分裂素的含量,对进一步了解细胞分裂素在植物体内的生物学作用意义重大。由于植物基质复杂,细胞分裂素含量少,植物体内各种酶的存在会导致细胞分裂素在几种形式之间不断转化、代谢和降解,对细胞分裂素的定性和定量分析困难重重。因此,寻找选择性好,灵敏度高的分析方法非常迫切。尽管近年来针对细胞分裂素的分析方法均有报道,但寻找更加简便、快速、实用的新方法依然是细胞分裂素分析的研究热点之一。本论文致力于开发新型的样品预处理方法和分离方法用于细胞分裂素的定量分析。主要内容如下:
     1.评述了细胞分裂素的研究概况,着重介绍了植物样品中细胞分裂素的样品制备、分离、检测技术以及目前分析科学领域新型的样品前处理方法和分离技术。
     2.采用P(AMPS-co-EGDMA)聚合物整体柱作为聚合物整体柱微萃取(PMME)的萃取介质对复杂植物样品中的细胞分裂素进行富集与纯化;并以硅胶柱为分离柱,首次建立了细胞分裂素的亲水作用色谱(HILIC)分离方法。PMME材料制备简单,操作简便,节省溶剂,萃取效率高;HILIC无需梯度洗脱,在等度洗脱下即可有效分离多种细胞分裂素及干扰物, HILIC模式下高有机溶剂含量的流动相很大程度上提高了与质谱联用的灵敏度;而以电喷雾串联质谱(ESI-MS/MS)为检测系统,更进一步提高了定性能力和分析灵敏度。我们将这种PMME-HILIC-MS/MS方法成功用于水稻、拟南芥、油菜中细胞分裂素的测定,为复杂植物样品中细胞分裂素的定量分析提供了一种可靠、实用的方法。
     3.采用C_(18)和混合模式(silica@C_8/SO_3H)SPE的串联组合,成功建立了一种简单、快速的一步固相萃取法用于定量分析植物组织中的内源性细胞分裂素。植物提取液在过C_(18)小柱除掉部分色素和酯类物质后,不经过浓缩和重新定容,即可直接在混合模式SPE柱上上样,并得到较高的回收率(绝对回收率>80%)。此方法避免了冗长的溶剂浓缩和多次活化步骤,可极大缩短前处理时间,实现快速、高效、高通量的萃取。
     4.在第三部分内容的基础上,建立了以P(MAA-co-EGDMA)聚合物整体柱为在线富集柱的的串联固相萃取-在线富集-亲水作用色谱串联质谱联用方法(tandem SPE-online trapping-HILIC-MS/MS)定量分析植物中的内源性细胞分裂素。基于自动进样器与双六通阀双泵的全自动在线富集系统,能够进一步除杂,并实现大体积上样,避免了因进样量受限而造成的样品损失,提高了检测灵敏度。串联固相萃取与在线富集系统的结合,在简化前处理步骤,加快前处理的速度的同时,将检测灵敏度提高了一个数量级以上。我们考察了此方法所需的最低植物用量,结果表明,仅需20mg甚至更少的植物样品即可对多种细胞分裂素准确定量。此方法的建立对研究植物激素代谢机制和生理机能等有较好的应用价值。
     5.制备了新型的Fe_3O_4/SiO_2/poly(AMPS-co-EGDMA)磁性聚合物并将其作为磁固相萃取介质(MSPE)用于细胞分裂素的富集。实验证明,合成的磁性聚合物具有大比表面和多孔结构,对细胞分裂素有较好的富集能力。MSPE的分散萃取模式可直接用于大体积液体样品中痕量细胞分裂素的分析,其磁分离能力使细胞分裂素的富集操作简便快速。MSPE与HILIC-MS/MS联用简单快速,可作为分析植物基质中细胞分裂素的常用方法。
Naturally occurring cytokinins (CKs) are a group of plant hormones whichregulate a wide variety of physiological and developmental processes in plants, suchas promotion of cell devision and differentiation, influence of shoot formation anddevelopment, control of apical dominace and leaf senescence. Accurate determinationof CKs in plant tissues is of great significance for in-depth understanding of theirbiological function. However, the complicated matrix of plant extracts, theextremely low concentration levels of CKs and the presence of enzymes, which canlead to the transformantion and degradation of CKs, make their quantificationbeseting with difficulties. Thus, a highly sensitive, selective and reliable method foridentification and quantification of CKs is particularly required. In recent reports,several technologies have been used in the fields of CKs analysis. However, todevelop simpler, quicker and more practical approaches are still the hotspots.
     In this dissertation, the author is devoted to the development of new samplepretreatment methods and separation technologies for CKs quantitative analysis.The major contents of this dissertation are described as follows:
     1. The development of CK analysis was reviewed. Emphasis is laid on thetechniques for sample preparation, separation and detection of CKs and theintroduction of new pretreatment methods and separation technologies in separationscience.
     2. A sensitive assay of CKs was developed using polymer monolithmicroextraction/hydrophilic interaction chromatography/electrospray ionization-tandem mass spectrometry (PMME/HILIC/ESI-MS/MS). The extraction wasperformed on a poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-ethylenedimethacrylate)(poly(AMPS-co-EDMA)) capillary monolith and the subsequentseparation was carried out on a Luna silica column in HILIC mode. PMME is a novelsolvent-free and convenient technique with small sample consumption, and HILICcan provide better separation with isocratic elution and higher sensitivity whencoupled with MS detector. Finally, the developed method was applied to the determination of CKs in various samples including Oryza sativa, Arabidopsis thalianaand oil seed rape and demonstrated to be an alternatively reliable and sensitive toolfor CKs studies.
     3. A simple and rapid one-step tandem solid phase extraction (SPE) method bycombining C_(18)and mixed mode SPE (silica@C8/SO_3H) was developed for thedetermination of CKs in plant samples. The tandem SPE offers a high recoverygreater than80%and an advantage for convenient analysis due to the compatibility ofthe extraction solvent (Bieleski solvent) for plant samples and the sampling solvent ofsilica@C8/SO_3H cartridge, which avoids the concentration of samples in a largevolume of modified Bieleski extraction solvent followed by a redissolving step andcan greatly reduce the time of sample preparation. This method can achieve rapid,efficient and high-throughput extraction toward CKs.
     4. Based on the third part, a rapid and highly sensitive analytical method for thedetermination of plant CKs was developed by employing tandem solid phaseextraction (C_(18)and silica@C8/SO_3H cartridges) and online trapping technique coupledwith HILIC-MS/MS (tandem SPE-online trapping-HILIC-MS/MS). Poly (methacrylicacid-ethylene glycol dimethacrylate)(poly(MAA-co-EGDMA) monolith and HILICwere used as the online trapping column and separation mode, respectively, whichimproved the detection sensitivity of CKs by at least one order of magnitudecompared with other previously reported methods. In this respect, only20mg of planttissue were required for simultaneous quantitative analysis of major CKs in plantsamples. Using this method we successfully determined the concentration of theendogenous CKs in three plant samples, which demonstrated the potential applicationof this method on the highly sensitive detection of CKs in small amount plant samplesfor the studies of plant metabolism and physiology.
     5. A2-acrylamido-2-methyl-1-propanesulfonic acid-co-ethylene glycoldimethacrylate magnetic copolymer (Fe_3O_4/SiO_2/poly(AMPS-co-EGDMA)) wasprepared and used as a magnetic solid phase extraction (MSPE) medium for recoveryof endogenous CKs from plant extracts. This magnetic porous polymer wasdemonstrated to have high extraction capacity toward CKs in plants due to its good specificity, large surface area and porous structure. The dispersion extraction mode ofMSPE can be directly used for analysis of large-volume sample solvents with traceCKs, and the magnetic property made the procedure simple and rapid. In addition,coupling with HILIC–MS/MS, a rapid, simple, and effective MSPE–HILIC–MS/MSanalytical method for the quantitative analysis of endogenous CKs in Oryza sativaroots was successfully established.
引文
[1] Santner, M. Estelle, Recent advances and emerging trends in plant hormone signalling.Nature,2009,459,1071-1078.
    [2] C. H. Darwin, F. Darwin, The Power of Movement in Plants (J. Murray, London,1880).
    [3] J. v. Sachs, Stoff und Form der Pflanzenorgane. Arb Bot Inst Wurzburg,1880,2,452–488.
    [4] H. Fitting, Die Beeinflussing der Orchideenblüten Durch die Best ubung und Durch AndereUmst nde. Zeitschrift für Botanik,1909,1,1-86.
    [5] H. Fitting, Weitere Entwicklungsphysiologische untersuchtungen an orchideenblüten.Zeitschrift für Botanik,1910,2,225-267.
    [6] T. A. McKeon, J. C. Fernandez-Maculet, S. F. Yang, Biosynthesis and metabolism of ethyleneP. J. Davies (Ed.), Plant Hormones: Physiology, Biochem. Mol. Biol, Kluwer AcademicPublishers, Dordrecht,1995,118–139.
    [7] O. S. Lau, X. W. Deng, Plant hormone signaling lightens up: integrators of light andhormones. Curr. Opin. Plant Biol.,2010,13,571-577.
    [8] M. A. López, G. Bannenberg, C. Castresana, Controlling hormone signaling is a plant andpathogen challenge for growth and survival. Curr. Opin. Plant Biol.,2008,11,420-427.
    [9] K. Yamaguchi-Shinozaki, K. Shinozaki, A novel cis-acting element in an arabidopsis gene isinvolved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell,1994,6,251-264.
    [10] L. A. C. J. Voesenek, J. H. G. M. Rijnders, A. J. M. Peeters, H. M. van de Steeg, H. de Kroon,Plant hormones regulate fast shoot elongation under water: from genes to communities.Ecology,2004,85,16-27.
    [11] R.Gane, Production of Ethylene by Some Ripening Fruits. Nature,1934,134,1008.
    [12] A. J. Haagen-Smit, W. D. Leech, W. R. Bergren, The estimation, isolation, and identificationof auxins in plant materials. Am. J. Botany,1942,29,500-506.
    [13] J. Macmillan, P. J. Suter, The occurrence of gibberellin-A1in higher plants-isolation from theseed of runner bean (phaseolus-multiflorus). Naturwissenschaften,1958,45,46-46.
    [14] M. J. Mac, C. Seaton J, J. Suter P, Isolation and structures of gibberellins from higher plants.in gibberellins. J. Am.Chem. Soc.,1961,28,18-25.
    [15] C.O. Miller, F. Skoog, M. H. V. Saltza, F. M. Strong, Kinetin, a cell division factor fromdeoxyribonucleic acid. J. Am. Chem. Soc.,1955,77,1392.
    [16] C. O. Miller, Cytokinins in zea mays. Ann. N.Y. Acad. Sci.,1967,144,251-257.
    [17] J. W. Cornforth, B. V. Milborrow, G. Ryback, Synthesis of (+/-)-Abscisin II. Nature,1965,206,715.
    [18] F. T. Addicott, J. L. Lyon, K. Ohkuma, W. E. Thiessen, H. R. Carns, O. E. Smith, Cornfort.Jw,Milborro.Bv, G. Ryback, P. F. Wareing, Abscisid acid–a new name for abscisin2(Dormin).Science,1968,159,1493.
    [19] M. D. Grove, G. F. Spencer, W. K. Rohwedder, N. B. Mandava, J. F. Worley, Brassionlide, aplant growth-promoting steroid isolated from Brassicanapus pollen. Nature,1979,281,216-217.
    [20] M. J. Thompson, W. J. Meudt, N. B. Mandava, S. R. Dutky, W. R. Lusby, D. W. Spaulding,Synthesis of brassinosteroids and relationship of structure to plant growth–promotion effects.Steroids,1982,39,89-105.
    [21] U. Ravid, R. Ikan, R. M. Sachs, Structures related to jasmonic acid and their effect onseedling growth. J. Agric. Food Chem.,1975,23,835-838.
    [22] J. Ueda, J. Kato, Isolation and identification of a senescence-promoting substance fromwormwood (Artemisia Absinthium L.). Plant Physiol.,1980,66,246-249.
    [23] F. W. Traphagen, E. Burke, Occurrence of salicylic acid in fruits. J. Am. Chem. Soc.,1903,25,242-244.
    [24] V. Gomez-Roldan, S. Fermas, P. B. Brewer, V. Puech-Pages, E. A. Dun, J.-P. Pillot, F. Letisse,R. Matusova, S. Danoun, J.-C. Portais, H. Bouwmeester, G. Becard, C. A. Beveridge, C.Rameau, S. F. Rochange, Strigolactone inhibition of shoot branching. Nature,2008,455,189-194.
    [25] M. Umehara, A. Hanada, S. Yoshida, K. Akiyama, T. Arite, N. Takeda-Kamiya, H. Magome,Y. Kamiya, K. Shirasu, K. Yoneyama, J. Kyozuka, S. Yamaguchi, Inhibition of shootbranching by new terpenoid plant hormones. Nature,2008,455,195-200.
    [26] G. PEARCE, D. STRYDOM, S. JOHNSON, C. A. RYAN, A polypeptide from tomato leavesinduces wound-inducible proteinase inhibitor proteins. Science,1991,253,895-897.
    [27] A. Santner, L. I. A. Calderon-Villalobos, M. Estelle, Plant hormones are versatile chemicalregulators of plant growth. Nat. Chem. Biol.,2009,5,301-307.
    [28] S. Depuydt, C. S. Hardtke, Hormone signalling crosstalk in plant growth regulation. Curr.Biol.,2011,21,365-373.
    [29] C. S. Hardtke, E. Dorcey, K. S. Osmont, R. Sibout, Phytohormone collaboration: zooming inon auxin–brassinosteroid interactions. Trends Cell Biol.,2007,17,485-492.
    [30] M. Nakaya, H. Tsukaya, N. Murakami, M. Kato, Brassinosteroids control the proliferation ofleaf cells of arabidopsis thaliana. Plant Cell Physiol.,2002,43,239-244.
    [31] P. J. Davies, The plant hormones: their nature, occurrence and functions. In Plant Hormones:Physiology, Biochemistry and Molecular Biology (Davies, P.J., ed.), Dordrecht, TheNetherlands: Kluwer Academic Publisher,1995,1-12.
    [32] F. Du, G. Ruan, H. Liu, Analytical methods for tracing plant hormones. Anal. Bioanal. Chem.,2012,403,55-74.
    [33] L. N. Mander, Twenty years of gibberellin research. Nat. Prod. Rep.,2003,20,49-69.
    [34] X. Q. Pan, X. M. Wang, Profiling of plant hormones by mass spectrometry. J. Chromatogr. B,2009,877,2806-2813.
    [35] U. K. Divi, P. Krishna, Brassinosteroid: a biotechnological target for enhancing crop yieldand stress tolerance. New Biotechnol.,2009,26,131-136.
    [36] J. M. Sasse, Physiological actions of brassinosteroids: an update. J. Plant Growth Regul.,2003,22,276-288.
    [37] G. E. Schaller, Ethylene and the regulation of plant development. B. M. C. Biol.,2012,10.
    [38] Y. Wang, L. Li, T. Ye, S. Zhao, Z. Liu, Y.-Q. Feng, Y. Wu, Cytokinin antagonizes ABAsuppression to seed germination of Arabidopsis by downregulating ABI5expression. Plant J.,2011,68,249-261.
    [39] J. Leung, J. Giraudat, Abscisic acid signal transducion. Annu. Rev. Plant Physiol. Plant Mol.Biol.,1998,49,199-222.
    [40] C. D. Rock, Tansley Review No.120. Pathways to Abscisic Acid-Regulated Gene Expression.New Phytol.,2000,148,357-396.
    [41] K. Shinozaki, K. Yamaguchi-Shinozaki, Molecular responses to dehydration and lowtemperature: differences and cross-talk between two stress signaling pathways. Curr. Opin.Plant Biol.,2000,3,217-223.
    [42] A. Stintzi, H. Weber, P. Reymond, J. Browse, E. E. Farmer, Plant defense in the absence ofjasmonic acid: The role of cyclopentenones. Proc. Natl. Acad. Sci. U. S. A.,2001,98,12837-12842.
    [43] J. Malamy, J. P. Carr, D. F. Klessig, I. Raskin, Salicylic acid: a likely endogenous signal inthe resistance response of tobacco to viral infection. Science,1990,250,1002-1004.
    [44] T. P. Delaney, S. Uknes, B. Vernooij, L. Friedrich, K. Weymann, D. Negrotto, T. Gaffney, M.Gut-Rella, H. Kessmann, E. Ward, J. Ryals, A central role of salicylic acid in plant diseaseresistance. Science,1994,266,1247-1250.
    [45] I. Raskin, Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1992,43,439-463.
    [46] J. Ross, D. O'Neill, New interactions between classical plant hormones. Trends Plant Sci.,2001,6,2-4.
    [47][47] M. Tanaka, K. Takei, M. Kojima, H. Sakakibara, H. Mori, Auxin controls local cytokininbiosynthesis in the nodal stem in apical dominance. Plant J.,2006,45,1028-1036.
    [48] H. Goda, S. Sawa, T. Asami, S. Fujioka, Y. Shimada, S. Yoshida, Comprehensive Comparisonof Auxin-Regulated and Brassinosteroid-Regulated Genes in Arabidopsis. Plant Physiol.,2004,134,1555-1573.
    [49] S. Gazzarrini, P. McCourt, Genetic interactions between ABA, ethylene and sugar signalingpathways. Curr. Opin. Plant Biol.,2001,4,387-391.
    [50] J. J. Ross, D. P. O'Neill, C. M. Wolbang, G. M. Symons, J. B. Reid, Auxin-gibberellininteractions and their role in plant growth. J. Plant Growth Regul.,2001,20,346-353.
    [51] M. Ashikari, H. Sakakibara, S. Lin, T. Yamamoto, T. Takashi, A. Nishimura, E. R. Angeles, Q.Qian, H. Kitano, M. Matsuoka, Cytokinin wxidase regulates rice grain production. Science,2005,309,741-745.
    [52] A. Sasaki, M. Ashikari, M. Ueguchi-Tanaka, H. Itoh, A. Nishimura, D. Swapan, K. Ishiyama,T. Saito, M. Kobayashi, G. S. Khush, H. Kitano, M. Matsuoka, Green revolution: A mutantgibberellin-synthesis gene in rice. Nature,2002,416,701-702.
    [53] C. Y. Wu, A. Trieu, P. Radhakrishnan, S. F. Kwok, S. Harris, K. Zhang, J. Wang, J. Wan, H.Zhai, S. Takatsuto, S. Matsumoto, S. Fujioka, K. A. Feldmann, R. I. Pennell, Brassinosteroidsregulate grain filling in rice. Plant Cell,2008,20,2130-2145.
    [54] K. Vermeulen, M. Strnad, L. Havl c ěk, H. Van Onckelen, M. Lenjou, G. Nijs, D. R. VanBockstaele, Z. N. Berneman, Plant cytokinin analogues with inhibitory activity oncyclin-dependent kinases exert their antiproliferative effect through induction of apoptosisinitiated by the mitochondrial pathway: Determination by a multiparametric flow cytometricanalysis. Exp. Hematol.,2002,30,1107-1114.
    [55]许智宏,李家洋,中国植物激素研究:过去、现在和未来.植物学通报,2006,23,433.
    [56] C. O. Miller, F. Skoog, F. S. Okumura, M. H. Von Saltza, F. M. Strong, Isolation, structureand synthesis of kinetin, a substance promoting cell division. J. Am. Chem. Soc.,1956,78,1375-1380.
    [57] D. S. Letham, Zeatin, a factor inducing cell division isolated from Zea mays. Life Sci.,1963,2,569-573.
    [58] P. I. Dobrev, M. Kaminek, Fast and efficient separation of cytokinins from auxin and abscisicacid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A,2002,950,21-29.
    [59] R. Durand, B. Durand, Cytokinins and reproductive organogenesis in Mercurialis.(eds) D. W.S. Mok, M. C, Mok. in Cytokinins: Chemistry, Activity, and Function.(CRC Press, BocaRaton, FL),1994,295–304.
    [60] O. Novak, P. Tarkowski, D. Tarkowska, K. Dolezal, R. Lenobel, M. Strnad, Quantitativeanalysis of cytokinins in plants by liquid chromatography-single-quadrupole massspectrometry. Anal. Chim. Acta,2003,480,207-218.
    [61] Y. K. Veach, R. C. Martin, D. W. S. Mok, J. Malbeck, R. Vankova, M. C. Mok,O-Glucosylation of cis-Zeatin in Maize. Characterization of Genes, Enzymes, andEndogenous Cytokinins. Plant Physiol.,2003,131,1374-1380.
    [62] R. J. N. Emery, L. Leport, J. E. Barton, N. C. Turner, C. A. Atkins, cis-Isomers of CytokininsPredominate in Chickpea Seeds throughout Their Development. Plant Physiol.,1998,117,1515-1523.
    [63] M. Strnad, The aromatic cytokinins. Physiol. Plantarum,1997,101,674-688.
    [64] K. von Schwartzenberg, M. F. Nú ez, H. Blaschke, P. I. Dobrev, O. Novák, V. Motyka, M.Strnad, Cytokinins in the Bryophyte Physcomitrella patens: Analyses of Activity, Distribution,and Cytokinin Oxidase/Dehydrogenase Overexpression Reveal the Role of ExtracellularCytokinins. Plant Physiol.,2007,145,786-800.
    [65] V. rd g, W. A. Stirk, J. Van Staden, O. Novák, M. Strnad, ENDOGENOUS CYTOKININSIN THREE GENERA OF MICROALGAE FROM THE CHLOROPHYTA1. J. Phycol.,2004,40,88-95.
    [66] H. Sakakibara, CYTOKININS: Activity, Biosynthesis, and Translocation. Annu. Rev. PlantBiol.,2006,57,431-449.
    [67]罗超,黄世文,王菡,赵露,细胞分裂素的生物合成、受体和信号转导的研究进展.特产研究,2011,2,71-75.
    [68] Y. Taya, Y. Tanaka, S. Nishimura,5[prime]-AMP is a direct precursor of cytokinin inDictyostelium discoideum. Nature,1978,271,545-547.
    [69] D. E. Akiyoshi, H. Klee, R. M. Amasino, E. W. Nester, M. P. Gordon, T-DNA ofAgrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad.Sci. U. S. A.,1984,81,5994-5998.
    [70] K. Takei, H. Sakakibara, T. Sugiyama, Identification of genes encoding adenylateisopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J. Biol.Chem.,2001,276,26405-26410.
    [71] T. Kakimoto, Identification of plant cytokinin biosynthetic enzymes as dimethylallyldiphosphate:ATP/ADP Isopentenyltransferases. Plant Cell Physiol.,2001,42,677-685.
    [72] J. Sun, Q.-W. Niu, P. Tarkowski, B. Zheng, D. Tarkowska, G. Sandberg, N.-H. Chua, J. Zuo,The Arabidopsis AtIPT8/PGA22gene encodes an isopentenyl transferase that is involved inde novo cytokinin biosynthesis. Plant Physiol.,2003,131,167-176.
    [73] H. Kasahara, K. Takei, N. Ueda, S. Hishiyama, T. Yamaya, Y. Kamiya, S. Yamaguchi, H.Sakakibara, Distinct isoprenoid origins of cis-and trans-zeatin biosyntheses in Arabidopsis. J.Biol. Chem.,2004,279,14049-14054.
    [74] T. Kamada-Nobusada, H. Sakakibara, Molecular basis for cytokinin biosynthesis.Phytochemistry,2009,70,444-449.
    [75] D. W. S. Mok, M. C. Mok, Cytokinin metabolism and action. Annu. Rev. Plant Physio. PlantMol. Biol.,2001,52,89-118.
    [76] G. Haberer, J. J. Kieber, Cytokinins: new insights into a classic phytohormone. Plant Physiol.,2002,128,354-362.
    [77] C. stot, K. Dolezal, A. Nordstr m, Q. Wang, T. Kunkel, T. Moritz, N.-H. Chua, G. Sandberg,An alternative cytokinin biosynthesis pathway. Proc. Natl. Acad. Sci. U. S. A.,2000,97,14778-14783.
    [78]张红梅,王俊丽,廖祥儒,细胞分裂素的生物合成、代谢和受体.植物生理学通讯,2003,39,267-272.
    [79] T. Werner, V. Motyka, V. Laucou, R. Smets, H. Van Onckelen, T. Schmülling,Cytokinin-deficient transgenic arabidopsis plants show multiple developmental alterationsindicating opposite functions of cytokinins in the regulation of shoot and root meristemactivity. Plant Cell,2003,15,2532-2550.
    [80] P. Galuszka, H. Popelkova, T. Werner, J. Frebortova, H. Pospisilova, V. Mik, I. Kollmer, T.Schmulling, I. Frebort, Biochemical characterization of cytokinin Oxidases/Dehydrogenasesfrom Arabidopsis thaliana expressed in Nicotiana tabacum L. J. Plant Growth Regul.,2007,26,255-267.
    [81] E. Bae, C. A. Bingman, E. Bitto, D. J. Aceti, G. N. Phillips, Crystal structure of Arabidopsisthaliana cytokinin dehydrogenase. Proteins: Struct., Funct., Bioinf.,2008,70,303-306.
    [82] B. Brzobohaty, I. Moore, P. Kristoffersen, L. Bako, N. Campos, J. Schell, K. Palme, Releaseof active cytokinin by a beta-glucosidase localized to the maize root meristem. Science,1993,262,1051-1054.
    [83] H. J. Kim, H. Ryu, S. H. Hong, H. R. Woo, P. O. Lim, I. C. Lee, J. Sheen, H. G. Nam, I.Hwang, Cytokinin-mediated control of leaf longevity by AHK3through phosphorylation ofARR2in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A.,2006,103,814-819.
    [84] J. Choi, I. Hwang, Cytokinin: perception, signal transduction, and role in plant growth anddevelopment. J.Plant Biol.,2007,50,98-108.
    [85] M. Matsumoto-Kitano, T. Kusumoto, P. Tarkowski, K. Kinoshita-Tsujimura, K. Václavíková,K. Miyawaki, T. Kakimoto, Cytokinins are central regulators of cambial activity. Proc. Natl.Acad. Sci. U. S. A.,2008,105,20027-20031.
    [86] Z. Zhao, S. U. Andersen, K. Ljung, K. Dolezal, A. Miotk, S. J. Schultheiss, J. U. Lohmann,Hormonal control of the shoot stem-cell niche. Nature,2010,465,1089-1092.
    [87] U. Sweere, K. Eichenberg, J. Lohrmann, V. Mira-Rodado, I. Baurle, J. Kudla, F. Nagy, E.Schafer, K. Harter, Interaction of the response regulator ARR4with phytochrome B inmodulating red light signaling. Science,2001,294,1108-1111.
    [88] V. Mira-Rodado, U. Sweere, C. Grefen, T. Kunkel, E. Fejes, F. Nagy, E. Sch fer, K. Harter,Functional cross-talk between two-component and phytochrome B signal transduction inArabidopsis. J. Exp. Bot.,2007,58,2595-2607.
    [89] R. M. Rivero, M. Kojima, A. Gepstein, H. Sakakibara, R. Mittler, S. Gepstein, E. Blumwald,Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl.Acad. Sci. U. S. A.,2007,104,19631-19636.
    [90] C. T. Argueso, F. J. Ferreira, J. J. Kieber, Environmental perception avenues: the interactionof cytokinin and environmental response pathways. Plant Cell Environ.,2009,32,1147-1160.
    [91] F. Skoog, C. O. Miller, Chemical regulation of growth and organ formation in plant tissuecultured in vitro. Symposia of the Society for Experimental Biology,1957,11,118-131.
    [92] T. Werner, T. Schmulling, Cytokinin action in plant development. Curr. Opin. Plant Biol.,2009,12,527-538.
    [93] H.-M. Rupp, M. Frank, T. Werner, M. Strnad, T. Schmülling, Increased steady state mRNAlevels of the STM and KNAT1homeobox genes in cytokinin overproducing Arabidopsisthaliana indicate a role for cytokinins in the shoot apical meristem. Plant J.,1999,18,557-563.
    [94] O. Yanai, E. Shani, K. Dolezal, P. Tarkowski, R. Sablowski, G. Sandberg, A. Samach, N. Ori,Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr. Biol.,2005,15,1566-1571.
    [95] S. Perilli, L. Moubayidin, S. Sabatini, The molecular basis of cytokinin function. Curr. Opin.Plant Biol.,2010,13,21-26.
    [96] T. Werner, V. Motyka, M. Strnad, T. Schmulling, Regulation of plant growth by cytokinin.Proc. Natl. Acad. Sci. U. S. A.,2001,98,10487-10492.
    [97] K. Miyawaki, P. Tarkowski, M. Matsumoto-Kitano, T. Kato, S. Sato, D. Tarkowska, S. Tabata,G. Sandberg, T. Kakimoto, Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNAisopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. U. S. A.,2006,103,16598-16603.
    [98] C. Nishimura, Y. Ohashi, S. Sato, T. Kato, S. Tabata, C. Ueguchi, Histidine Kinase HomologsThat Act as Cytokinin Receptors Possess Overlapping Functions in the Regulation of Shootand Root Growth in Arabidopsis. Plant Cell,2004,16,1365-1377.
    [99] M. Higuchi, M. S. Pischke, A. P. M h nen, K. Miyawaki, Y. Hashimoto, M. Seki, M.Kobayashi, K. Shinozaki, T. Kato, S. Tabata, Y. Helariutta, M. R. Sussman, T. Kakimoto, Inplanta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. U. S. A.,2004,101,8821-8826.
    [100] M. Riefler, O. Novak, M. Strnad, T. Schmülling, Arabidopsis cytokinin receptormutants reveal functions in shoot growth, leaf senescence, seed size, germination, rootdevelopment, and cytokinin metabolism. Plant Cell,2006,18,40-54.
    [101] K. Nieminen, J. Immanen, M. Laxell, L. Kauppinen, P. Tarkowski, K. Dolezal, S.T htiharju, A. Elo, M. Decourteix, K. Ljung, R. Bhalerao, K. Keinonen, V. A. Albert, Y.Helariutta, Cytokinin signaling regulates cambial development in poplar. Proc. Natl. Acad.Sci. U. S. A.,2008,105,20032-20037.
    [102] H. Thomas, J. L. Stoddart, Leaf Senescence. Annual Review of Plant Physiology,1980,31,83-111.
    [103] A. Yokoyama, T. Yamashino, Y.-I. Amano, Y. Tajima, A. Imamura, H. Sakakibara, T.Mizuno, Type-B ARR transcription factors, ARR10and ARR12, are implicated incytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana.Plant Cell Physiol.,2007,48,84-96.
    [104] R. D. Argyros, D. E. Mathews, Y.-H. Chiang, C. M. Palmer, D. M. Thibault, N.Etheridge, D. A. Argyros, M. G. Mason, J. J. Kieber, G. E. Schaller, Type B responseregulators of Arabidopsis play key roles in cytokinin signaling and plant development. PlantCell,2008,20,2102-2116.
    [105] A. Heyl, E. Ramireddy, W. G. Brenner, M. Riefler, J. Allemeersch, T. Schmülling, TheTranscriptional Repressor ARR1-SRDX Suppresses Pleiotropic Cytokinin Activities inArabidopsis. Plant Physiol.,2008,147,1380-1395.
    [106] L. Dolan, K. Janmaat, V. Willemsen, P. Linstead, S. Poethig, K. Roberts, B. Scheres,Cellular organisation of the Arabidopsis thaliana root. Development,1993,119,71-84.
    [107] R. Dello Ioio, F. S. Linhares, E. Scacchi, E. Casamitjana-Martinez, R. Heidstra, P.Costantino, S. Sabatini, Cytokinins determine Arabidopsis root-meristem size by controllingcell differentiation. Curr. Biol.,2007,17,678-682.
    [108] M. G. Mason, D. E. Mathews, D. A. Argyros, B. B. Maxwell, J. J. Kieber, J. M. Alonso,J. R. Ecker, G. E. Schaller, Multiple type-B response regulators mediate cytokinin signaltransduction in Arabidopsis. Plant Cell,2005,17,3007-3018.
    [109] D. P. Lohar, J. E. Schaff, J. G. Laskey, J. J. Kieber, K. D. Bilyeu, D. M. Bird, Cytokininsplay opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J.,2004,38,203-214.
    [110] S. Hanano, M. A. Domagalska, F. Nagy, S. J. Davis, Multiple phytohormones influencedistinct parameters of the plant circadian clock. Genes Cells,2006,11,1381-1392.
    [111] H. Sakakibara, H. Kasahara, N. Ueda, M. Kojima, K. Takei, S. Hishiyama, T. Asami, K.Okada, Y. Kamiya, T. Yamaya, S. Yamaguchi, Agrobacterium tumefaciens increasescytokinin production in plastids by modifying the biosynthetic pathway in the host plant.Proc. Natl. Acad. Sci. U. S. A.,2005,102,9972-9977.
    [112] I. Pertry, K. Václavíková, S. Depuydt, P. Galuszka, L. Spíchal, W. Temmerman, E. Stes,T. Schmülling, T. Kakimoto, M. C. E. Van Montagu, M. Strnad, M. Holsters, P. Tarkowski, D.Vereecke, Identification of Rhodococcus fascians cytokinins and their modus operandi toreshape the plant. Proc. Natl. Acad. Sci. U. S. A.,2009,106,929-934.
    [113] M. V. Joshi, R. Loria, Streptomyces turgidiscabies possesses a functional cytokininbiosynthetic pathway and produces leafy galls. Mol. Plant Microbe In.,2007,20,751-758.
    [114] R. M. Smith, Before the injection-modern methods of sample preparation for separationtechniques. J. Chromatogr. A,2003,1000,3-27.
    [115] M. Laloue, C. Terrine, M. Gawer, Cytokinins: formation of thenucleoside-50-triphosphate in tobacco and Acer cells. FEBS Lett.,1974,46.
    [116] R. Horgan, I. M. Scott, Cytokinins.(Eds), L. River, A. Crozier, In: The Principles andPractice of Plant Hormone Analysis. Academic Press, London,1978,304-365.
    [117] R. L. Bieleski, The problem of halting enzyme action when extracting plant tissues.Anal. Biochem.,1964,9,431-442.
    [118] K. Hoyerová, A. Gaudinová, J. Malbeck, P. I. Dobrev, T. Kocábek, B. olcová, A.Trávní ková, M. Kamínek, Efficiency of different methods of extraction and purification ofcytokinins. Phytochemistry,2006,67,1151-1159.
    [119] R. Horgan, Analytical procedures for cytokinins, in: J.R. Hillman (Editor), Isolation ofPlant Growth Substances. Society for Experimental Biology,,1978,4,97.
    [120] X. Q. Pan, R. Welti, X. M. Wang, Simultaneous quantification of major phytohormonesand related compounds in crude plant extracts by liquid chromatography-electrospray tandemmass spectrometry. Phytochemistry,2008,69,1773-1781.
    [121] Z. L. Xu, W. J. Sun, J. Y. Yang, Y. M. Jiang, K. Campbell, Y. D. Shen, H. T. Lei, D. P.Zeng, H. Wang, Y. M. Sun, Development of a Solid-Phase Extraction couplingchemiluminescent enzyme immunoassay for determination of organophosphorus pesticides inenvironmental water samples. J. Agric. Food Chem.,2012,60,2069-2075.
    [122] J. Sanchis, L. Kantiani, M. Llorca, F. Rubio, A. Ginebreda, J. Fraile, T. Garrido, M.Farre, Determination of glyphosate in groundwater samples using an ultrasensitiveimmunoassay and confirmation by on-line solid-phase extraction followed by liquidchromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem.,2012,402,2335-2345.
    [123] X. Ding, G. Morrison, B. Dean, C. Hop, L. Tobler, S. Percey, M. Meng, S. Reuschel, D.A. West, S. Holden, J. A. Ware, A solid phase extraction-liquid chromatographic-tandemmass spectrometry method for determination of concentrations of GDC-0941, a smallmolecule class I phosphatidylinositide3-kinase inhibitor, to support clinical development. J.Pharm. Biomed. Anal.,2012,61,1-7.
    [124] Y. K. Lv, L. M. Wang, L. Yang, C. X. Zhao, H. W. Sun, Synthesis and application ofmolecularly imprinted poly(methacrylic acid)-silica hybrid composite material for selectivesolid-phase extraction and high-performance liquid chromatography determination ofoxytetracycline residues in milk. J. Chromatogr. A,2012,1227,48-53.
    [125] H. Y. Yan, J. D. Qiao, Y. N. Pei, T. Long, W. Ding, K. Xie, Molecularly imprintedsolid-phase extraction coupled to liquid chromatography for determination of Sudan dyes inpreserved beancurds. Food Chem.,2012,132,649-654.
    [126] Y. B. Zhu, K. Chiba, Determination of cadmium in food samples by ID-ICP-MS withsolid phase extraction for eliminating spectral-interferences. Talanta,2012,90,57-62.
    [127] A. L. Castro, S. Tarelho, A. Silvestre, H. M. Teixeira, Simultaneous analysis of someclub drugs in whole blood using solid phase extraction and gas chromatography-massspectrometry. J. Forensic and Legal Medicine,2012,19,77-82.
    [128] K. J. Huang, S. Yu, J. Li, Z. W. Wu, C. Y. Wei, Extraction of neurotransmitters from ratbrain using graphene as a solid-phase sorbent, and their fluorescent detection by HPLC.Microchim. Acta,2012,176,327-335.
    [129] C. F. Poole, New trends in solid-phase extraction. TRAC Trend Anal. Chem.,2003,22,362-373.
    [130]张海霞,朱彭龄,固相萃取.分析化学评述与进展,2000,28,1172-1180.
    [131] A. Nordstrom, P. Tarkowski, D. Tarkowska, K. Dolezal, C. Astot, G. Sandberg, T. Moritz,Derivatization for LC electrospray ionization-MS: A tool for improving reversed-phaseseparation and ESI responses of bases, ribosides, and intact nucleotides. Anal. Chem.,2004,76,2869-2877.
    [132] Y.-h. Li, F. Wei, X.-y. Dong, J.-h. Peng, S.-y. Liu, H. Chen, Simultaneous Analysis ofmultiple endogenous plant hormones in leaf tissue of oilseed rape by solid-phase extractioncoupled with high-performance liquid chromatography–electrospray ionisation tandem massspectrometry. Phytochem. Analysis,2011,22,442-449.
    [133] Z. Ma, L. Ge, A. S. Y. Lee, J. W. H. Yong, S. N. Tan, E. S. Ong, Simultaneous analysisof different classes of phytohormones in coconut (Cocos nucifera L.) water usinghigh-performance liquid chromatography and liquid chromatography-tandem massspectrometry after solid-phase extraction. Anal. Chim. Acta,2008,610,274-281.
    [134] J. A. van Rhijn, H. H. Heskamp, E. Davelaar, W. Jordi, M. S. Leloux, U. A. T. Brinkman,Quantitative determination of glycosylated and aglycon isoprenoid cytokinins atsub-picomolar levels by microcolumn liquid chromatography combined with electrospraytandem mass spectrometry. J. Chromatogr. A,2001,929,31-42.
    [135] L. Y. Ge, J. W. H. Yong, S. N. Tan, X. H. Yang, E. S. Ong, Analysis of cytokininnucleotides in coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandemmass spectrometry after solid-phase extraction. J. Chromatogr. A,2006,1133,322-331.
    [136] K. Dole al, C. stot, J. Hanu, J. Holub, W. Peters, E. Beck, M. Strnad, G. Sandberg,Identification of aromatic cytokinins in suspension cultured photoautotrophic cells ofChenopodium rubrum by capillary liquid chromatography/frit–fast atom bombardment massspectrometry. Plant Growth Regul.,2002,36,181-189.
    [137] L. Y. Ge, J. W. H. Yong, S. N. Tan, E. S. Ong, Determination of cytokinins in coconut(Cocos nucifera L.) water using capillary zone electrophoresis-tandem mass spectrometry.Electrophoresis,2006,27,2171-2181.
    [138] Y. Izumi, A. Okazawa, T. Bamba, A. Kobayashi, E. Fukusaki, Development of a methodfor comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflowliquid chromatography-electrospray ionization-ion trap mass spectrometry. Anal. Chim. Acta,2009,648,215-225.
    [139] M. Kojima, T. Kamada-Nobusada, H. Komatsu, K. Takei, T. Kuroha, M. Mizutani, M.Ashikari, M. Ueguchi-Tanaka, M. Matsuoka, K. Suzuki, H. Sakakibara, Highly sensitive andhigh-throughput analysis of plant hormones using MS-probe modification and liquidchromatography tandem mass spectrometry: an application for hormone profiling in Oryzasativa. Plant Cell Physiol.,2009,50,1201-1214.
    [140] P. Tarkowski, L. Y. Ge, J. W. H. Yong, S. N. Tan, Analytical methods for cytokinins.TRAC Trend. Anal. Chem.,2009,28,323-335.
    [141] H. J. Vreman, J. Corse, Recovery of cytokinins from cation exchange resins. Physiol.Plant.,1975,35,333-336.
    [142] P. Redig, T. Schmulling, H. Van Onckelen, Analysis of cytokinin metabolism in ipttransgenic tobacco by liquid chromatography-tandem mass spectrometry. Plant Physiol.,1996,112,141-148.
    [143] L. Y. Ge, J. W. H. Yong, S. N. Tan, X. H. Yang, E. S. Ong, Analysis of some cytokininsin coconut (Cocos nucifera L.) water by micellar electrokinetic capillary chromatographyafter solid-phase extraction. J. Chromatogr. A,2004,1048,119-126.
    [144] K. Takei, T. Yamaya, H. Sakakibara, A method for separation and determination ofcytokinin nucleotides from plant tissues. J. Plant Res.,2003,116,265-269.
    [145] E. Hauserova, J. Swaczynova, K. Dolezal, R. Lenobel, I. Popa, M. Hajduch, D. Vydra, K.Fuksova, M. Strnad, Batch immunoextraction method for efficient purification of aromaticcytokinins. J. Chromatogr. A,2005,1100,116-125.
    [146] G. C. Davis, M. B. Hein, D. A. Chapman, Evaluation of immunosorbents for the analysisof small molecules: Isolation and purification of cytokinins. J. Chromatogr. A,1986,366,171-189.
    [147] R. r. Vaňková, A. Gaudinová, H. Süssenbeková, P. Dobrev, M. Strnad, J. Hol k, J.Lenfeld, Comparison of oriented and random antibody immobilization in immunoaffinitychromatography of cytokinins. J. Chromatogr. A,1998,811,77-84.
    [148] B. Nicander, U. St hl, P.-O. Bj rkman, E. Tillberg, Immunoaffinity co-purification ofcytokinins and analysis by high-performance liquid chromatography withultraviolet-spectrum detection. Planta,1993,189,312-320.
    [149] O. Novak, E. Hauserova, P. Amakorova, K. Dolezal, M. Strnad, Cytokinin profiling inplant tissues using ultra-performance liquid chromatography-electrospray tandem massspectrometry. Phytochemistry,2008,69,2214-2224.
    [150] B. H. Most, J. C. Williams, K. J. Parker, Gas chromatography of cytokinins. J.Chromatogr. A,1968,38,136-138.
    [151] D. F. Babcock, R. O. Morris, Quantitative measurement of isoprenoid nucleosides intransfer ribonucleic acid. Biochemistry,1970,9,3701-3705.
    [152] G. Teller, D.W.S. Mok, M.C. Mok (Editors) in: Cytokinins: Chemistry, Activity andFunction. CRC Press, Boca Raton, FL, USA,1994.
    [153] R. Horgan, E. W. Hewett, J. G. Purse, J. M. Horgan, P. F. Wareing, Identification of acytokinin in sycamore sap by gas chromatography-mass spectrometry. Plant Science Letters,1973,1,321-324.
    [154] C. H. Hocart, O. C. Wong, D. S. Letham, S. A. B. Tay, J. K. MacLeod, Massspectrometry and chromatography of t-butyldimethylsilyl derivatives of cytokinin bases. Anal.Biochem.,1986,153,85-96.
    [155] Y. Liang, M. P. Zhao, H. W. Liu, Research Progress in Cytokinins Analysis. Chinese J.Anal. Chem.,2009,37,1232-1239.
    [156] R. O. Morris, Mass Spectroscopic Identification of cytokinins glucosyl zeatin andglucosyl ribosylzeatin from vinca rosea crown gall. Plant Physiol.,1977,59,1029-1033.
    [157] H. Young, Identification of cytokinins from natural sources by gas-liquidchromatography/mass spectrometry. Anal. Biochem.,1977,79,226-233.
    [158] P.-O. Bjorkman, E. Tillberg, Acetylation of cytokinins and modified adenine compounds:a simple and non-destructive derivatization method for GC-MS analysis. Phytochem.Analysis,1996,7,57-58.
    [159] C. H. Hocart, J. Wang, D. S. Letham, Derivatives of cytokinins for negative ion massspectrometry. J. Chromatogr. A,1998,811,246-249.
    [160] C. Birkemeyer, A. Kolasa, J. Kopka, Comprehensive chemical derivatization for gaschromatography-mass spectrometry-based multi-targeted profiling of the majorphytohormones. J. Chromatogr. A,2003,993,89-102.
    [161] M. Ludewig, K. D rffling, W. A. K nig, Electron-capture capillary gas chromatographyand mass spectrometry of trifluoroacetylated cytokinins. J. Chromatogr. A,1982,243,93-98.
    [162] J. K. MacLeod, R. E. Summons, D. S. Letham, Mass spectrometry of cytokininmetabolites. Per(trimethylsilyl) and permethyl derivatives of glucosides of zeatin and6-benzylaminopurine. J. Org. Chem.,1976,41,3959-3967.
    [163] B. Dauphin, G. Teller, B. Durand, Identification and quantitative analysis of cytokininsfrom shoot apices of Mercurialis ambigua by gas chromatography-mass spectrometrycomputer system. Planta,1979,144,113-119.
    [164] R. Horgan, M. R. Kramers, High-performance liquid chromatography of cytokinins. J.Chromatogr. A,1979,173,263-270.
    [165] John S. Taylor, Brigitte Thompson, John S. Pate, Craig A. Atkins, R. P. Pharis,Cytokinins in the Phloem Sap of White Lupin (Lupinus albus L.). Plant Physiol.,1990,94,1714-1720.
    [166] M. G. Carnes, M. L. Brenner, C. R. Andersen, Comparison of reversed-phasehigh-pressure liquid chromatography with sephadex LH-20for cytokinin analysis of tomatoroot pressure exudate. J. Chromatogr. A,1975,108,95-106.
    [167] E. A. Stahly, D. A. Buchanan, High-performance liquid chromatographic procedure forseparation and quantification of zeatin and zeatin riboside from pears, peaches and apples. J.Chromatogr. A,1982,235,453-459.
    [168] L. Ge, J. W. H. Yong, N. K. Goh, L. S. Chia, S. N. Tan, E. S. Ong, Identification ofkinetin and kinetin riboside in coconut (Cocos nucifera L.) water using a combined approachof liquid chromatography-tandem mass spectrometry, high performance liquidchromatography and capillary electrophoresis. J. Chromatogr. B,2005,829,26-34.
    [169] C. stot, K. Dolezal, T. Moritz, G. Sandberg, Deuterium in vivo labelling of cytokininsin Arabidopsis thaliana analysed by capillary liquid chromatography/frit-fast atombombardment mass spectrometry. J. Mass Spectrom.,2000,35,13-22.
    [170] N. Imbault, T. Moritz, O. Nilsson, H.-J. Chen, M. Bollmark, G. Sandberg, Separationand identification of cytokinins using combined capillary liquid chromatography/massspectrometry. Biol. Mass Spectrom.,1993,22,201-210.
    [171] D. Tarkowská, K. Dole al, P. Tarkowski, C. stot, J. Holub, K. Fuksová, T. Schmülling,G. Sandberg, M. Strnad, Identification of new aromatic cytokinins in Arabidopsis thalianaand Populus×canadensis leaves by LC-(+)ESI-MS and capillary liquidchromatography/frit–fast atom bombardment mass spectrometry. Physiol. Plant.,2003,117,579-590.
    [172] C. Astot, K. Dolezal, T. Moritz, G. Sandberg, Precolumn derivatization and capillaryliquid chromatographic/frit-fast atom bombardment mass spectrometric analysis ofcytokinins in Arabidopsis thaliana. J. Mass Spectrom.,1998,33,892-902.
    [173] Y.-Y. Yang, I. Yamaguchi, Y. Kalo, E. Weiler, N. Murofushi, N. Takahashi, Qualitativeand semi-quantitative analyses of cytokinins using LC/APCI-MS in combination with ELISA.J. Plant Growth Regul.,1993,12,21-25.
    [174] C. stot, K. Dolezal, T. Moritz, G. Sandberg, Precolumn derivatization and capillaryliquid chromatographic/frit-fast atom bombardment mass spectrometric analysis ofcytokinins in Arabidopsis thaliana. J. Mass Spectrom.,1998,33,892-902.
    [175] E. Prinsen, P. Redig, H. A. Van Onckelen, W. Van Dongen, E. L. Esmans, Quantitativeanalysis of cytokinins by electrospray tandem mass spectrometry. Rapid Commun. MassSpectrom.,1995,9,948-953.
    [176] E. Prinsen, W. Van Dongen, E. L. Esmans, H. A. Van Onckelen, Micro and capillaryliquid chromatography–tandem mass spectrometry: a new dimension in phytohormoneresearch. J. Chromatogr. A,1998,826,25-37.
    [177]姚碧霞,翁文,超高效液相色谱产生的理论和技术背景.福建分析测试,2011,2,15-20.
    [178] K. von Schwartzenberg, M. F. Nunez, H. Blaschke, P. I. Dobrev, O. Novak, V. Motyka,M. Strnad, Cytokinins in the bryophyte physcomitrella patens: analyses of activity,distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role ofextracellular cytokinins. Plant Physiol.,2007,145,786-800.
    [179] V. Pacáková, K. tul k, V. Vlasáková, A. B ezinová, Capillary electrophoresis ofcytokinins and cytokinin ribosides. J. Chromatogr. A,1997,764,331-335.
    [180] P. Barták, J. ev k, T. Adam, D. Friedecky, K. Lemr, Z. Stránsky, Study of cytokininseparation using capillary electrophoresis with cyclodextrin additives. J. Chromatogr. A,1998,818,231-238.
    [181] L. Ge, J. W. H. Yong, S. N. Tan, X. H. Yang, E. S. Ong, Analysis of positional isomersof hydroxylated aromatic cytokinins by micellar electrokinetic chromatography.Electrophoresis,2005,26,1768-1777.
    [182] L. Ge, S. N. Tan, J. W. H. Yong, L. Hua, E. S. Ong, Separation of cytokinin isomers witha partial filling-micellar electrokinetic chromatography-mass spectrometry approach.Electrophoresis,2008,29,2024-2032.
    [183] B.-F. Liu, X.-H. Zhong, Y.-T. Lu, Analysis of plant hormones in tobacco flowers bymicellar electrokinetic capillary chromatography coupled with on-line large volume samplestacking. J. Chromatogr. A,2002,945,257-265.
    [184]山口十五鹰,植物激素的免疫测定.山东林业科技,1989,2,68-74.
    [185] E. W. Weiler, Radiomunoassays for trans-zeatin and related cytokinins. Planta,1980,149,155-162.
    [186] E. M. S. MacDonald, D. E. Akiyoshi, R. O. Morris, Combined high-performance liquidchromatography-radioimmunoassay for cytokinins. J. Chromatogr. A,1981,214,101-109.
    [187] E. Trione, B. Krygier, G. Banowetz, J. Kathrein, The development of monoclonalantibodies against the cytokinin zeatin riboside. J. Plant Growth Regul.,1985,4,101-109.
    [188] J. Badenoch-Jones, C. Parker, D. Letham, Use of isopentenyladenosine anddihydrozeatin riboside antibodies for the quantification of cytokinins. J. Plant Growth Regul.,1987,6,159-182.
    [189] G. A. Barthe, I. Stewart, Enzyme immunoassay (EIA) of endogenous cytokinins inCitrus. J. Agric. Food Chem.,1985,33,293-297.
    [190] B. Sotta, G. Pilate, F. Pelese, I. Sabbagh, M. Bonnet, R. Maldiney, An Avidin-BiotinSolid Phase ELISA for Femtomole Isopentenyladenine and IsopentenyladenosineMeasurements in HPLC Purified Plant Extracts. Plant Physiol.,1987,84,571-573.
    [191] E. J. Trione, G. M. Banowetz, B. B. Krygier, J. M. Kathrein, L. Sayavedra-Soto, Aquantitative fluorescence enzyme immunoassay for plant cytokinins. Anal. Biochem.,1987,162,301-308.
    [192] K. Von Schwartzenberg, K. Lutze, H. Hahn, determination of cytokinins in needles ofspruce (Picea abies (L.) Karst.) by an indirect enzyme-linked immunosorbent assay. J. PlantPhysiol.,1988,133,529-534.
    [193] M. Strnad, W. Peters, E. Beck, M. Kaminek, Immunodetection and identification ofn6-(o-hydroxybenzylamino)purine as a naturally occurring cytokinin in Populus x canadensisMoench cv Robusta Leaves. Phant Physiol,1992,99,74-80.
    [194] M. Strnad, Enzyme immunoassays of N6-benzyladenine and N6-(meta-hydroxybenzyl)adenine cytokinins. J. Plant Growth Regul.,1996,15,179-188.
    [195] J. Wang, D. S. Letham, E. Taverner, J. Badenoch-Jones, C. H. Hocart, A procedure forquantification of cytokinins as free bases involving scintillation proximity immunoassay.Physiol. Plant.,1995,95,91-98.
    [196] J. W. H. Yong, S. C. Wong, D. S. Letham, C. H. Hocart, G. D. Farquhar, Effects ofelevated [CO2] and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton.Plant Physiol.,2000,124,767-780.
    [197]马庆虎,免疫学方法在植物激素研究中的应用.植物生理学通讯,1988,4,63-67.
    [198] R. Maldiney, B. Leroux, I. Sabbagh, B. Sotta, L. Sossountzov, E. Miginiac, Abiotin-avidin-based enzyme immunoassay to quantify three phytohormones: auxin, abscisicacid and zeatin-riboside. J. Immunol. Methods,1986,90,151-158.
    [199] L. Hernández, P. Hernández, M. Rica, F. Galán, Determination of Zeatin in plantextracts by square wave stripping polarography and differential pulse stripping polarography.Anal. Chim. Acta,1995,315,33-39.
    [200] P. Hernández, F. Paton, Y. Ballesteros, L. Hernández, Voltammetry study of zeatin in acarbon fiber ultramicroelectrode. Determination by adsorptive stripping. Electroanalysis,1997,9,235-238.
    [201] C. L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption usingfused silica optical fibers. Anal. Chem.,1990,62,2145-2148.
    [202] H. Bagheri, A. Aghakhani, M. Baghernejad, A. Akbarinejad, Novel polyamide-basednanofibers prepared by electrospinning technique for headspace solid-phase microextractionof phenol and chlorophenols from environmental samples. Anal. Chim. Acta,2012,716,34-39.
    [203] S. Balme, F. O. Gulacar, Rapid screening of phytosterols in orange juice by solid-phasemicroextraction on polyacrylate fibre derivatisation and gas chromatographic-massspectrometric. Food Chem.,2012,132,613-618.
    [204] S. Perera, A. Berthod, E. Dodbiba, D. W. Armstrong, Coupling solid-phasemicroextraction and laser desorption ionization for rapid identification of biological material.Rapid Commun. Mass Spectrom.,2012,26,853-862.
    [205] A. Sarafraz-Yazdi, A. Amiri, G. Rounaghi, H. Eshtiagh-Hosseini, Determination ofnon-steroidal anti-inflammatory drugs in water samples by solid-phase microextraction basedsol-gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes coatedfiber. Anal. Chim. Acta,2012,720,134-141.
    [206] J. Song, B. D. Gardner, J. F. Holland, R. M. Beaudry, Rapid Analysis of Volatile FlavorCompounds in Apple Fruit Using SPME and GC/Time-of-Flight Mass Spectrometry. J. Agric.Food Chem.,1997,45,1801-1807.
    [207] G. L. Kimm, G. L. Hook, P. A. Smith, Application of headspace solid-phasemicroextraction and gas chromatography–mass spectrometry for detection of the chemicalwarfare agent bis(2-chloroethyl) sulfide in soil. J. Chromatogr. A,2002,971,185-191.
    [208] J. A. Koziel, J. Noah, J. Pawliszyn, Field sampling and determination of formaldehydein indoor air with solid-phase microextraction and on-fiber derivatization. Environ. Sci.Technol.,2001,35,1481-1486.
    [209] P. Popp, A. Paschke, Solid phase microextraction of volatile organic compounds usingcarboxen-polydimethylsiloxane fibers. Chromatographia,1997,46,419-424.
    [210] B. J. Hall, J. S. Brodbelt, Determination of barbiturates by solid-phase microextraction(SPME) and ion trap gas chromatography–mass spectrometry. J. Chromatogr. A,1997,777,275-282.
    [211] H. Kataoka, Current Developments and Future Trends in Solid-phase MicroextractionTechniques for Pharmaceutical and Biomedical Analyses. Anal. Sci.,2011,27,893.
    [212] E. Baltussen, P. Sandra, F. David, C. Cramers, Stir bar sorptive extraction (SBSE), anovel extraction technique for aqueous samples: theory and principles. J. Microcolumn Sep.,1999,11,737-747.
    [213] F. Sánchez-Rojas, C. Bosch-Ojeda, J. Cano-Pavón, A review of stir bar sorptiveextraction. Chromatographia,2009,69,79-94.
    [214] M. Kawaguchi, Y. Ishii, N. Sakui, N. Okanouchi, R. Ito, K. Inoue, K. Saito, H.Nakazawa, Stir bar sorptive extraction with in situ derivatization and thermal desorption–gaschromatography–mass spectrometry in the multi-shot mode for determination of estrogens inriver water samples. J. Chromatogr. A,2004,1049,1-8.
    [215] M. Kawaguchi, Y. Ishii, N. Sakui, N. Okanouchi, R. Ito, K. Saito, H. Nakazawa, Stir barsorptive extraction with in situ derivatization and thermal desorption–gaschromatography–mass spectrometry for determination of chlorophenols in water and bodyfluid samples. Anal. Chim. Acta,2005,533,57-65.
    [216] Y.-B. Luo, Q. Ma, Y.-Q. Feng, Stir rod sorptive extraction with monolithic polymer ascoating and its application to the analysis of fluoroquinolones in honey sample. J.Chromatogr. A,2010,1217,3583-3589.
    [217] X. Huang, D. Yuan, Preparation of stir bars for sorptive extraction based on monolithicmaterial. J. Chromatogr. A,2007,1154,152-157.
    [218] N. R. Neng, M. L. Pinto, J. Pires, P. M. Marcos, J. M. F. Nogueira, Development,optimisation and application of polyurethane foams as new polymeric phases for stir barsorptive extraction. J. Chromatogr. A,2007,1171,8-14.
    [219] W. Guan, Y. Wang, F. Xu, Y. Guan, Poly(phthalazine ether sulfone ketone) as novelstationary phase for stir bar sorptive extraction of organochlorine compounds andorganophosphorus pesticides. J. Chromatogr. A,2008,1177,28-35.
    [220] R. Eisert, J. Pawliszyn, Automated in-tube solid-phase microextraction coupled tohigh-performance liquid chromatography. Anal. Chem.,1997,69,3140-3147.
    [221] J. C. Wu, H. L. Lord, J. Pawliszyn, H. Kataoka, Polypyrrole-coated capillary in-tubesolid phase microextraction coupled with liquid chromatography-electrospray ionizationmass spectrometry for the determination of beta-blockers in urine and serum samples. J.Microcolumn Sep.,2000,12,255-266.
    [222] K. Alhooshani, T.-Y. Kim, A. Kabir, A. Malik, Sol-gel approach to in situ creation ofhigh pH-resistant surface-bonded organic-inorganic hybrid zirconia coating for capillarymicroextraction (in-tube SPME). J. Chromatogr. A,2005,1062,1-14.
    [223] Y. Fan, Y.-Q. Feng, S.-L. Da, Z.-H. Wang, In-tube solid phase microextraction using aβ-cyclodextrin coated capillary coupled to high performance liquid chromatography fordetermination of non-steroidal anti-inflammatory drugs in urine samples. Talanta,2005,65,111-117.
    [224] E. H. M. Koster, C. Crescenzi, W. den Hoedt, K. Ensing, G. J. de Jong, Fibers coatedwith molecularly imprinted polymers for solid-phase microextraction. Anal. Chem.,2001,73,3140-3145.
    [225] Y. Saito, M. Kawazoe, M. Hayashida, K. Jinno, Direct coupling of microcolumn liquidchromatography with in-tube solid-phase microextraction for the analysis of antidepressantdrugs. Analyst,2000,125,807-809.
    [226] K. Jinno, M. Kawazoe, Y. Saito, T. Takeichi, M. Hayashida, Sample preparation withfiber-in-tube solid-phase microextraction for capillary electrophoretic separation of tricyclicantidepressant drugs in human urine. Electrophoresis,2001,22,3785-3790.
    [227] W. M. Mullett, K. Levsen, D. Lubda, J. Pawliszyn, Bio-compatible in-tube solid-phasemicroextraction capillary for the direct extraction and high-performance liquidchromatographic determination of drugs in human serum. J. Chromatogr. A,2002,963,325-334.
    [228] Y. Fan, Y. Q. Feng, S. L. Da, Z. G. Shi, Poly (methacrylic acid-ethylene glycoldimethacrylate) monolithic capillary for in-tube solid phase microextraction coupled to highperformance liquid chromatography and its application to determination of basic drugs inhuman serum. Anal. Chim. Acta,2004,523,251-258.
    [229] J. F. Huang, Y. Q. Feng, X. H. Lin,聚合物整体柱管内固相微萃取-高效液相色谱在线联用测定血浆中的氟喹诺酮类药物.中国药学杂志,2009,12,5.
    [230] Y. Fan, Y. Q. Feng, S. L. Da, X. P. Gao, In-tube solid-phase microextraction withpoly(methacrylic acidethylene glycol dimethacrylate) monolithic capillary for directhigh-performance liquid chromatographic determination of ketamine in urine samples.Analyst,2004,129,1065-1069.
    [231] Y. Fan, Y. Q. Feng, J. T. Zhang, S. L. Da, M. Zhang, Poly(methacrylic acid-ethyleneglycol dimethacrylate) monolith in-tube solid phase microextraction coupled to highperformance liquid chromatography and analysis of amphetamines in urine samples. J.Chromatogr. A,2005,1074,9-16.
    [232] F. Wei, Y. Fan, M. Zhang, Y. Q. Feng, Poly(methacrylic acid-ethylene glycoldimethacrylate) monolith in-tube solid-phase microextraction applied to simultaneousanalysis of some amphetamine derivatives in urine by capillary zone electrophoresis.Electrophoresis,2005,26,3141-3150.
    [233] Y. Wen, M. Zhang, Q. Zhao, Y. Q. Feng, Monitoring of five sulfonamide antibacterialresidues in milk by in-tube solid-phase microextraction coupled to high-performance liquidchromatography. J. Agric. Food Chem.,2005,53,8468-8473.
    [234] Y. Wen, Y. Wang, Y. Q. Feng, Simultaneous residue monitoring of four tetracyclineantibiotics in fish muscle by in-tube solid-phase microextraction coupled withhigh-performance liquid chromatography, Talanta,2006,70,153-159.
    [235] J. F. Huang, B. Lin, Q. W. Yu, Y. Q. Feng, Determination of fluoroquinolones in eggsusing in-tube solid-phase microextraction coupled to high-performance liquidchromatography. Anal. Bioanal. Chem.,2006,384,1228-1235.
    [236] Y. Fan, M. Zhang, Y. Q. Feng, Poly(acrylamide-vinylpyridine-N,N '-methylenebisacrylamide) monolithic capillary for in-tube solid-phase microextraction coupled to highperformance liquid chromatography. J. Chromatogr. A,2005,1099,84-91.
    [237] Y. Wen, Y. Q. Feng, Preparation and evaluation of hydroxylated poly(glycidylmethacrylate-co-ethylene dimethacrylate) monolithic capillary for in-tube solid-phasemicroextraction coupled to high-performance liquid chromatography. J. Chromatogr. A,2007,1160,90-98.
    [238] Q. Ma, M. Chen, Z. G. Shi, Y. Q. Feng, Preparation of apoly(N-isopropylacrylamide-co-ethylene dimethacrylate) monolithic capillary and itsapplication for in-tube solid-phase microextraction coupled to high-performance liquidchromatography. J. Sep. Sci.,2009,32,2592-2600.
    [239] M. Zhang, F. Wei, Y. F. Zhang, J. Nie, Y. Q. Feng, Novel polymer monolithmicroextraction using a poly(methacrylic acid-ethylene glycol dimethacrylate) monolith andits application to simultaneous analysis of several angiotensin II receptor antagonists inhuman urine by capillary zone electrophoresis. J. Chromatogr. A,2006,1102,294-301.
    [240] F. Wei, M. Zhang, Y. Q. Feng, Application of poly(methacrylic acid-ethylene glycoldimethacrylate) monolith microextraction coupled with capillary zone electrophoresis to thedetermination of opiates in human urine. Electrophoresis,2006,27,1939-1948.
    [241] Y. Wen, Y. Wang, B. S. Zhou, Y. Xu, Y. Q. Feng, Determination of sexual hormones inliquid cosmetics by polymer monolith microextraction coupled with high performance liquidchromatography. Chinese J. Anal. Chem.,2007,35,681-684.
    [242] J. F. Huang, H. J. Zhang, B. Lin, Q. W. Yu, Y. Q. Feng, Multiresidue analysis ofbeta-agonists in pork by coupling polymer monolith microextraction to electrosprayquadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom.,2007,21,2895-2904.
    [243] J. F. Huang, H. J. Zhang, Y. Q. Feng, Chloramphenicol extraction from honey, milk, andeggs using polymer monolith microextraction followed by liquid chromatography-massspectrometry determination. J.Agric.. Food Chem.,2006,54,9279-9286.
    [244] M. M. Zheng, M. Y. Zhang, G. Y. Peng, Y. Q. Feng, Monitoring of sulfonamideantibacterial residues in milk and egg by polymer monolith microextraction coupled tohydrophilic interaction chromatography/mass spectrometry. Anal. Chim.. Acta,2008,625,160-172.
    [245] F. Wei, M. Zhang, Y. Q. Feng, Combining poly (methacrylic acid-co-ethylene glycoldimethacrylate) monolith microextraction and on-line pie-concentration-capillaryelectrophoresis for analysis of ephedrine and pseudoephedrine in human plasma and urine. J.Chromatogr. B,2007,850,38-44.
    [246] D. Luo, F. Chen, K. Xiao, Y. Q. Feng, Rapid determination ofDelta(9)-Tetrahydrocannabinol in saliva by polymer monolith microextraction combined withgas chromatography-mass spectrometry. Talanta,2009,77,1701-1706.
    [247] Y. Wen, Y. Wang, Y. Q. Feng, Extraction of clenbuterol from urine using hydroxylatedpoly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith microextraction followedby high-performance liquid chromatography determination. J. Sep. Sci.,2007,30,2874-2880.
    [248] M. Chen, Y. Lu, Q. Ma, L. Guo, Y. Q. Feng, Boronate affinity monolith for highlyselective enrichment of glycopeptides and glycoproteins. Analyst,2009,134,2158-2164.
    [249] M. afa k ová, I. afa k, Magnetic solid-phase extraction. J. Magn. Magn. Mater.,1999,194,108-112.
    [250] X. Zhang, H. Niu, Y. Pan, Y. Shi, Y. Cai, Chitosan-Coated Octadecyl-FunctionalizedMagnetite Nanoparticles: Preparation and Application in Extraction of Trace Pollutants fromEnvironmental Water Samples. Anal Chem,2010,82,2363-2371.
    [251] Q. Gao, D. Luo, J. Ding, Y. Q. Feng, Rapid magnetic solid-phase extraction based onmagnetite/silica/poly(methacrylic acid-co-ethylene glycol dimethacrylate) compositemicrospheres for the determination of sulfonamide in milk samples. J.Chromatogr. A,2010,1217,5602-5609.
    [252] L. Sun, X. Sun, X. Du, Y. Yue, L. Chen, H. Xu, Q. Zeng, H. Wang, L. Ding,Determination of sulfonamides in soil samples based on alumina-coated magnetitenanoparticles as adsorbents. Anal.Chim. Acta,2010,665,185-192.
    [253] Sukhanova, II, M. A. Dikunets, E. D. Viryus, G. M. Rodchenkov, Magnetic separation asa new method for the extraction of small molecules from biological fluids of humans. J. Anal.Chem.,2011,66,807-814.
    [254] X. L. Zhang, H. Y. Niu, Y. Y. Pan, Y. L. Shi, Y. Q. Cai, Modifying the surface ofFe(3)O(4)/SiO(2) magnetic nanoparticles with C(18)/NH(2) mixed group to get an efficientsorbent for anionic organic pollutants. J. Colloid Interf. Sci.,2011,362,107-112.
    [255] J. Ding, Q. A. Gao, D. Luo, Z. G. Shi, Y. Q. Feng, n-Octadecylphosphonic acid graftedmesoporous magnetic nanoparticle: Preparation, characterization, and application in magneticsolid-phase extraction. J. Chromatogr. A,2010,1217,7351-7358.
    [256] Y. Liu, H. F. Li, J. M. Lin, Magnetic solid-phase extraction based on octadecylfunctionalization of monodisperse magnetic ferrite microspheres for the determination ofpolycyclic aromatic hydrocarbons in aqueous samples coupled with gaschromatography-mass spectrometry. Talanta,2009,77,1037-1042.
    [257] C. Zhang, B. W ngler, B. Morgenstern, H. Zentgraf, M. Eisenhut, H. Untenecker, R.Krüger, R. Huss, C. Seliger, W. Semmler, F. Kiessling, Silica-and Alkoxysilane-CoatedUltrasmall Superparamagnetic Iron Oxide Particles: A Promising Tool To Label Cells forMagnetic Resonance Imaging. Langmuir.,2006,23,1427-1434.
    [258] L. Zhu, D. Pan, L. Ding, F. Tang, Q. Zhang, Q. Liu, S. Yao, Mixed hemimicelles SPEbased on CTAB-coated Fe3O4/SiO2NPs for the determination of herbal bioactiveconstituents from biological samples. Talanta,2010,80,1873-1880.
    [259] Y.-H. Deng, C.-C. Wang, J.-H. Hu, W.-L. Yang, S.-K. Fu, Investigation of formation ofsilica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf. A,2005,262,87-93.
    [260] A. I. Lesnikovich, T. M. Shunkevich, V. N. Naumenko, S. A. Vorobyova, M. V. Baykov,Dispersity of magnetite in magnetic liquids and the interaction with a surfactant. J. Magn.Magn. Mater.,1990,85,14-16.
    [261] Y. Sun, L. Duan, Z. Guo, Y. DuanMu, M. Ma, L. Xu, Y. Zhang, N. Gu, An improvedway to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possiblebiological application. J. Magn. Magn. Mater.,2005,285,65-70.
    [262] J. Li, X. Zhao, Y. Shi, Y. Cai, S. Mou, G. Jiang, Mixed hemimicelles solid-phaseextraction based on cetyltrimethylammonium bromide-coated nano-magnets Fe3O4for thedetermination of chlorophenols in environmental water samples coupled with liquidchromatography/spectrophotometry detection. J. Chromatogr. A,2008,1180,24-31.
    [263] G. D. Mendenhall, Y. Geng, J. Hwang, Optimization of Long-Term Stability of MagneticFluids from Magnetite and Synthetic Polyelectrolytes. J. Colloid Interf. Sci.,1996,184,519-526.
    [264] R. Y. Hong, B. Feng, X. Cai, G. Liu, H. Z. Li, J. Ding, Y. Zheng, D. G. Wei,Double-miniemulsion preparation of Fe3O4/poly(methyl methacrylate) magnetic latex. J.App.l Polym. Sci.,2009,112,89-98.
    [265] H. Chen, C. Deng, X. Zhang, Synthesis of Fe3O4@SiO2@PMMA core–shell–shellmagnetic microspheres for highly efficient enrichment of peptides and proteins forMALDI-ToF MS Analysis. Angew. Chem.,2010,122,617-621.
    [266] Q. Gao, D. Luo, M. Bai, Z. W. Chen, Y. Q. Feng, Rapid determination of estrogens inmilk samples based on magnetite nanoparticles/polypyrrole magnetic solid-phase extractioncoupled with liquid chromatography-tandem mass spectrometry. J. Agric. and Food Chem.,2011,59,8543-8549.
    [267] W. Kopaciewicz, M. A. Rounds, J. Fausnaugh, F. E. Regnier, Retention model forhigh-performance ion-exchange chromatography. J. Chromatogr. A,1983,266,3-21.
    [268] P. R. Levison, Large-scale ion-exchange column chromatography of proteins:Comparison of different formats. J. Chromatogr. B,2003,790,17-33.
    [269] K. Zhang, L. Dai, N. P. Chetwyn, Simultaneous determination of positive and negativepharmaceutical counterions using mixed-mode chromatography coupled with charged aerosoldetector. J. Chromatogr. A,2010,1217,5776-5784.
    [270] J. C. Linden, C. L. Lawhead, Liquid chromatography of saccharides. J. Chromatogr. A,1975,105,125-133.
    [271] C. Wang, C. Jiang, D. W. Armstrong, Considerations on HILIC and polar organicsolvent-based separations: Use of cyclodextrin and macrocyclic glycopetide stationary phases.J. Sep. Sci.,2008,31,1980-1990.
    [272] A. J. Alpert, Hydrophilic-interaction chromatography for the separation of peptides,nucleic acids and other polar compounds. J. Chromatogr. A,1990,499,177-196.
    [273] D. V. McCalley, Is hydrophilic interaction chromatography with silica columns a viablealternative to reversed-phase liquid chromatography for the analysis of ionisable compounds?J. Chromatogr. A,2007,1171,46-55.
    [274] W. Naidong, Bioanalytical liquid chromatography tandem mass spectrometry methodson underivatized silica columns with aqueous/organic mobile phases. J. Chromatogr. B,2003,796,209-224.
    [275] B. A. Olsen, Hydrophilic interaction chromatography using amino and silica columnsfor the determination of polar pharmaceuticals and impurities. J. Chromatogr. A,2001,913,113-122.
    [276] K. Kalíková, J. Lokajová, E. Tesa ová, Linear free energy relationship as a tool forcharacterization of three teicoplanin-based chiral stationary phases under various mobilephase compositions. J. Sep. Sci.,2006,29,1476-1485.
    [277] M. Benincasa, G. P. Cartoni, F. Coccioli, R. Rizzo, L. P. T. M. Zevenhuizen,High-performance liquid chromatography of cyclic β(1→2)-d-glucans (cyclosophoraoses)produced by rhizobium meliloti and rhizobium trifolii. J. Chromatogr. A,1987,393,263-271.
    [278] A. Berthod, S. S. C. Chang, J. P. S. Kullman, D. W. Armstrong, Practice and mechanismof HPLC oligosaccharide separation with a cyclodextrin bonded phase. Talanta,1998,47,1001-1012.
    [279] B.-Y. Zhu, C. T. Mant, R. S. Hodges, Hydrophilic-interaction chromatography ofpeptides on hydrophilic and strong cation-exchange columns. J. Chromatogr. A,1991,548,13-24.
    [280] S. C. Churms, Recent progress in carbohydrate separation by high-performance liquidchromatography based on hydrophilic interaction. J. Chromatogr. A,1996,720,75-91.
    [281] M. A. Strege, Hydrophilic interaction chromatography electrospray mass spectrometryanalysis of polar compounds for natural product drug discovery. Anal. Chem.,1998,70,2439-2445.
    [282] S. D. Garbis, A. Melse-Boonstra, C. E. West, R. B. van Breemen, Determination offolates in human plasma using hydrophilic interaction chromatography tandem massspectrometry. Anal. Chem.,2001,73,5358-5364.
    [283] G. Zhao, X.-Y. Dong, Y. Sun, Ligands for mixed-mode protein chromatography:Principles, characteristics and design. J. Biotechnol.,2009,144,3-11.
    [284] L. W. McLaughlin, Mixed-mode chromatography of nucleic acids. Chem. Rev.,1989,89,309-319.
    [285] B. C. Trammell, M. A. Hillmyer, P. W. Carr, A Study of the Lewis Acid BaseInteractions of Vinylphosphonic Acid-Modified Polybutadiene-Coated Zirconia. Anal. Chem.,2001,73,3323-3331.
    [286] B.-Y. Zhu, C. T. Mant, R. S. Hodges, Mixed-mode hydrophilic and ionic interactionchromatography rivals reversed-phase liquid chromatography for the separation of peptides. J.Chromatogr. A,1992,594,75-86.
    [287] H. Engelhardt, H. Müller, Optimal conditions for the reversed-phase chromatography ofproteins. Chromatographia,1984,19,77-84.
    [288] S. Chhatre, D. G. Bracewell, N. J. Titchener-Hooker, A microscale approach forpredicting the performance of chromatography columns used to recover therapeuticpolyclonal antibodies. J. Chromatogr. A,2009,1216,7806-7815.
    [289] R. Bischoff, L. W. McLaughlin, Isolation of specific tRNAs using an ionic-hydrophobicmixed-mode chromatographic matrix. Anal. Biochem.,1985,151,526-533.
    [290] E. Apfelthaler, W. Bicker, M. L mmerhofer, M. Sulyok, R. Krska, W. Lindner, R.Schuhmacher, Retention pattern profiling of fungal metabolites on mixed-modereversed-phase/weak anion exchange stationary phases in comparison to reversed-phase andweak anion exchange separation materials by liquid chromatography–electrosprayionisation-tandem mass spectrometry. J. Chromatogr. A,2008,1191,171-181.
    [291] X. Liu, C. Pohl, New hydrophilic interaction/reversed-phase mixed-mode stationaryphase and its application for analysis of nonionic ethoxylated surfactants. J. Chromatogr. A,2008,1191,83-89.
    [292] J. Lin, J. Lin, X. Lin, Z. Xie, Preparation of a mixed-mode hydrophilicinteraction/anion-exchange polymeric monolithic stationary phase for capillary liquidchroaphy of polar analytes. J. Chromatogr. A,2009,1216,801-806.
    [293] C.-h. Cai, V. A. Romano, P. L. Dubin, Ionic strength dependence of protein retention onSuperose12in SEC-IEC mixed mode chromatography. J. Chromatogr. A,1995,693,251-261.
    [294] Q.-H. Shi, Z. Cheng, Y. Sun,4-(1H-imidazol-1-yl) aniline: A new ligand of mixed-modechromatography for antibody purification. J. Chromatogr. A,2009,1216,6081-6087.
    [295] R. Nogueira, M. L mmerhofer, W. Lindner, Alternative high-performance liquidchromatographic peptide separation and purification concept using a new mixed-modereversed-phase/weak anion-exchange type stationary phase. J. Chromatogr. A,2005,1089,158-169.
    [296] Y. Hsieh, C. J. G. Duncan, M. Liu, A mixed-mode liquid chromatography-tandem massspectrometric method for the determination of cytarabine in mouse plasma. J. Chromatogr. B,2007,854,8-12.
    [297] J. A. Cruz, C. Emery, M. Wüst, D. M. Kramer, B. M. Lange, Metabolite profiling ofCalvin cycle intermediates by HPLC-MS using mixed-mode stationary phases. Plant J.,2008,55,1047-1060.
    [298] Y. Nakashima, S. Suzuki, M. Yamazaki, Y. Inoue, Y. Fukatsu, A. Yamamoto,Simultaneous Determination of Ionic and Neutral Preservatives by Inline Dialysis-ionChromatography Coupled with a Hydrophobic-ion Exchange Mixed Mode Column. Anal.Sci.,2011,27,889.
    [1] O. N. Kulaeva, N. N. Karavaiko, S. Y. Selivankina, I. E. Moshkov, G. V. Novikova, Y. V.Zemlyachenko, S. V. Shipilova, E. M. Orudgev, Cytokinin signalling systems-From a wholeplant to the molecular level. Plant Growth Regul.,1996,18,29-37.
    [2] K. Takei, T. Yamaya, H. Sakakibara, A method for separation and determination of cytokininnucleotides from plant tissues. J. Plant Res.,2003,116,265-269.
    [3] C.O. Miller, F. Skoog, M. H. V. Saltza, F. M. Strong, Kinetin, a cell division factor fromdeoxyribonucleic acid. J. Am. Chem. Soc.,1955,77,1392.
    [4] P.-O. Bjorkman, E. Tillberg, Acetylation of cytokinins and modified adenine compounds: asimple and non-destructive derivatization method for GC-MS analysis. Phytochemistryanalysis,1996,7,57-58.
    [5] O. Novak, P. Tarkowski, D. Tarkowska, K. Dolezal, R. Lenobel, M. Strnad, Quantitativeanalysis of cytokinins in plants by liquid chromatography-single-quadrupole massspectrometry. Anal. Chim. Acta,2003,480,207-218.
    [6] O. Novak, E. Hauserova, P. Amakorova, K. Dolezal, M. Strnad, Cytokinin profiling in planttissues using ultra-performance liquid chromatography-electrospray tandem massspectrometry. Phytochemistry,2008,69,2214-2224.
    [7] M. Kojima, T. Kamada-Nobusada, H. Komatsu, K. Takei, T. Kuroha, M. Mizutani, M.Ashikari, M. Ueguchi-Tanaka, M. Matsuoka, K. Suzuki, H. Sakakibara, Highly Sensitive andHigh-Throughput Analysis of Plant Hormones Using MS-Probe Modification and LiquidChromatographyTandem Mass Spectrometry: An Application for Hormone Profiling inOryza sativa. Plant Cell Physiol.,2009,50,1201-1214.
    [8] L. Y. Ge, J. W. H. Yong, S. N. Tan, X. H. Yang, E. S. Ong, Analysis of some cytokinins incoconut (Cocos nucifera L.) water by micellar electrokinetic capillary chromatography aftersolid-phase extraction. J. Chromatogr. A,2004,1048,119-126.
    [9] L. Y. Ge, J. W. H. Yong, S. N. Tan, E. S. Ong, Determination of cytokinins in coconut (Cocosnucifera L.) water using capillary zone electrophoresis-tandem mass spectrometry.Electrophoresis,2006,27,2171-2181.
    [10] P. Hernández, F. Paton, Y. Ballesteros, L. Hernández, Voltammetry study of zeatin in a carbonfiber ultramicroelectrode. Determination by adsorptive stripping. Electroanalysis,1997,9,235-238.
    [11] L. Ge, J. W. H. Yong, N. K. Goh, L. S. Chia, S. N. Tan, E. S. Ong, Identification of kinetinand kinetin riboside in coconut (Cocos nucifera L.) water using a combined approach ofliquid chromatography-tandem mass spectrometry, high performance liquid chromatographyand capillary electrophoresis. J. Chromatogr. B,2005,829,26-34.
    [12] Z. Ma, L. Ge, A. S. Y. Lee, J. W. H. Yong, S. N. Tan, E. S. Ong, Simultaneous analysis ofdifferent classes of phytohormones in coconut (Cocos nucifera L.) water usinghigh-performance liquid chromatography and liquid chromatography-tandem massspectrometry after solid-phase extraction. Anal. Chim. Acta,2008,610,274-281.
    [13] X. Q. Pan, R. Welti, X. M. Wang, Simultaneous quantification of major phytohormones andrelated compounds in crude plant extracts by liquid chromatography-electrospray tandemmass spectrometry. Phytochemistry,2008,69,1773-1781.
    [14] A. Hussain, M. Krischke, T. Roitsch, S. Hasnain, Rapid Determination of Cytokinins andAuxin in Cyanobacteria. Curr. Microbiol.,2010,61,361-369.
    [15] B. Dejaegher, D. Mangelings, Y. Vander Heyden, Method development for HILIC assays. J.Sep. Sci.,2008,31,1438-1448.
    [16] N. D. Weng, Bioanalytical liquid chromatography tandem mass spectrometry methods onunderivatized silica columns with aqueous/organic mobile phases. J. Chromatogr. B,2003,796,209-224.
    [17] Y. Guo, S. Gaiki, Retention behavior of small polar compounds on polar stationary phases inhydrophilic interaction chromatography. J. Chromatogr. A,2005,1074,71-80.
    [18] H. P. Nguyen, K. A. Schug, The advantages of ESI-MS detection in conjunction with HILICmode separations: Fundamentals and applications. J. Sep. Sci.,2008,31,1465-1480.
    [19][R. Horgan, Analytical procedures for cytokinins, in: J.R. Hillman(Editor), Isolation of PlantGrowth Substances, Society for Experimental Biology, Seminar Series4, CambridgeUniversity Press, Cambridge, UK,1978,97.
    [20] X. Q. Pan, R. Welti, X. M. Wang, Quantitative analysis of major plant hormones in crudeplant extracts by high-performance liquid chromatography-mass spectrometry. nat. protoc.,2010,5,986-992.
    [21] G. C. Davis, M. B. Hein, D. A. Chapman, Evaluation of immunosorbents for the analysis ofsmall molecules: Isolation and purification of cytokinins. J. Chromatogr. A,1986,366,171-189.
    [22] K. Takei, Y. Dekishima, T. Eguchi, T. Yamaya, H. Sakakibara, A new method for enzymaticpreparation of isopentenyladenine-type and trans-zeatin-type cytokinins withradioisotope-labeling. J. Plant Res.,2003,116,259-263.
    [23] E. Hauserova, J. Swaczynova, K. Dolezal, R. Lenobel, I. Popa, M. Hajduch, D. Vydra, K.Fuksova, M. Strnad, Batch immunoextraction method for efficient purification of aromaticcytokinins. J. Chromatogr. A,2005,1100,116-125.
    [24] P. I. Dobrev, M. Kaminek, Fast and efficient separation of cytokinins from auxin and abscisicacid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A,2002,950,21-29.
    [25] L. Y. Ge, J. W. H. Yong, S. N. Tan, X. H. Yang, E. S. Ong, Analysis of cytokinin nucleotidesin coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandem massspectrometry after solid-phase extraction. J. Chromatogr. A,2006,1133,322-331.
    [26] Y. Fan, Y. Q. Feng, S. L. Da, Z. G. Shi, Poly (methacrylic acid-ethylene glycol dimethacrylate)monolithic capillary for in-tube solid phase microextraction coupled to high performanceliquid chromatography and its application to determination of basic drugs in human serum.Anal. Chim. Acta,2004,523,251-258.
    [27] Y. Fan, Y. Q. Feng, J. T. Zhang, S. L. Da, M. Zhang, Poly(methacrylic acid-ethylene glycoldimethacrylate) monolith in-tube solid phase microextraction coupled to high performanceliquid chromatography and analysis of amphetamines in urine samples. J.Chromatogr. A,2005,1074,9-16.
    [28] M. Zhang, F. Wei, Y. F. Zhang, J. Nie, Y. Q. Feng, Novel polymer monolith microextractionusing a poly(methacrylic acid-ethylene glycol dimethacrylate) monolith and its application tosimultaneous analysis of several angiotensin II receptor antagonists in human urine bycapillary zone electrophoresis. J. Chromatogr. A,2006,1102,294-301.
    [29] Y. Wen, Y. Q. Feng, Preparation and evaluation of hydroxylated poly(glycidylmethacrylate-co-ethylene dimethacrylate) monolithic capillary for in-tube solid-phasemicroextraction coupled to high-performance liquid chromatography. J.Chromatogr. A,2007,1160,90-98.
    [30] M. Chen, Y. Lu, Q. Ma, L. Guo, Y. Q. Feng, Boronate affinity monolith for highly selectiveenrichment of glycopeptides and glycoproteins. Analyst,2009,134,2158-2164.
    [31] Y. Fan, M. Zhang, Y. Q. Feng, Poly(acrylamide-vinylpyridine-N,N '-methylene bisacrylamide)monolithic capillary for in-tube solid-phase microextraction coupled to high performanceliquid chromatography. J. Chromatogr. A,2005,1099,84-91.
    [32] Q. Ma, M. Chen, Z. G. Shi, Y. Q. Feng, Preparation of apoly(N-isopropylacrylamide-co-ethylene dimethacrylate) monolithic capillary and itsapplication for in-tube solid-phase microextraction coupled to high-performance liquidchromatography. J. Sep. Sci.,2009,32,2592-2600.
    [33] Q. Ma, Y. Q. Feng, Preparation of a strong cation-exchange polymer monolith and itsapplication in determination of melamine in milk products. Chinese Journal ofchromatography,2009,27,731.
    [34] X. T. Peng, Z. G. Shi, Y. Q. Feng, Rapid and High-Throughput Determination of Melamine inMilk Products and Eggs by Full Automatic On-line Polymer Monolith MicroextractionCoupled to High-Performance Liquid Chromatography. Food Anal. Meth.,2011,4,381-388.
    [35] C. Wang, C. Jiang, D. W. Armstrong, Considerations on HILIC and polar organicsolvent-based separations: Use of cyclodextrin and macrocyclic glycopetide stationary phases.J. Sep. Sci.,2008,31,1980-1990.
    [36] A. J. Alpert, Hydrophilic-interaction chromatography for the separation of peptides, nucleicacids and other polar compounds. J. Chromatogr. A,1990,499,177-196.
    [37] P. Hemstrom, K. Irgum, Hydrophilic interaction chromatography. J. Sep. Sci.,2006,29,1784-1821.
    [1] M. Kojima, T. Kamada-Nobusada, H. Komatsu, K. Takei, T. Kuroha, M. Mizutani, M.Ashikari, M. Ueguchi-Tanaka, M. Matsuoka, K. Suzuki, H. Sakakibara, Highly sensitive andhigh-throughput analysis of plant hormones using MS-probe modification and liquidchromatographytandem mass spectrometry: an application for hormone profiling in Oryzasativa. Plant Cell Physiol.,2009,50,1201-1214.
    [2] H. J. Kim, H. Ryu, S. H. Hong, H. R. Woo, P. O. Lim, I. C. Lee, J. Sheen, H. G. Nam, I.Hwang, Cytokinin-mediated control of leaf longevity by AHK3through phosphorylation ofARR2in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A.,2006,103,814-819.
    [3] J. Choi, I. Hwang, Cytokinin: perception, signal transduction, and role in plant growth anddevelopment. J. Plant Biol.,2007,50,98-108.
    [4] M. Matsumoto-Kitano, T. Kusumoto, P. Tarkowski, K. Kinoshita-Tsujimura, K. Václavíková,K. Miyawaki, T. Kakimoto, Cytokinins are central regulators of cambial activity. Proc. Natl.Acad. Sci. U. S. A.,2008,105,20027-20031.
    [5] Z. Zhao, S. U. Andersen, K. Ljung, K. Dolezal, A. Miotk, S. J. Schultheiss, J. U. Lohmann,Hormonal control of the shoot stem-cell niche. Nature,2010,465,1089-1092.
    [6] T. Werner, T. Schmulling, Cytokinin action in plant development. Curr. Opin. Plant Biol.,2009,12,527-538.
    [7] U. Sweere, K. Eichenberg, J. Lohrmann, V. Mira-Rodado, I. Baurle, J. Kudla, F. Nagy, E.Schafer, K. Harter, Interaction of the Response Regulator ARR4with Phytochrome B inModulating Red Light Signaling. Science,2001,294,1108-1111.
    [8] V. Mira-Rodado, U. Sweere, C. Grefen, T. Kunkel, E. Fejes, F. Nagy, E. Sch fer, K. Harter,Functional cross-talk between two-component and phytochrome B signal transduction inArabidopsis. J. Exp. Bot.,2007,58,2595-2607.
    [9] R. M. Rivero, M. Kojima, A. Gepstein, H. Sakakibara, R. Mittler, S. Gepstein, E. Blumwald,Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl.Acad. Sci. U. S. A.,2007,104,19631-19636.
    [10] C. T. Argueso, F. J. Ferreira, J. J. Kieber, Environmental perception avenues: the interactionof cytokinin and environmental response pathways. Plant Cell Environ.,2009,32,1147-1160.
    [11] T. Werner, V. Motyka, M. Strnad, T. Schmulling, Regulation of plant growth by cytokinin.Proc. Natl. Acad. Sci. U. S. A.,2001,98,10487-10492.
    [12] K. Vermeulen, M. Strnad, L. Havl c ěk, H. Van Onckelen, M. Lenjou, G. Nijs, D. R. VanBockstaele, Z. N. Berneman, Plant cytokinin analogues with inhibitory activity oncyclin-dependent kinases exert their antiproliferative effect through induction of apoptosisinitiated by the mitochondrial pathway: Determination by a multiparametric flow cytometricanalysis. Exp. Hematol.,2002,30,1107-1114.
    [13] M. M. Rubio-Wilhelmi, E. Sanchez-Rodriguez, M. A. Rosales, B. Bego a, J. J. Rios, L.Romero, E. Blumwald, J. M. Ruiz, Effect of cytokinins on oxidative stress in tobacco plantsunder nitrogen deficiency. Environ. Exp. Bot.,2011,72,167-173.
    [14] W. A. Stirk, J. van Staden, O. Novak, K. Dolezal, M. Strnad, P. I. Dobrev, G. Sipos, V. Ordog,P. Balint, Changes in Endogenous Cytokinin Concentrations in Chlorella (Chlorophyceae) inRelation to Light and the Cell Cycle. J. Phycol.,2011,47,291-301.
    [15] P. I. Dobrev, M. Kaminek, Fast and efficient separation of cytokinins from auxin and abscisicacid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A,2002,950,21-29.
    [16] P. Tarkowski, L. Y. Ge, J. W. H. Yong, S. N. Tan, Analytical methods for cytokinins. TRACTrend. Anal. Chem.,2009,28,323-335.
    [17] K. Hoyerova, A. Gaudinova, J. Malbeck, P. I. Dobrev, T. Kocabek, B. Solcova, A.Travnickova, M. Kaminek, Efficiency of different methods of extraction and purification ofcytokinins. Phytochemistry,2006,67,1151-1159.
    [18] A. p. f. c. R. Horgan, in: J.R. Hillman(Editor), Isolation of Plant Growth Substances, Societyfor Experimental Biology, Seminar Series4, Cambridge University Press, Cambridge, UK,,Analytical procedures for cytokinins,1978,97.
    [19] X. Q. Pan, R. Welti, X. M. Wang, Simultaneous quantification of major phytohormones andrelated compounds in crude plant extracts by liquid chromatography-electrospray tandemmass spectrometry. Phytochemistry,2008,69,1773-1781.
    [20] J. A. van Rhijn, H. H. Heskamp, E. Davelaar, W. Jordi, M. S. Leloux, U. A. T. Brinkman,Quantitative determination of glycosylated and aglycon isoprenoid cytokinins atsub-picomolar levels by microcolumn liquid chromatography combined with electrospraytandem mass spectrometry. J. Chromatogr. A,2001,929,31-42.
    [21] L. Y. Ge, J. W. H. Yong, S. N. Tan, X. H. Yang, E. S. Ong, Analysis of some cytokinins incoconut (Cocos nucifera L.) water by micellar electrokinetic capillary chromatography aftersolid-phase extraction. J. Chromatogr. A,2004,1048,119-126.
    [22] K. Takei, T. Yamaya, H. Sakakibara, A method for separation and determination of cytokininnucleotides from plant tissues. J. Plant Res.,2003,116,265-269.
    [23] L. Y. Ge, J. W. H. Yong, S. N. Tan, X. H. Yang, E. S. Ong, Analysis of cytokinin nucleotidesin coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandem massspectrometry after solid-phase extraction. J. Chromatogr. A,2006,1133,322-331.
    [24] Y. Izumi, A. Okazawa, T. Bamba, A. Kobayashi, E. Fukusaki, Development of a method forcomprehensive and quantitative analysis of plant hormones by highly sensitive nanoflowliquid chromatography-electrospray ionization-ion trap mass spectrometry. Anal. Chim. Acta,2009,648,215-225.
    [25] G. C. Davis, M. B. Hein, D. A. Chapman, Evaluation of immunosorbents for the analysis ofsmall molecules: Isolation and purification of cytokinins. J. Chromatogr. A,1986,366,171-189.
    [26] R. Maldiney, B. Leroux, I. Sabbagh, B. Sotta, L. Sossountzov, E. Miginiac, Abiotin-avidin-based enzyme immunoassay to quantify three phytohormones: auxin, abscisicacid and zeatin-riboside. J. Immunol. Methods,1986,90,151-158.
    [27] B. Nicander, U. St hl, P.-O. Bj rkman, E. Tillberg, Immunoaffinity co-purification ofcytokinins and analysis by high-performance liquid chromatography withultraviolet-spectrum detection. Planta,1993,189,312-320.
    [28] R. r. Vaňková, A. Gaudinová, H. Süssenbeková, P. Dobrev, M. Strnad, J. Hol k, J. Lenfeld,Comparison of oriented and random antibody immobilization in immunoaffinitychromatography of cytokinins. J. Chromatogr. A,1998,811,77-84.
    [29] E. Hauserova, J. Swaczynova, K. Dolezal, R. Lenobel, I. Popa, M. Hajduch, D. Vydra, K.Fuksova, M. Strnad, Batch immunoextraction method for efficient purification of aromaticcytokinins. J. Chromatogr. A,2005,1100,116-125.
    [30] O. Novak, E. Hauserova, P. Amakorova, K. Dolezal, M. Strnad, Cytokinin profiling in planttissues using ultra-performance liquid chromatography-electrospray tandem massspectrometry. Phytochemistry,2008,69,2214-2224.
    [31] A. Nordstrom, P. Tarkowski, D. Tarkowska, K. Dolezal, C. Astot, G. Sandberg, T. Moritz,Derivatization for LC electrospray ionization-MS: A tool for improving reversed-phaseseparation and ESI responses of bases, ribosides, and intact nucleotides. Anal. Chem.,2004,76,2869-2877.
    [32] Y.-h. Li, F. Wei, X.-y. Dong, J.-h. Peng, S.-y. Liu, H. Chen, Simultaneous Analysis ofMultiple Endogenous Plant Hormones in Leaf Tissue of Oilseed Rape by Solid-phaseExtraction Coupled with High-performance Liquid Chromatography–Electrospray IonisationTandem Mass Spectrometry. Phytochem. Analysis.,2011,22,442-449.
    [33] K. Dole al, C. stot, J. Hanu, J. Holub, W. Peters, E. Beck, M. Strnad, G. Sandberg,Identification of aromatic cytokinins in suspension cultured photoautotrophic cells ofChenopodium rubrum by capillary liquid chromatography/frit–fast atom bombardment massspectrometry. Plant Growth Regul.,2002,36,181-189.
    [34] P. Redig, T. Schmulling, H. Van Onckelen, Analysis of Cytokinin Metabolism in iptTransgenic Tobacco by Liquid Chromatography-Tandem Mass Spectrometry. Plant Physiol.,1996,112,141-148.
    [1] L. Lin, R. X. Tan, Cross-kingdom actions of phytohormones: a functional scaffoldexploration. Chem. Rev.,2011,111,2734-2760.
    [2] K. Hoyerova, A. Gaudinova, J. Malbeck, P. I. Dobrev, T. Kocabek, B. Solcova, A.Travnickova, M. Kaminek, Efficiency of different methods of extraction and purification ofcytokinins. Phytochemistry,2006,67,1151-1159.
    [3] D. W. Mok, M. C. Mok, Cytokinin metabolism and action. Annu. Rev. Plant Physiol. PlantMol. Biol.,2001,52,89-118.
    [4] R. Horgan, Scott, I.M. Cytokinins. In: Rivier, L., Crozier, A.,(Eds.), The Principles andPractice of Plant Hormone Analysis.1987, Academic Press, London304–365.
    [5] P. O. Bjorkman, E. Tillberg, Acetylation of cytokinins and modified adenine compounds: asimple and non-destructive derivatization method for GC-MS analysis. Phytochem. Analysis.,1996,7,57-58.
    [6] C. Birkemeyer, A. Kolasa, J. Kopka, Comprehensive chemical derivatization for gaschromatography-mass spectrometry-based multi-targeted profiling of the majorphytohormones. J. Chromatogr. A,2003,993,89-102.
    [7] J. A. van Rhijn, H. H. Heskamp, E. Davelaar, W. Jordi, M. S. Leloux, U. A. T. Brinkman,Quantitative determination of glycosylated and aglycon isoprenoid cytokinins atsub-picomolar levels by microcolumn liquid chromatography combined with electrospraytandem mass spectrometry. J. Chromatogr. A,2001,929,31-42.
    [8] O. Novak, P. Tarkowski, D. Tarkowska, K. Dolezal, R. Lenobel, M. Strnad, Quantitativeanalysis of cytokinins in plants by liquid chromatography-single-quadrupole massspectrometry. Anal. Chim. Acta,2003,480,207-218.
    [9] P. Bartak, P. Bednar, Z. Stransky, P. Bocek, R. Vespalec In Determination of dissociationconstants of cytokinins by capillary zone electrophoresis,11th International Symposium onCapillary Electrophoresis Techniques (ITP98), Venice, Italy, Oct04-07,1998; ElsevierScience Bv: Venice, Italy,1998,249-259.
    [10] B.-F. Liu, X.-H. Zhong, Y.-T. Lu, Analysis of plant hormones in tobacco flowers by micellarelectrokinetic capillary chromatography coupled with on-line large volume sample stacking.J. Chromatogr. A,2002,945,257-265.
    [11] L. Y. Ge, J. W. H. Yong, S. N. Tan, X. H. Yang, E. S. Ong, Analysis of some cytokinins incoconut (Cocos nucifera L.) water by micellar electrokinetic capillary chromatography aftersolid-phase extraction. J. Chromatogr. A,2004,1048,119-126.
    [12] L. Y. Ge, J. W. H. Yong, S. N. Tan, E. S. Ong, Determination of cytokinins in coconut (Cocosnucifera L.) water using capillary zone electrophoresis-tandem mass spectrometry.Electrophoresis,2006,27,2171-2181.
    [13] L. Y. Ge, J. W. H. Yong, S. N. Tan, X. H. Yang, E. S. Ong, Analysis of cytokinin nucleotidesin coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandem massspectrometry after solid-phase extraction. J. Chromatogr. A,2006,1133,322-331.
    [14] L. Ge, S. N. Tan, J. W. H. Yong, L. Hua, E. S. Ong, Separation of cytokinin isomers with apartial filling-micellar electrokinetic chromatography-mass spectrometry approach.Electrophoresis,2008,29,2024-2032.
    [15] L. Ge, J. W. H. Yong, N. K. Goh, L. S. Chia, S. N. Tan, E. S. Ong, Identification of kinetinand kinetin riboside in coconut (Cocos nucifera L.) water using a combined approach ofliquid chromatography-tandem mass spectrometry, high performance liquid chromatographyand capillary electrophoresis. J. Chromatogr. B,2005,829,26-34.
    [16] Z. Ma, L. Ge, A. S. Y. Lee, J. W. H. Yong, S. N. Tan, E. S. Ong, Simultaneous analysis ofdifferent classes of phytohormones in coconut (Cocos nucifera L.) water usinghigh-performance liquid chromatography and liquid chromatography-tandem massspectrometry after solid-phase extraction. Anal. Chim. Acta,2008,610,274-281.
    [17] O. Novak, E. Hauserova, P. Amakorova, K. Dolezal, M. Strnad, Cytokinin profiling in planttissues using ultra-performance liquid chromatography-electrospray tandem massspectrometry. Phytochemistry,2008,69,2214-2224.
    [18] X. Q. Pan, R. Welti, X. M. Wang, Simultaneous quantification of major phytohormones andrelated compounds in crude plant extracts by liquid chromatography-electrospray tandemmass spectrometry. Phytochemistry,2008,69,1773-1781.
    [19] M. Kojima, T. Kamada-Nobusada, H. Komatsu, K. Takei, T. Kuroha, M. Mizutani, M.Ashikari, M. Ueguchi-Tanaka, M. Matsuoka, K. Suzuki, H. Sakakibara, Highly sensitive andhigh-throughput analysis of plant hormones using MS-probe modification and liquidchromatography tandem mass spectrometry: an application for hormone profiling in Oryzasativa. Plant Cell Physiol.,2009,50,1201-1214.
    [20] T. Beres, M. Zatloukal, J. Voller, P. Niemann, M. C. Gahsche, P. Tarkowski, O. Novak, J.Hanus, M. Strnad, K. Dolezal, Tandem mass spectrometry identification and LC-MSquantification of intact cytokinin nucleotides in K-562human leukemia cells. Anal. Bioanal.Chem.,2010,398,2071-2080.
    [21] X. Q. Pan, R. Welti, X. M. Wang, Quantitative analysis of major plant hormones in crudeplant extracts by high-performance liquid chromatography-mass spectrometry. Nat. Protoc.,2010,5,986-992.
    [22] Z. Liu, F. Wei, Y. Q. Feng, Determination of cytokinins in plant samples by polymer monolithmicroextraction coupled with hydrophilic interaction chromatography-tandem massspectrometry. Analytical Methods,2010,2,1676-1685.
    [23] Y. Fan, Y. Q. Feng, S. L. Da, Z. G. Shi, Poly (methacrylic acid-ethylene glycol dimethacrylate)monolithic capillary for in-tube solid phase microextraction coupled to high performanceliquid chromatography and its application to determination of basic drugs in human serum.Anal. Chim. Acta,2004,523,251-258.
    [24] Y. Fan, Y. Q. Feng, S. L. Da, X. P. Gao, In-tube solid-phase microextraction withpoly(methacrylic acidethylene glycol dimethacrylate) monolithic capillary for directhigh-performance liquid chromatographic determination of ketamine in urine samples.Analyst,2004,129,1065-1069.
    [25] Y. Fan, Y. Q. Feng, J. T. Zhang, S. L. Da, M. Zhang, Poly(methacrylic acid-ethylene glycoldimethacrylate) monolith in-tube solid phase microextraction coupled to high performanceliquid chromatography and analysis of amphetamines in urine samples. J. Chromatogr. A,2005,1074,9-16.
    [26] F. Wei, Y. Fan, M. Zhang, Y. Q. Feng, Poly(methacrylic acid-ethylene glycol dimethacrylate)monolith in-tube solid-phase microextraction applied to simultaneous analysis of someamphetamine derivatives in urine by capillary zone electrophoresis. Electrophoresis,2005,26,3141-3150.
    [27] Y. Wen, Y. Fan, M. Zhang, Y. Q. Feng, Determination of camptothecin and10-hydroxycamptothecin in human plasma using polymer monolithic in-tube solid phasemicroextraction combined with high-performance liquid chromatography. Anal.Bioanal.Chem.,2005,382,204-210.
    [28] J. F. Huang, B. Lin, Q. W. Yu, Y. Q. Feng, Determination of fluoroquinolones in eggs usingin-tube solid-phase microextraction coupled to high-performance liquid chromatography.Anal.Bioanal. Chem.,2006,384,1228-1235.
    [29] M. M. Zheng, M. Y. Zhang, Y. Q. Feng, Polymer monolith microextraction online coupled tohydrophilic interaction chromatography/mass spectrometry for analysis of beta(2)-agonist inhuman urine. J. Sep. Sci.,2009,32,1965-1974.
    [30] M. M. Zheng, G. D. Ruan, Y. Q. Feng, Hybrid organic-inorganic silica monolith withhydrophobic/strong cation-exchange functional groups as a sorbent for micro-solid phaseextraction. J. Chromatogr. A,2009,1216,7739-7746.
    [31] W. Q. Chen, Y. Gai, S. C. Liu, R. X. Wang, X. N. Jiang, Quantitative Analysis of Cytokininsin Plants by High Performance Liquid Chromatography: Electronspray Ionization Ion TrapMass Spectrometry. J. Integr. Plant Biol.,2010,52,925-932.
    [1] R. M. Smith, Before the injection-modern methods of sample preparation for separationtechniques. J. Chromatogr. A,2003,1000,3-27.
    [2] M. C. Hennion, C. Cau-Dit-Coumes, V. Pichon, Trace analysis of polar organic pollutants inaqueous samples: Tools for the rapid prediction and optimisation of the solid-phase extractionparameters. J. Chromatogr. A,1998,823,147-161.
    [3] J. Piet Franke, R. A. de Zeeuw, Solid-phase extraction procedures in systematic toxicologicalanalysis. J. Chromatogr. B,1998,713,51-59.
    [4] N. Fontanals, R. M. Marcé, F. Borrull, New hydrophilic materials for solid-phase extraction.TRAC Trend. Anal. Chem.,2005,24,394-406.
    [5] Q. Gao, D. Luo, J. Ding, Y. Q. Feng, Rapid magnetic solid-phase extraction based onmagnetite/silica/poly(methacrylic acid-co-ethylene glycol dimethacrylate) compositemicrospheres for the determination of sulfonamide in milk samples. J. Chromatogr. A,2010,1217,5602-5609.
    [6] L. Sun, X. Sun, X. Du, Y. Yue, L. Chen, H. Xu, Q. Zeng, H. Wang, L. Ding, Determination ofsulfonamides in soil samples based on alumina-coated magnetite nanoparticles as adsorbents.Anal. Chim. Acta,2010,665,185-192.
    [7] Q. Gao, D. Luo, M. Bai, Z. W. Chen, Y. Q. Feng, Rapid determination of estrogens in milksamples based on magnetite nanoparticles/polypyrrole magnetic solid-phase extractioncoupled with liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem.,2011,59,8543-8549.
    [8] Sukhanova, II, M. A. Dikunets, E. D. Viryus, G. M. Rodchenkov, Magnetic separation as anew method for the extraction of small molecules from biological fluids of humans. J. Anal.Chem.,2011,66,807-814.
    [9] X. L. Zhang, H. Y. Niu, Y. Y. Pan, Y. L. Shi, Y. Q. Cai, Modifying the surface ofFe(3)O(4)/SiO(2) magnetic nanoparticles with C(18)/NH(2) mixed group to get an efficientsorbent for anionic organic pollutants. J. Colloid Interf. Sci,2011,362,107-112.
    [10] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. N. Muller, MagneticIron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, PhysicochemicalCharacterizations, and Biological Applications. Chem. Rev.,2008,108,2064-2110.
    [11] J. Gao, H. Gu, B. Xu, Multifunctional magnetic nanoparticles: design, synthesis, andbiomedical applications. Accounts of Chem. Res.,2009,42,1097-1107.
    [12] L. Zhu, D. Pan, L. Ding, F. Tang, Q. Zhang, Q. Liu, S. Yao, Mixed hemimicelles SPE basedon CTAB-coated Fe3O4/SiO2NPs for the determination of herbal bioactive constituentsfrom biological samples. Talanta,2010,80,1873-1880.
    [13] C. Zhang, B. W ngler, B. Morgenstern, H. Zentgraf, M. Eisenhut, H. Untenecker, R. Krüger,R. Huss, C. Seliger, W. Semmler, F. Kiessling, Silica-and alkoxysilane-coated ultrasmallsuperparamagnetic iron wxide particles: a promising tool to label cells for magneticresonance imaging. Langmuir,2006,23,1427-1434.
    [14] Y.-H. Deng, C.-C. Wang, J.-H. Hu, W.-L. Yang, S.-K. Fu, Investigation of formation ofsilica-coated magnetite nanoparticles via sol-gel approach. Colloids Surf. A,2005,262,87-93.
    [15] Y. Sun, L. Duan, Z. Guo, Y. DuanMu, M. Ma, L. Xu, Y. Zhang, N. Gu, An improved way toprepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biologicalapplication. J. Magn. Magn. Mater.,2005,285,65-70.
    [16] A. I. Lesnikovich, T. M. Shunkevich, V. N. Naumenko, S. A. Vorobyova, M. V. Baykov,Dispersity of magnetite in magnetic liquids and the interaction with a surfactant. J. Magn.Magn. Mater.,1990,85,14-16.
    [17] R. Y. Hong, B. Feng, X. Cai, G. Liu, H. Z. Li, J. Ding, Y. Zheng, D. G. Wei,Double-miniemulsion preparation of Fe3O4/poly(methyl methacrylate) magnetic latex. J.Appl. Polym. Sci.,2009,112,89-98.
    [18] G. D. Mendenhall, Y. Geng, J. Hwang, Optimization of long-term stability of magnetic fluidsfrom magnetite and synthetic polyelectrolytes. J. Colloid. Interf. Sci.,1996,184,519-526.
    [19] H. Chen, C. Deng, X. Zhang, Synthesis of Fe3O4@SiO2@PMMA core–shell–shell magneticmicrospheres for highly efficient enrichment of peptides and proteins for MALDI-ToF MSanalysis. Angew. Chem. Int. Edit,2010,122,617-621.
    [20] J. Ding, Q. A. Gao, D. Luo, Z. G. Shi, Y. Q. Feng, n-Octadecylphosphonic acid graftedmesoporous magnetic nanoparticle: Preparation, characterization, and application in magneticsolid-phase extraction. J. Chromatogr. A,2010,1217,7351-7358.
    [21] X. Zhang, H. Niu, Y. Pan, Y. Shi, Y. Cai, Chitosan-Coated Octadecyl-FunctionalizedMagnetite Nanoparticles: Preparation and application in extraction of trace pollutants fromenvironmental water samples. Anal. Chem.,2010,82,2363-2371.
    [22] J. H. Jang, H. B. Lim, Characterization and analytical application of surface modifiedmagnetic nanoparticles. Microchem.. J.,2010,94,148-158.
    [23] D. Qi, Y. Mao, J. Lu, C. Deng, X. Zhang, Phosphate-functionalized magnetic microspheresfor immobilization of Zr4+ions for selective enrichment of the phosphopeptides. J.Chromatogr. A,2010,1217,2606-2617.
    [24] Y. R. Song, S. L. Zhao, P. Tchounwou, Y. M. Liu, A nanoparticle-based solid-phase extractionmethod for liquid chromatography-electrospray ionization-tandem mass spectrometricanalysis. J. Chromatogr. A,2007,1166,79-84.
    [25] X. L. Zhao, Y. L. Shi, T. Wang, Y. Q. Cai, G. B. Jiang, Preparation of silica-magnetitenanoparticle mixed hemimicelle sorbents for extraction of several typical phenoliccompounds from environmental water samples. J. Chromatogr. A,2008,1188,140-147.
    [26] S. Perilli, L. Moubayidin, S. Sabatini, The molecular basis of cytokinin function. Curr. Opin.Plant Biol.,2010,13,21-26.
    [27] O. N. Kulaeva, N. N. Karavaiko, S. Y. Selivankina, I. E. Moshkov, G. V. Novikova, Y. V.Zemlyachenko, S. V. Shipilova, E. M. Orudgev, Cytokinin signalling systems-From a wholeplant to the molecular level. Plant Growth Regul.,1996,18,29-37.
    [28] O. Novak, P. Tarkowski, D. Tarkowska, K. Dolezal, R. Lenobel, M. Strnad, Quantitativeanalysis of cytokinins in plants by liquid chromatography-single-quadrupole massspectrometry. Anal. Chim. Acta,2003,480,207-218.
    [29] O. Novak, E. Hauserova, P. Amakorova, K. Dolezal, M. Strnad, Cytokinin profiling in planttissues using ultra-performance liquid chromatography-electrospray tandem massspectrometry. Phytochemistry,2008,69,2214-2224.
    [30] A. p. f. c. R. Horgan, in: J.R. Hillman(Editor), Isolation of Plant Growth Substances, Societyfor Experimental Biology, Seminar Series4, Cambridge University Press, Cambridge, UK,.,Analytical procedures for cytokinins,1978,97.
    [31] P. I. Dobrev, M. Kaminek, Fast and efficient separation of cytokinins from auxin and abscisicacid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A,2002,950,21-29.
    [32] Y. Izumi, A. Okazawa, T. Bamba, A. Kobayashi, E. Fukusaki, Development of a method forcomprehensive and quantitative analysis of plant hormones by highly sensitive nanoflowliquid chromatography-electrospray ionization-ion trap mass spectrometry. Anal. Chim. Acta,2009,648,215-225.
    [33] M. Kojima, T. Kamada-Nobusada, H. Komatsu, K. Takei, T. Kuroha, M. Mizutani, M.Ashikari, M. Ueguchi-Tanaka, M. Matsuoka, K. Suzuki, H. Sakakibara, Highly Sensitive andHigh-Throughput Analysis of Plant Hormones Using MS-Probe Modification and LiquidChromatographyTandem Mass Spectrometry: An Application for Hormone Profiling inOryza sativa. Plant Cell Physiol.,2009,50,1201-1214.
    [34] Z. Liu, F. Wei, Y. Q. Feng, Determination of cytokinins in plant samples by polymer monolithmicroextraction coupled with hydrophilic interaction chromatography-tandem massspectrometry. Analytical Methods,2010,2,1676-1685.
    [35] Q. Ma, Y. Q. Feng, Preparation of a strong cation-exchange polymer monolith and itsapplication in determination of melamine in milk products. Chinese J. chromatogr.,2009,27,731.
    [36] X. T. Peng, Z. G. Shi, Y. Q. Feng, Rapid and high-throughput determination of melamine inmilk products and eggs by full automatic on-line polymer monolith microextraction coupledto high-performance liquid chromatography. Food Anal. Methods,2011,4,381-388.
    [37] S. Guo, D. Li, L. Zhang, J. Li, E. Wang, Monodisperse mesoporous superparamagneticsingle-crystal magnetite nanoparticles for drug delivery. Biomaterials,2009,30,1881-1889.
    [38] G. Liu, H. Wang, X. Yang, Synthesis of pH-sensitive hollow polymer microspheres withmovable magnetic core. Polymer,2009,50,2578-2586.
    [39] T. Werner, T. Schmulling, Cytokinin action in plant development. Curr. Opin. Plant Biol.,2009,12,527-538.
    [40] Y. Zhao, Y. Hu, M. Dai, L. Huang, D.-X. Zhou, The WUSCHEL-related homeobox geneWOX11is required to activate shoot-borne crown root development in rice. Plant Cell,2009,21,736-748.
    [41] T. Werner, V. Motyka, M. Strnad, T. Schmulling, Regulation of plant growth by cytokinin.Proc. Natl. Acad. Sci. U. S. A.,2001,98,10487-10492.
    [42] T. Werner, V. Motyka, V. Laucou, R. Smets, H. Van Onckelen, T. Schmülling,Cytokinin-deficient transgenic arabidopsis plants show multiple developmental alterationsindicating opposite functions of cytokinins in the regulation of shoot and root meristemactivity. Plant Cell,2003,15,2532-2550.
    [43] M. Riefler, O. Novak, M. Strnad, T. Schmülling, Arabidopsis cytokinin receptor mutantsreveal functions in shoot growth, leaf senescence, seed size, germination, root development,and cytokinin metabolism. Plant Cell,2006,18,40-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700