用户名: 密码: 验证码:
西北太平洋柔鱼渔场与水温垂直结构关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔鱼(Ommastrephes bartramii)是北太平洋海洋生态系统的重要组成部分,起着连接上下层生物链的作用,也是北太平洋重要的经济种类之一,主要由中国(包括台湾省)、日本等国家和地区开发利用。其中,分布在北太平洋西部海域的冬春生群是中国大陆渔船传统的捕捞对象,8~10月为渔汛旺期,约占北太平洋柔鱼总产量的70~80%。近年来,随着捕捞成本的上升,如何高效准确寻找柔鱼中心渔场是一个亟需解决的实际问题。柔鱼具有昼夜垂直移动的特性,中心渔场的形成不仅受到表层水温、锋面等的影响,同时还会受到其水温垂直结构的影响。因此,深入研究和分析柔鱼渔场与水温垂直结构的关系,有利于揭示中心渔场形成机理,为科学寻找中心渔场提供依据。
     本文根据我国西北太平洋鱿钓渔业的历史生产统计数据,结合其产卵场和作业渔场(索饵场)海表温度(Sea Surface Temperature, SST)、深层水温(50m、100m、200m和300m)等海洋环境数据,分析了西北太平洋柔鱼渔场重心的时空分布及其规律,探讨了渔场分布与水温垂直结构的关系,从深层水温入手探讨了2009年捕捞产量下降的原因;利用栖息地理论和方法来建立基于表温、深层水温(50m、200m和300m)的适应性指数模型,利用算术平均法(arithmetic mean model, AMM)和几何平均法(geometric mean model, GMM)2种方法来计算基于水温垂直结构的综合栖息地指数(Habitat suitability index model, HSI),并选择最优模型和进行渔场预报验证。研究结果如下:
     (1)8~10月渔汛期西北太平洋柔鱼渔场时空变动显著。分析认为,经度重心年间变动显著,年内变动不显著,8~10月自西向东偏移。8月份超过60%的作业次数和产量集中在153o~157oE海域;9~10月,作业渔场向东偏移,主要集中在155o~159oE海域。柔鱼资源丰度在经度向并没有呈现显著波动,较稳定。而纬度向渔场重心在年间和年内变动均显著,在40o~45oN间呈现北-南-北的变动模式,主要产量集中在42o~44oN海域,柔鱼丰度呈现显著波动。
     (2)研究认为,8~10月中心渔场主要分布在150°~160°E、40°~45°N海域。中心渔场各水层适宜水温各有差异。8月作业渔场适宜的水温结构(SST、50m水温、100m水温、200m水温、300m水温、0~50m水温梯度和200~300m水温梯度)分别为17~21℃、6~12℃、4~8℃、2~6℃、0.15~0.35℃/m和-0.01~0.02℃/m;9月分别为15~19℃、6~11℃、1~6℃、2~6℃、0.15~0.35℃/m和-0.01~0.01℃/m;10月分别为13~17℃、8~13℃、4~9℃、3~6℃、0.05~0.2℃/m和-0.01~0.01℃/m。但不同年份之间稍有差异。水温垂直剖面分析认为,柔鱼中心渔场主要位于黑潮和亲潮分支的汇合处的锋面暖水一侧,且0~50m以内等温线密集的海域。
     (3)分布在西北太平洋的柔鱼是我国远洋鱿钓渔业的重要捕捞对象,近些年来其产量一直处在稳定的水平。然而,2009年8~10月旺汛期间在传统作业渔场(150°E~165°E、38°E~46°E)柔鱼产量出现大幅度下降,其日产量仅为正常年份的一半。研究表明,其产量出现下降的原因可能有2个:①柔鱼产卵场(20°N~30°N,130°E~170°E)黑潮大弯曲的发生,使得21℃等温线向南偏移,使得柔鱼资源补充量受到影响,从而使得渔汛期间柔鱼产量的下降;②旺汛期间(8~9月)传统作业渔场(42°N~46°N,150°E~165°E)的100 m水层有一个明显冷水南下,分布位置为154°E~156°E,将传统作业渔场(150°E~165°E)一分为二,向南的前锋(水温低于5℃)到达42°N,明显不同于正常年份,使得作业渔场的范围明显缩小,不适合柔鱼的集群,导致产量出现大幅下降。
     (4)以作业次数作为柔鱼适应性指数的相对指标,分别建立以表温和不同垂直水温因子的适应性指数(SI)模型(P<0.05),采用算术平均法(AMM)和几何平均法(GMM)分别建立综合栖息地指数(HSI)模型,并对1998~2004年8~10月的HSI值与实际作业次数、产量和单船日产量(CPUE)作比较。结果表明,8~10月,HSI>0.6时,AMM的产量和作业次数比重分别占83.4%和80.9%,CPUE均2.1t/d以上;GMM的产量和作业次数比重分别占73.5%和69.6%,CPUE均2.3t/d以上。两种模型比较认为,AMM模型稍优于GMM模型。利用2005年8~10月生产数据及水温资料对HSI模型进行验证,分析认为渔汛期作业渔场主要分布在HSI大于0.6的海域,产量和作业次数比重分别为85.6 %和82.5%,CPUE为3.2~4.2t/d,但不同月份稍有差异。研究表明,基于水温垂直结构的栖息地指数模型能较好地预测西北太平洋中心渔场和潜在渔场。
The neon flying squid (Ommastrephes bartramii) is an important component in the North Pacific Ocean ecosystem, playing an important role in linking the food chains. And the squid also surports a major fishery in the North Pacific Ocean and is mainly exploited and utilized by China (including Taiwan province), Japan and other countries. The west stock of winter-spring cohort as one of four stocks, accounting for 70% to 80% of the total annual catch in the high fishing season of August to October in the last decade in the Northwestern Pacific Ocean, is the traditional target species of Chinese jigging-fleets. However, in recent years, the way how to efficiently predict the central fishing ground of O. bartramii urgently needs to be solved. The formation of central fishing ground of O. bartramii was not only impacted by sea surface temperature (SST), marine fronts, and etc, but also affected by vertical temperature structure in terms of diel vertical migration of the neon flying squid. Therefore, further analysis on the relation between fishing ground and vertical temperature structure is conducive to reveal the formation mechanism of main fishing ground, for providing the basis for scientifically searching for the fishing ground of O. bartramii.
     This paper was to analyze the law of the spatial and temporal distribution of squid fishing ground grativity, and discuss fishing ground distribution relation to vertical temperature structure, and the reasons for declines in catch in 2009 using deep sea water temperature in the Northwstern Pacific Ocean based on the historical statistical data from Chinese mainland squid fishery and marine environment of squid feeding ground and spawning ground including Sea Surface Temperature( SST), deep sea water temperature(at 50m, 100m, 200m and 300m depths), etc. The suitability index (SI) was established by habitat theory and method using SST, temperature gradient of 0-50m, deep water tempeture (at 200m and 300m depths) data. The integrated habitat suitability index (HSI) model was created by arithmetic mean model (AMM) and geometric mean model( GMM ), and was selected to the apropriate model by use of comparative analysis. Finally, we use this model to forcasting fishing ground for fishermen and fishery managers. The results are as follows:
     (1) Spatial and temporal distribution of fishing ground of O. bartramii changed significantly during the fishing season of August to October in the Northwestern Pacific Ocean. Inter-annual variations of longitunidal gravity of fishing ground were significant but seasonal variations were not significant. The fishing ground shifted west to east from August to October. In August above 60 percent of fishing efforts and catch came from the waters of 153o-157oE, and during September to October the fishing ground was mainly concentrated in the waters of 155o-159oE. Nevertheless, abundance (CPUE) of O.bartramii didn’t show significant variations in longitude. However, inter-annual and seasonal variations of latitudinal grativity of fishing ground were both significant, following the pattern of south-north-south forward during 40o-45oN. The main catch was concentrated in the waters of 42o-44oN, but abundance of O. bartramii ( CPUE) presents remarkable fluctuations.
     (2) The vertical temperature including SST and deep sea water temperature and latitudinal temperature profile was analyzed in terms of diel vertical migration of neon flying squid. The central fishing ground was mainly distributed in the waters of 150o-160oE, 40o-45oN during August to October, where the monthly vertical temperature structure is different. The optimal range of SST, temperature at 50m, 100m, 200m and 300m and the temperature gradients of 0-50m and 200-300m were 17-21℃, 6-12℃, 4-8℃, 2-6℃, 0.15-0.35℃/m and -0.01-0.02℃/m, respectively, in August, and they were 15-19℃, 6-11℃, 1-6℃, 2-6℃, 0.15-0.35℃/m and -0.01-0.01℃/m respectively in September, and 13-17℃, 8-13℃, 4-9℃, 3-6℃, 0.05-0.2℃/ m and -0.01-0.01℃/m respectively in October. The temperature profile analysis indicated that the fishing ground concentrated in the confluence of the branches of the Kuroshio and Oyashio, warm waters side of front at different depths, where the isothermal line was very dense within 50 meters.
     (3) The neon flying squid (Ommastrephes bartramii) as a main fishing target for Chinese distant-water squid jigging fleets, the production has maintained a steady level in the recent years. However, it declined sharply in the traditional fishing ground during the high fishing season (from August to October) in 2009, and the daily catch was only half of that in the normal years. Therefore, based on the catch from the Chinese squid jigging vessels and environment data in the Northwestern Pacific Ocean from August to September during 2007 to 2009, the reason on the decline in catch for O. bartramii and variability of fishing ground in 2009 were deduced. The results indicated that there are two points causing a sharp decline in catch: 1) The occurrence of the bigbending of Kuroshio at the spawning ground (130-170°E, 20°-30°N ) caused a sharp decline in squid recruitment; 2) During the main fishing season (August-September), the cold waters (located at 154°-156°E) at 100m depth intruded southward into the traditional fishing ground (150°-165°E,42°-46°N), which split the traditional fishing ground into two parts. And its southerly front (temperature at 100 m layer < 5℃) reached at 42°N, which was distinctly different from that in normal years. Since the above reasons, the fishing ground has been significantly narrowed and not suitable for squid to aggregate.
     (4) The fishing effort as a relative indicator of suitability index of O. bartramii was created for suitability index (SI) based on SST and vertical temperature (P<0.05). The integrated habitat suitability index model was established based on the arithmetic average method (AMM) and the geometric mean method (GMM). We compared HSI values with the actual fishing effort, catch and CPUE during August to October from 1998 to 2004 in the waters with HSI value greater than 0.6 from August to October, the percentage of catch and fishing effort were 83.4% and 80.9% estimated from AMM, respectively, and CPUEs were all above 2.1t/d. However, the percentage of catch and fishing effort were 73.5% and 69.6% estimated from GMM, respectively, and CPUEs were all above 2.3t/d. AMM was better than the GMM by comparison of two models. The HSI was validated by the catch data from August to October in 2005 and water temperature data. It is found that the main fishing ground of Ommastrephes bartramii was distributed in the areas with HSI greater than 0.6 in the AMM, and fishing effort and catch accounted for 85.6% and 82.5%, respectively, and its corresponding CPUE ranged from 3.2t/d to 4.2t/d, which is stable with small fluctuation. The results shown that the HSI model based on vertical temperature structure can better predict the main fishing ground and potential fishing ground of Ommastrephes bartramii in the Northwestern Pacific Ocean.
引文
[1] Roper C, Sweeney M, Nauen C. FAO Species Catalogue. Vol. 3, Cephalopods of the World. An annotated and illustrated catalogue of species of interest to fisheries[J]. FAO Fish Synop, 1984, 125(3):1–277.
    [2]田思泉,陈新军,冯波,等.西北太平洋柔鱼资源丰度与栖息环境的关系及其时空分布[J].上海海洋大学学报, 2009, 18(5):586-592.
    [3] Yatsu A, Midorikawa S, Shimada T, et al. Age and growth of the neon flying squid, Ommastrephes bartrami, in the North Pacific Ocean[J]. Fisheries research, 1997, 29(3):257-270.
    [4] Okutani T, Satake Y, Ohsumi S, et al. Squids eaten by sperm whales caught off Joban district, Japan, during January–February, 1976[J]. Bull Tokai Reg Fish Res Lab, 1976, 87:67-113.
    [5] Osako M, Murata M. Stock assessment of cephalopod resources in the Northwestern Pacific[J]. FAO Fish Tech Pap, 1983, 231:55–144.
    [6] Ware D, McFarlane G, Beamish R. Effects of Ocean Variability on Recruitment and an Evaluation of Parameters Used in Stock Assessment Models[J]. Can Spec Publ Fish Aquat Sci, 1989, 168:990-998.
    [7]陈新军,钱卫国,刘必林,等.利用衰减模型评估柔鱼西部冬春生群体资源[J].海洋湖沼通报, 2008, 2:130-140.
    [8]陈思行.日本柔鱼渔业现状[J].海洋渔业, 1983, 5(5):234-238.
    [9]乐美龙.关于太平洋海域禁用大型远洋流网作业问题[J].上海水产大学学报, 1995, 4(1):53-61.
    [10]陈新军,王尧耕.中国远洋鱿钓渔业的发展前景[J].中国渔业经济研究, 1999, 2:38-39.
    [11] O'Dor R, Coelho M. Big squid, big currents and big fisheries[J]. Recent advances in cephalopod fisheries biology, 1993:385–396.
    [12] Waluda C, Rodhouse P, Trathan P, et al. Remotely sensed mesoscale oceanography and the distribution of Illex argentinus in the South Atlantic[J]. Fisheries oceanography, 2001, 10(2):207-216.
    [13] Nesis K. Dosidicus gigas: Cephalopod life cycles[M]. London: Academic Press, 1983: 215-231.
    [14] Murata M, Hayase S. Life history and biological information on flying squid (Ommastrephes bartrami) in the North Pacific Ocean[J]. Bull Int Nat North Pacific Fish Comm, 1993, 53:147-182.
    [15] Yatsu A, Tanaka H, Mori J. Population Structure of the Neon Flying Squid, Ommastrephes bartramii, in the North Pacific Ocean[C] // Contributed Papers to International Symposium on Large Pelagic Squids, Tokyo: Japan Marine Fishery Resources Research Center; 1998. 31-48.
    [16] Yatsu A, Mochioka N, Morishita K, et al. Strontium/calcium ratios in statoliths of the neon flying squid, Ommastrephes bartrami (Cephalopoda), in the North Pacific Ocean[J]. Marine Biology, 1998, 131(2):275-282.
    [17]曹杰,陈新军,刘必林,等.鱿鱼类资源量变化与海洋环境关系的研究进展[J].上海海洋大学学报, 2010, 19(2):232-239.
    [18] Murata M, Nakamura Y. Seasonal migration and diel vertical migration of the neon flying squid, Ommastrephes bartramii in the North Pacific[R]. Contributed papers to International Symposium on Large Pelagic Squids, July 18-19, 1996, for JAMARC's 25th anniversary of its foundation Japan Marine Fishery Resources Research Center 1998. 13-30.
    [19] Watanabe H, Kubodera T, Ichii T, et al. Feeding habits of neon flying squid Ommastrephes bartramii in the transitional region of the central North Pacific[J]. Marine Ecology Progress Series, 2004, 266:173-184.
    [20]陈新军.关于西北太平洋的柔鱼渔场形成的海洋环境因子的分析[J].上海水产大学学报, 1997, 6(4):263-267.
    [21]沈新强,樊伟,崔雪森.西北太平洋柔鱼渔场分布与水温关系的研究[J].海洋水产研究, 2004, 25(3):10-14.
    [22]陈新军,田思泉.西北太平洋海域柔鱼的产量分布及作业渔场与表温的关系研究[J].中国海洋大学学报, 2005, 35(1):101-107.
    [23]陈新军,田思泉.利用GAM模型分析表温和时空因子对西北太平洋海域柔鱼资源状况的影响[J].海洋湖沼通报, 2007, (2):104-113.
    [24] Chen C S, Chiu T S. Abundance and spatial variation of Ommastrephes bartramii (Mollusca: Cephalopoda) in the eastern North Pacific observed from an exploratory survey[J]. Acta Zoologica Taiwanica, 1999, 10(2):135-144.
    [25] Yatsu A, Watanaba T. Interannual Variability in neon flying squid abundance and oceanographic conditions in the Central North Pacific Ocean[J]. Bull Nat Res Instit Farseas Fish, 1996, 33:123-138.
    [26]陈新军.北太平洋(160°E~ 170°E)大型柔鱼渔场的初步研究[J].上海水产大学学报, 1999, 8(3):197-201.
    [27]刘洪生,陈新军. 2000年5—7月北太平洋海域水温分布及柔鱼渔场研究[J].湛江海洋大学学报, 2002, 22(1):34-39.
    [28]刘洪生,杨红.北太平洋西经海域(175o W—170o W)温盐分布及其与柔鱼渔场关系的初步研究[J].上海水产大学学报, 2001, 10(3):229-233.
    [29]陈新军,田思泉.西北太平洋海域柔鱼渔场分析探讨[J].渔业现代化, 2001, (3):3-6.
    [30]陈新军,许柳雄.北太平洋150o E~ 165o E海域柔鱼渔场与表温及水温垂直结构的关系[J].海洋湖沼通报, 2004, (2):36-44.
    [31] Tanaka H, Yatsu A, Hayase S, et al. Jigging survey of flying squid in the North Pacific from May to October 1992[J]. National Research Institute of Far Seas Fisheries, 1994:141-154.
    [32] JAMARC. Ika tsuri (akaika) shingyojou kaihatsu chousa houkokusho (Kitataiheiyou chuubu kaiiki). Heisei 9 nendo [Squid jigging (Ommastrephes bartramii) The 1997 New Fishery Ground Development Study Report (North Pacific CentralSea Area)][R]. 1999. 184.
    [33] JAMARC. Ika tsuri (akaika) shingyojou kaihatsu chousa houkokusho (Kitataiheiyou chuubu kaiiki). Heisei 10 nendo [Squid jigging (Ommastrephes bartramii). The 1998 New Fishery Ground Development Study Report (North Pacific Central Sea Area)][R]. 2000. 177.
    [34] JAMARC. Searching for neon flying squid in the North Pacific Ocean—Squid jigging grounds development[R]. Tokyo, Japan: Far seas fish, 2000.
    [35] JAMARC. Heisei 13 nendo kaiyou suisan shigen riyou gourika kaihatsu jigyou (ikatsuri: akaika) (Kitataiheiyou chuutoubu kaiiki) [The 2001 Marine Fisheries Resource Rational Utilization Development Project (Squid jigging: Ommastrephes bartramii) (North Pacific Central and Eastern Sea Areas)][R]. 2003. 148.
    [36]陈新军,钱卫国,许柳雄,等.北太平洋150°~ 165°E海域柔鱼鱿钓渔场及其预报模型研究[J].海洋水产研究, 2003, 24(4):1-6.
    [37]邵全琴,马巍巍,陈卓奇,等.西北太平洋黑潮路径变化与柔鱼CPUE的关系研究[J].海洋与湖沼, 2005, 36(2):111-122.
    [38]牛明香.基于广义可加模型的时空和环境因子对东南太平洋智利竹筴鱼渔场的影响[J].应用生态学报, 2010, 21(4):1049-1055.
    [39]伍玉梅,杨胜龙,沈建华,等.西南大西洋阿根廷滑柔鱼作业渔场特征[J].应用生态学报, 2009, 20(6):1445-1451.
    [40]沈新强,王云龙,袁骐,等.北太平洋鱿鱼渔场叶绿素a分布特点及其与渔场的关系[J].海洋学报, 2004, 26(6):118-123.
    [41]程家骅,黄洪亮.北太平洋柔鱼渔场的环境特征[J].中国水产科学, 2003, 10(6):507-512.
    [42]樊伟,崔雪森,沈新强.西北太平洋巴特柔鱼渔场与环境因子关系研究[J].高技术通讯, 2004, 14(10):84-89.
    [43] Taro Ichii K M, Mitsuo Sakai, Yoshihiro Okada. Life history of the neon flying squid: effect of the oceanographic regime in the North Pacific Ocean[J]. Mar Ecol Prog Ser, 2009, 378:1-11.
    [44]王文宇. GIS支持下的西北太平洋柔鱼资源与海洋环境的关系研究[D].北京:中国科学院, 2003.
    [45] Gong Y, Kim S, An D. Abundance of neon flying squid in relation to oceanographic conditions in the North Pacific[J]. International North Pacific Fisheries Commission Bulletin, 1993, 53:191-204.
    [46]赵小虎. El Nino/La Nina对西北太平洋柔鱼资源及渔场的影响[D].上海:上海水产大学, 2006.
    [47] Bower J R, Ichii T. The red flying squid (Ommastrephes bartramii): A review of recent research and the fishery in Japan[J]. Fisheries research, 2005, 76(1):39-55.
    [48] Cao J, Chen X, Chen Y. Influence of surface oceanographic variability on abundance of the western winter–spring cohort of neon flying squid Ommastrephes bartramii in the NW Pacific Ocean[J]. Marine Ecology Progress Series, 2009, 381:119-127.
    [49]杜云艳,崔海燕.遥感与GIS支持下的海洋渔业空间分布研究——以东海为例[J].海洋学报, 2002, 24(5):57-63.
    [50]牛明香,赵宪勇.卫星遥感和GIS技术在海洋渔业资源研究中的应用[J].南方水产, 2008, 4(3):70-74.
    [51]苏国强. GIS技术的发展及其在海洋渔业领域的应用[J].福建水产, 2005, (2):41-44.
    [52]王文宇,周成虎,邵全琴,等. RS/GIS支持下的柔鱼中心渔场时空动态迁移研究[J].高技术通讯, 2003, 13(11):90-93.
    [53]叶施仁,史忠植.基于CBR的中心渔场预报[J].高技术通讯, 2001, 11(5):64-68.
    [54]韩士鑫.我国渔业遥感现状与发展趋势[J].现代渔业信息, 1992, 7(2):5-8.
    [55]莫秦生,高培香.卫星渔业遥感技术[J].渔业机械仪器, 1983, (4):1-4.
    [56]邵全琴,周成虎,沈新强,等.海洋渔业遥感地理信息系统应用服务技术和方法[J].遥感学报, 2003, 7(3):194-200.
    [57]孙东红.西北太平洋Argo剖面浮标观测及其应用研究[J].海洋学研究, 2008, 26(2):52-52.
    [58]杨胜龙,周甦芳,周为峰,等.基于Argo数据的中西太平洋鲣渔获量与水温,表层盐度关系的初步研究[J].大连水产学院学报, 2010, 25(1):34-40.
    [59]于杰,李永振.海洋渔业遥感技术及其渔场渔情应用进展[J].南方水产, 2007, 3(1):62-68.
    [60] Bertrand A, Josse E, Bach P, et al. Hydrological and trophic characteristics of tuna habitat: consequences on tuna distribution and longline catchability[J]. Canadian journal of fisheries and aquatic sciences, 2002, 59(6):1002-1013.
    [61] Lehodey P, Bertignac M, Hampton J, et al. El Ni o Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652):715-718.
    [62]陈新军,曹杰,田思泉,等.表温和黑潮年间变化对西北太平洋柔鱼渔场分布的影响[J].大连水产学院学报, 2010, 25(2):119-126.
    [63] Andrade H A, Garcia C A E. Skipjack tuna fishery in relation to sea surface temperature off the southern Brazilian coast[J]. Fisheries oceanography, 1999, 8(4):245-254.
    [64] Yatsu A W T. Interannual variability in neon flying squid abundance and oceanographic conditions in the central North Pacific,1982-1992[J]. Bulletion of the national research institute for far seas fisheries, 1996, 33:123-138.
    [65]邓薇,张健,刘必林.基于信息增益技术的影响渔场环境因子的选定[J].上海海洋大学学报, 2009, 18(1):120-123.
    [66]王艳妮,谢金梅,郭祥. ArcGIS中的地统计克里格插值法及其应用[J].教育技术导刊, 2008, 7(12):36-38.
    [67]曹杰.西北太平洋柔鱼资源评估与管理[D].上海:上海海洋大学, 2010.
    [68] JAMARC. Squid jigging ( Ommastrephes bartramii ) . The 1999 New Fishery Ground Development Study Report (North Pacific central sea area)[R]. Tokyo, 2001. 184.
    [69] Sakurai Y, Kiyofuji H, Saitoh S, et al. Changes in inferred spawning areas of Todarodes pacificus (Cephalopoda: Ommastrephidae) due to changing environmental conditions[J]. ICES Journal of Marine Science, 2000, 57(1):24-30.
    [70] Bower J. Estimated paralarval drift and inferred hatching sites for Ommastrephes bartramii(Cephalopoda: Ommastrephidae) near the Hawaiian Archipelago[J]. Fishery Bulletin, 1996, 94(3):398-411.
    [71] Hayase S. Distribution of spawning grounds of flying squid, Ommastrephes bartrami, in the North Pacific Ocean[J]. Japan Agricultural Research Quarterly, 1995, 29:65-65.
    [72] Saito K. A sampling method for rhynchoteuthion paralarvae of neon flying squid Ommastrephes bartrami[J]. Bulletin of the Hokkaido National Fisheries Research Institute, 1994, 58:25-34.
    [73] Saito K. Distribution of palalarvae of Ommastrephes bartrami and Eucleoteuthis luminosa in the eastern waters off Ogasawara islands[J]. Bulletin of the Hokkaido National Fisheries Research Institute, 1994, 58:15-23.
    [74]日本气象厅.日本東方の海流.[EB/OL]. [2009-11-16]. http://wwwdatakishougojp/kaiyou/db/hakodate/>archive/2009/08_1/hakodate_current/hakodate_currenthtml.
    [75]陈新军.西北太平洋柔鱼渔场与水温因子的关系[J].上海水产大学学报, 1995, 4(3):181-185.
    [76]沈建华,韩士鑫,崔雪森,等.北太平洋巴特柔鱼渔业2001年低产原因分析[J].水产学报, 2003, 27(4):350-357.
    [77] Mohri M. Distribution of bigeye tuna in the Indian Ocean based on the Japanese tuna longline fisheries and survey information [D]. Japan: National Fisheries University, 1998.
    [78] Mohri M, Nishida T. Seasonal changes in bigeye tuna fishing areas in relation to the oceanographic parameters in the Indian Ocean[J]. Journal of National Fisheries University, 1999, 47(2):43-54.
    [79] Hess G R, Bay J M. A regional assessment of windbreak habitat suitability[J]. Environmental monitoring and assessment, 2000, 61(2):239-256.
    [80] LAUVER C L, BUSBY W H, WHISTLER J L. Testing a GIS model of habitat suitability for a declining grassland bird[J]. Environmental Management, 2002, 30(1):88-97.
    [81]陈新军,刘必林,田思泉,等.利用基于表温因子的栖息地模型预测西北太平洋柔鱼(Ommastrephes bartramii)渔场[J].海洋与湖沼, 2009, (6):707-713.
    [82]王尧耕,陈新军.世界大洋性经济柔鱼类资源及其渔业[M].北京:海洋出版社, 2004.
    [83] Tian S, Chen X, Chen Y, et al. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommastrephes bartramii in the northwestern Pacific Ocean[J]. Fisheries research, 2009, 95(2-3):181-188.
    [84] Chen X, Li G, Feng B, et al. Habitat suitability index of Chub mackerel (Scomber japonicus) from July to September in the East China Sea[J]. Journal of oceanography, 2009, 65(1):93-102.
    [85] Eastwood P D, Meaden G J, Grioche A. Modelling spatial variations in spawning habitat suitability for the sole Solea solea using regression quantiles and GIS procedures[J]. Marine Ecology Progress Series, 2001, 224:251-266.
    [86] Zainuddin M, Kiyofuji H, Saitoh K, et al. Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific[J]. Deep Sea Research Part II: Topical Studies inOceanography, 2006, 53:419-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700