用户名: 密码: 验证码:
生物降解高分子纳米复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物降解高分子材料近几年来越来越引起人们的兴趣和重视。在众多生物可降解高分子材料中,聚已内酯(PCL)和聚乳酸(PLA)由于其良好的力学性能、生物降解性和生物相容性而受到广泛关注。但是,PCL熔点低、稳定性差、受力容易变形等缺陷限制了其发展。而PLA的韧性、尺寸稳定性、气体阻隔性、降解速率慢的不足也限制了其进一步的发展。本论文结合这两种材料在通用材料使用方面的缺陷和不足,同时结合了纳米材料和复合材料的特点,选用表面含有大量羟基的刚性纳米粒子SiO_2对PCL和PLA进行改性,选用了不同的有机MMT对PLA进行改性,制备了性能优越的新型生物降解复合材料,并研究了纳米复合材料的力学性能、结晶性能、流变性能及热力学性能,主要内容和结论如下:
     (1)通过熔融共混的方法制备了PCL/SiO_2纳米复合材料,并对其形态、流变行为、力学行为和生物降解性进行了研究。SiO_2纳米粒子在PCL中具有良好的分散性,当其含量不超过3wt%时,基本达到单分散,当SiO_2含量继续增加时出现团聚现象。当SiO_2纳米粒子含量达到9wt%时,SiO_2逾渗网络结构形成。在低频区,样品表现出类固响应,PCL分子链的长程运动受到很大的限制。加入SiO_2后,由于SiO_2和PCL基体的良好的相容性以及SiO_2在基体中较好的分散性,复合材料的拉伸强度、模量、屈服应力都得到了提高,并且复合材料仍然保持较好的柔软性。由于酶分子更容易进攻PCL分子链的酯基,所以PCL/SiO_2纳米复合材料的降解速率比纯PCL快。
     (2)用DSC方法研究了在不同降温速率下纯PCL及其PCL/SiO_2纳米复合材料非等温熔融结晶,复合材料的结晶峰温度高于纯PCL的结晶峰温度。并且随着复合材料中SiO_2含量的增加,纯PCL及其复合材料的结晶峰温度先增高后降低。用DSC方法研究了在不同结晶温度下纯PCL及其PCL/SiO_2纳米复合材料等温熔融结晶动力学,复合材料的结晶速率比纯PCL的快。并且随着SiO_2含量的增加,结晶速率先增加后降低。等温和非等温结晶研究表明,加入SiO_2后,PCL结晶得到加强,并且加强的程度受SiO_2含量的影响。SiO_2对PCL结晶的影响有两方面:SiO_2的存在一方面为PCL结晶提供了异相成核剂,另一方面限制了PCL晶体的生长。所以当SiO_2含量从1wt%增加到9wt%时,PCL/SiO_2纳米复合材料等温和非等温结晶过程都是先增快后变慢。PCL/SiO_2纳米复合材料的结晶机理和晶体结构与纯PCL相比没有发生变化。
     (3)通过熔融共混的方法制备了生物可降解PLA/SiO_2纳米复合材料,SiO_2含量分别为1、3、5、7、9wt%。SEM观察说明当SiO_2含量小于5wt%时,SiO_2纳米粒子在PLA中具有良好的分散性,只有少量团聚并且团聚尺寸小于100nm。当SiO_2含量超过5wt%时,一些团聚体可达到250nm。当SiO_2纳米粒子含量达到5wt%时,SiO_2逾渗网络结构形成。一旦逾渗网络结构形成,样品的模量随温度的升高而上升。PLA/SiO_2纳米复合材料的降解速率比纯PLA快。这一点对于PLA的实际应用具有重要的意义。并且进一步讨论了纯PLA及PLA/SiO_2纳米复合材料的降解机理,认为其发生的是表面侵蚀。
     (4)选用了三种不同MMT通过熔融共混的方法制备了生物可降解PLA/MMT复合材料,MMT含量分别为0、1、3、5wt%。DSC测试结果说明MMT的加入促进了PLA的结晶过程,并且促进作用由强到弱的顺序为:MMT-Alk>MMT-COOH>MMT-OH。当MMT-Alk含量为3-5wt%时,复合材料形成流变网络逾渗结构,MMT-COOH含量大于5wt%时,MMT逾渗网络结构形成。一旦逾渗网络结构形成,样品的模量随温度的变化变化不大。而MMT-OH在测试范围内没有形成逾渗网络结构。
The interest in biodegradable polymers has recently gained exponential momentum,and, within that broad family, poly (ε-caprolactone)(PCL) and poly(lactic acid)(PLA)are promising materials because of its flexibility, good biodegradability andbiocompatibility. However, PCL has low melting point, poor stability, and tendency torack when stressed limited its widely applications. Other properties of PLA, such astoughness, dimensional stability, gas barrier properties and slow biodegradation rate, areoften not sufficient for its further processing and end-use applications. In the presentdissertation, based on the disadvantages of nanometer material and nanocomposites,biodegradable PCL/silica nanocomposites and PLA/silica at various silica loadingsranging from1to9wt%were prepared via direct melt compounding method. Inaddition to this, biodegradable PLA/organic clay were prepared too. Main contents andconclusions are as follows:
     (1) Biodegradable PCL/silica nanocomposites with different silica loadings wereprepared through direct melt compounding method. When the silica content was <3wt%, the nanoparticles dispersed evenly in the PCL matrix and exhibited onlyaggregates with particle size of less than100nm. At a higher silica content (≥3wt%),the number of large aggregates increased markedly. Some of the aggregates evenexceeded the size of250nm. As the silica loadings reaches up to9wt%, percolatedsilica network structures can be formed. The sample exhibit evident solid-like response in the low frequency region. The long-range motion of PCL chains is highly restrained.The tensile strength, modulus and yield strength values of the nanocomposites wereenhanced by the incorporation of inorganic silica nanoparticles owing to the goodcompatibility of the silica with PCL matrix as well as uniform dispersion of silica; at thesame time, the nanocomposites still retained good ductility. The biodegradation rateshave been enhanced obviously in the PCL/silica nanocomposites than in neat PCL dueto a facile attack of the enzyme molecule toward the ester groups of PCL chains, whichmay be of great use and importance for the wider practical application of PCL.
     (2) Nonisothermal melt crystallization of neat PCL and the PCL/silicananocomposites was studied with DSC at various cooling rates. The crystallization peaktemperature is higher in the nanocomposites than in neat PCL, which first increases anddecreases with increasing the silica loading. Isothermal melt crystallization kinetics ofneat PCL and the PCL/silica nanocomposites was also investigated with DSC atdifferent crystallization temperatures. The overall crystallization rate is faster in thenanocomposites than in neat PCL, which also first increases and then decreases withincreasing the silica loading. For both nonisothermal and isothermal melt crystallizationstudies, the crystallization of PCL is enhanced by the presence of silica, and theenhancement is influenced by the silica loading in the nanocomposites. The effect ofsilica on the crystallization is twofold: the presence of silica may provide a number ofheterogeneous nucleation sites for the PCL crystallization while the aggregates of silicamay restrict crystal growth of PCL. Therefore, the overall crystallization of PCL firstincreases and then decreases with increasing the silica loading from1to9wt%in the PCL/silica nanocomposites for both nonisothermal and isothermal melt crystallizationof PCL. However, the crystallization mechanism and crystal structure of PCL remainalmost unchanged after nanocomposites preparation.
     (3) ESEM observation indicates that when the silica content was <5wt%, the silicadispersed evenly in the PLA matrix and exhibited only aggregates with particle size ofless than100nm. However, at a higher silica content (>5wt%), some of the aggregateseven exceeded the size of250nm. As the silica loadings reaches up to5wt%,percolated silica network structures can be formed. Once the percolated silica networkstructures formed, the modulus increases with increase of temperature evidently. Thebiodegradation rates have been enhanced obviously in the PLA/silica nanocompositesthan in neat PLA, which may be of great use and importance for the wider practicalapplication of PLA. The erosion mechanism of neat PLA and its nanocomposites wasfurther discussed, and the biodegradation of neat PLA and its nanocomposites mayproceed via surface erosion.
     (4) Biodegradable PLA/clay nanocomposites with different clay loadings anddifferent kind of clay were prepared through direct melt compounding method. Thecrystallization of PLA is enhanced by the presence of clay from DSC test result and theenhancement order is: MMT-Alk>MMT-COOH>MMT-OH. As the MMT-ALk loadingsis3-5wt%, and MMT-COOH loading reaches up to5wt%, percolated clay networkstructures can be formed. Once the percolated clay network structures formed, themodulus increases with increase of temperature smally. Moreover, percolated claynetwork structures can not be formed on this condition.
引文
[1]唐赛珍,杨惠娣.降解材料近期发展动向、前景及存在问题[J].现代塑料加工应用,1994,6(1):5-11.
    [2] Morawetz H. Polymer: The origins and growth of a science [M]. New York: JohnWiley&Sons,1985:1-14.
    [3] Gross R.A., Kalra B. Biodegradable Polymers for the Environment [J]. Science,2002,297:803-807.
    [4]王岩,陈复生,姚永志等.以可再生资源生产生物降解高分子材料[J].粮食与饲料工业,2005,3:21-22.
    [5] Scott G.‘Green’ polymers [J]. Polym. Degrad. Stab.,2000,68(1):1-7.
    [6]侯庆普等.生物降解高分子材料的研究新进展[J].现代化工,2000,2(12):20-24.
    [7]戈进杰,生物降解高分子材料及其应用[M].北京:化学工业出版社,2002.
    [8] Timmins M.R., Lenz R.W. Enzymatic biodegradation of polymers: The polymerchemists’ perspective [J]. Trends Polym. Sci.,1994,2:15-19.
    [9] Nievas M.L., Commendatore M.G., Esteves J.L. Effect of pH modification on bilgewaste biodegradation by a native microbial community [J]. InternationalBiodeterioration&Biodegradation,2005,56(3):151-157.
    [10] Vert M., Feijen J., Albertsson A., Scott G., Chiellini E. Biodegradable polymersand plastics Royal Society of Chemistry[M].1992:56-78.
    [11]杨斌,绿色塑料聚乳酸[M].北京:化学工业出版社,2007:2-5.
    [12] Mecking S. Nature or petrochemistry? Biologically degradable materials [J].Angew. Chem. Int. Ed.,2004,43:1078-1085.
    [13] Tsuji H., Suzuyoshi K. Environmental degradation of biodegradable polyesters1.Poly(-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films incontrolled static seawater [J]. Polym. Degrad. Stab.,2002,75(2):347-355.
    [14] Kesel C.D., Wauven C.V., David C. Biodegradation of polycaprolactone and itsblends with poly(vinylalcohol) by micro-organisms from a compost of house-holdrefuse [J]. Polym. Degrad.Stab.,1997,55:107-113.
    [15] Debois P.h., Jacobs C., Jerome R., Teyssie Ph. Macromolecular engineering ofpolylactones and polylactides.4. Mechanism and kinetics of lactidehomopolymerization by aluminum isopropoxide.[J]. Macromolecules,1991,24:2266-2270.
    [16] Ohtaki A., Sato N., Nakasaki K. Biodegradation of poly--caprolactone undercontrolled composting conditions.[J]. Polym. Degrad.Stab.,1998,61(3):499-505.
    [17] Nakayama A., Kawasaki N., Maeda Y., Arvantoyanis I., Aiba S., Yamamoto N.Study of biodegradability of poly(-valerolactone-co-L-lactide).[J]. J. Appl. Polym. Sci.,1997,66:741-748.
    [18]杨斌,绿色塑料聚乳酸[M].北京:化学工业出版社,2007.
    [19]李洪权,全大萍,廖凯荣等.聚乳酸类生物降解材料概述[J].化工新型材料1999,27(8):3-6.
    [20] Auras R., Harte B., Selke S. An overview of polylactide as packaging materials [J].Macromol. Biosci.,2004,4:835-864.
    [21] Sodergard A, Stolt M. Properties of lactic acid based polymers and their correlationwith composition [J]. Prog. Polym. Sci.,2002,27:1123-1163.
    [22] Drumrihgt R.E., Gruber P. R., Henton D.E. Poly(lactic acid) technology [J]. Adv.Mater.,2000,12:1841-1846.
    [23] Garlotta D. A literature review of poly(lactic acid)[J]. J. Polym. Environ.,2001,9:63-84.
    [24]唐赛珍,陶欣,李小明等.降解塑料研究开发的进展[J].石油化工,2004,20(6):372-374.
    [25]钱以宏.聚乳酸酯及其降解特性[J].纺织导报,2004(4):38-42.
    [26] Umare P.S., Tembe G.L., Rao K.V. Catalytic ring-opening polymerization ofl-lactide by titanium biphenoxy-alkoxide initiators [J]. J. Mol. Catal. A: Chem.,2007,268:235-243.
    [27] Krul L.P., Volozhyn A.I., Belov D.A., Poloiko N.A., Artushkevich A.S., ZhdanokS.A., Solntev A.P., Krauklis A.V., Zhukova I.A. Nanocomposites based onpoly-d,l-lactide and multiwall carbon nanotubes [J]. Biomol. Eng.,2007,24:93-95.
    [28] Gupta A.P., Kumar V. New emerging trends in synthetic biodegradable polymers-polylactide: A critique [J]. Eur. Polym. J.,2007,43:4053-4074.
    [29] Lofgren A., Albertsson A.C., Dubois P. Recent advances in ring-openingpolymerization of lactones and related compounds [J]. J. Macromol. Sci. Rev.Macromol. Chem. Phs.,1995,35:379-418.
    [30]樊新,陈剑,阮建明,邹俭鹏等.聚乳酸类生物可降解材料研究进展[J].粉末冶金材料科学与工程,2008,13:187-194.
    [31] Gopferich A., Peter S. J. Modulation of marrow stromal cell function usingpoly(D,L-lactic acid)-block-poly(ethylene glycol)-monomethyl ether surfaces [J]. J.Biomed. Mater. Res. Part A,1999,46(3):390-398.
    [32] Li Y.X., Volland C., Kissel T. Biodegradable brush-like graft polymers from poly(D,L-lactide) or poly(D,L-lactide-coglycolide) and charge-modified, hydrophilicdextrans as backbone in-vitro degradation and control [J]. Polymer,1998,30(14):3087-3097.
    [33] Cohn D., Hotovely S.A. Designing biodegradable multiblock PCL/PLAthermoplastic elastomers [J]. Biomaterials,2005,26(15):2297-2305.
    [34] De Santis P., Kovace A.J. Molecular conformation of poly(S-lactic acid)[J].Biopolymer,1968,6:299-306.
    [35] Eling B., Gogolewski S., Pennings A.J. Biodegradable materials of poly(L-lacticacid).1. Melt-spun and solution-spun fibers [J]. Polymer,1982,23:1587-1593.
    [36] Cartier L., Okihara T., Ikada Y., Tsuji H., Puiggali J., Lotz B. Epitaxialcrystallization and crystalline polymorphism of polylactides [J]. Polymer,2000,41:8909-8919.
    [37] Hoogsteen W., Postema A.R., Pennings A., tenBrike G., Zugenmaier P. Crystalstructure, conformation, and morphology of solution-spun poly(L-lactide) fibers [J].Macromolecules,1990,23:634-642.
    [38] Brizzolara D., Cantow H.J., Diederichs K., Keller E., Domb A.J. Mechanism of thestereocomplex formation between enantiomeric poly(lactide)s [J]. Macromolecules,1996,29:191-197.
    [39] Okihara T., Tsuji M., Kawaguchi A., Katayama K., Tsuji H., Hyon S.H., Ikada Y.Crystal-structure of stereocomplex of poly(L-lactide) and poly(D-lactide)[J]. J.Macromol. Sci.-Phys.,1991,30:119-140.
    [40] Kobayashi J., Asahi T., Ichiki M., Okikawa A., Suzuki H., Watanabe T., Fukada E.,Shikinami Y. Structural and optical properties of poly lactic acids [J]. J. Appl. Phys.,1995,77:2957-2973.
    [41] Ikada Y., Jamshidei K., Tsuji H., Hyon S.H. Stereocoplex formation betweenenantiomeric poly(lactedes)[J]. Macromolecules,1978,20:904-906.
    [42] Tsuji H., Ikada Y. Crystallization from the melt of poly(lactide)s with differentoptical purities and their blends [J]. Macromol. Chem. Phys.,1996,197:3483-3499.
    [43] Wizke D.R. Introduction to properties, engineering, and prospects of polylactidepolymers [M]. Ph. D. Thesis. Michigan State University, East Lansing, MI,1997.
    [44] Puiggali J., Ikada Y., Tsuji H., Cartier L., Okihara T., Lotz B. The frustratedstructure of poly(L-lactide)[J]. Polymer,2000,41:8921-8930.
    [45] Kawai T., Rahman N., Matsuba G., Nishida K., Kanaya T., Nakano M., OkamotoH., Kawada J., Usuki A., Honma N., Nakajima K., Matsuda M. Crystallization andmelting behavior of poly(L-lactic acid)[J]. Macromolecules,2007,40:9463-9469.
    [46] Perego G., Gella G.D., Bastioli C. Effect of molecular weight and crystallinity onpoly(lactic acid) mechanical properties [J]. J. Appl. Polym. Sci.,1996,59:37-43.
    [47] Tsuji H., Ikada Y. Properties and morphologies of poly(L-lactide)1. Annealingcondition effects on properties and morphologies of poly(L-lactide)[J]. Polymer,1995,36:2709-2716.
    [48] Drumright R.E., Gruber P.R., Henton D.H. Poly(lactic acid) technology [J]. Adv.Mater.,2000,12:1841-1846.
    [49] Auras R., Harte B., Selke S. An overview of polylactides as packaging materials [J].Macromol. Biosci.,2004,4:835-864.
    [50] Lehermeier H.J., Dorgan J.R. Melt rheology of poly(lactic acid):Consequences ofblending chain architectures [J]. Polym. Eng. Sci.,2001,41:2172-2184.
    [51] Ke T.Y., Sun X.Z. Effects of moisture content and heat treatment on the physicalproperties of starch and poly (lactic acid) blends [J]. J. Appl. Sci.,2001,81:3069-3082.
    [52] Hang J.W., Jiang L., Zhu L.Y. Morphology and properties of soy protein andpolylactide blend [J]. Biomacromolecules,2006,7:1551-1561.
    [53] Maglio G., Migliozzi A., Palumbo R., Immirzi B., Volpe M.G. Compatibilizedpoly(epsilon-caprolactone)/poly(L-lactide) blends for biomedical use [J]. Macromol.Rapid Commun.,1999,20:236-238.
    [54] Shibata M., Inoue Y., Miyoshi M. Mechanical properties, morphology, andcrystallization behavior of blends of poly(L-lactide) with poly(butylenessuccinate-co-L-lactate) and poly (butylenes succinate)[J]. Polymer,2006,47:3557-3564.
    [55] Takagi Y., Yasuda R., Yamaoka M., Yamane T. Morphologies and mechanicalproperties of polylactide blends with medium chain length poly (3-hydroxyalkanoate)and chemically modified poly(3-hydroxyalkanoate)[J]. J. Appl. Polym. Sci.,2004,93:2363-2369.
    [56] Ohkoshi I., Abe H., Doi Y. Miscibility and solid-state structures for blends ofpoly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate][J]. Polymer,2000,41:5985-5992.
    [57] Nijenhuis A.J., Colstee E., Grijpma D.W., Pennings A.J. High molecular weightpoly(L-lactide) and poly(ethylene oxide) blends: thermal characterization and physicalproperties [J]. Polymer,1996,37:5849-5857.
    [58] Jiang L., Wolcott M.P., Zhang J.W. Study of biodegradable polyactide/poly(butylenes adipate-co-terephthalate) blends [J]. Biomacromolecules,2006,7:199-207.
    [59] Zhang L., Goh S.H., Lee S.Y. Miscibility and phase behavior of poly(D,L-lactide)/poly(p-vinylphenol) blends [J]. J. Appl. Polym. Sci.,1998,70(4):811-816.
    [60] Park J.W., Im S.S. Miscibility and morphology in blends of poly(L-lactic acid) andpoly(vinyl acetate-co-vinyl alcohol)[J]. Polymer,2003,44(15):4341-4354.
    [61] Ishida S., Nagasaki R., Chino K., Dong T., Inoue Y. Toughening of poly(L-lactide)by melt blending with rubbers [J]. J. Appl. Polym. Sci.,2009,113:558-566.
    [62] Zhang W., Chen L., Zhang Y. Surprising shape-memory effect of polylactideresulted from toughening by polyamide elastomer [J]. Polymer,2009,50:1311-1315.
    [63] Martin O., Avérous L. Poly (lactic acid): plasticization and properties ofbiodegradable multiphase systems [J]. Polymer,2001,42(14):6209-6219.
    [64] He Y., Naoki A., Jianchun L., Inoue Y. Effects of low molecular weight compoundswith hydroxyl groups on properties of poly(L-lactic acid)[J]. J. Appl. Polym. Sci.,2001,82(3):640-649.
    [65] Baiardo M., Frisoni G., Scandola M., Rimelen M., Lips D., Ruffieux K.,Wintermantel E. Thermal and mechanical properties of plasticized poly (L-lactic acid)[J]. J. Appl. Sci.,2003,90:1731-1738.
    [66] Sheth M., Kumar R.A., Dave V., Gross R.A., McCarthy S.P. Biodegradablepolymer blends of poly(lactic acid) and poly(ethylene glycol)[J]. J. Appl. Polym. Sci.,1997,66:1495-1505.
    [67] Jacobsen S., Fritz H.G. Plasticizing polylactide-The effect of different plasticizerson the mechanical properties [J]. Polym. Eng. Sci.,1999,39:1303-1310.
    [68] Piorkowska E., Kulinski Z., Galeski A., Masirek R. Plasticization ofsemicrystalline poly(L-lactide) with poly(propylene glycol)[J]. Polymer,2006,47:7178-7188.
    [69] Kulinski Z., Piorkowska E., Gadzinowska K., Stasiak M. Plasticization ofpoly(L-lactide) with poly(propylene glycol)[J]. Biomacromolecules,2006,7:2128-2135.
    [70] Ogata N., Sasayama H., Nakane K., Ogihara T. Preparation of poly(L-lactide) filmhabing high elastic recovery [J]. J. Appl. Polym. Sci.,2003,89:474-480.
    [7] Ljungberg N., Wesslen B. The effects of plasticizers on the dynamic mechanical andthermal properties of poly(lactic acid)[J]. J. Appl. Polym. Sci.,2002,86:1227-1234.
    [72] Ljungberg N., Andersson T., Wesslen B. Film extrusion and film weldability ofpoly (lactic acid) plasticized with triacetine and tributyl citrate [J]. J. Appl. Polym. Sci.,2003,88:3239-3247.
    [73] Labrecque L.V., Kumar R.A., Dave V., Gross R.A., McCarthy S.P. Citrate esters asplasticizers for poly (lactic acid)[J]. J. Appl. Polym. Sci.,1997,66:1507-1513.
    [74] Ljungberg N., Wesslen B. Preparation and properties of plasticized poly(lactic acid)films [J]. Biomacromolecules,2005,6:1789-1796.
    [75] Ljungberg N., Wesslen B. Tributyl citrate oligomers as plasticizers for poly(lacticacid): thermo-mechanical film properties and aging [J]. Polymer,2003,44:7679-7688.
    [76] Ljungberg N., Colombini D., Wesslen B. Plasticization of poly(lactic acid) witholigomeric malonate esteramides: Dynamic mechanical and thermal film properties [J].J. Appl. Polym. Sci.,2005,96:992-1002.
    [77] Ljungberg N., Wesslen B. Thermomechanical film properties and aging of blendsof poly(lactic acid) and malonate oligomers [J]. J. Appl. Polym. Sci.,2004,94:2140-2149.
    [78] Huda M.S., Drzal L.T., Mohanty A.K., Misra M. Chopped glass and recyclednewspaper as reinforcement fibers in injection molded poly(lactic acid)(PLA)composites: A comparative study [J]. Compos. Sci. Technol.,2006,66:1813-1824.
    [79] Selin J., Okasman K. Natural fibers as reinforced in poly-lactic acid composites,First International Conference on Ecocomposites [Z]. London: UK,“ECOCOMP-2001”,2001.
    [80] Huda M.S., Mohanty A.K., Drzal L.T., Schut E., Misra M.“Green” compositesfrom recycled cellulose and poly(lactic acid): Physico-mechanical and morphologicalproperties evaluation [J]. J. Mater. Sci.,2005,40:4221-4229.
    [81] Pluta M., Murariu M., Ferreira A.D.S., Alexandre M., Galeski A., Dubois P.Polylactide Compositions. Ⅱ. Correlation between morphology and main properties ofPLA/calcium sulfate composites [J]. J.Polym. Sci. Part B: Polym. Phys.,2007,45:2770-2780.
    [82] Murariu M., Ferreira A.D.S., Degeé P., Alexandre M., Dubois P. Polylactidecompositions. Part1: Effet of filler content and size on mechanical properties ofPLA/calcium sulfate composites [J]. Polymer,2007,48:2613-2618.
    [83] Lostocco M.R., Mruphy C.R., Cameron J.A., Huang S.J. The effects of primarystructure on the degradation of poly (ε-caprolactone)/poly(L-lactide) block copolymers[J]. Polym. Degrad. Stab.,1998,59(1-3):303-307.
    [84] Cohn D., Hotovely S.A. Designing biodegradable multiblock PCL/PLAthermoplastic elastomers [J]. Biomaterials,2005,26(15):2297-2305.
    [85] Kim J.K., Jin P.D., Se L.M., Ihn K.S.J. Synthesis and crystallization behavior ofpoly (L-lactide)-block-poly(ε-caprolactone) copolymer [J]. Polymer,2001,42(17):7429-7441.
    [86] Ouchi T., Ohya Y. Design of Lactide copolymers as biomaterials [J]. PolymerChemistry,2004,42(3):453-462.
    [87] Li Y.X., Volland C., Kissel T. Biodegradable brush-like graft polymers from poly(D,L-Lactide) or poly(D,L-Lactide-coglycolide) and charge-modified, hydrophilicdextrans as backbone in-vitro degradation and control [J]. Polymer,1998,39(14):3087-3097.
    [88] Wang Z., Zhao Y., Wang F. Syntheses of Poly(lactic acid)-poly(ethylene glycol)serial biodegradable polymer materials via direct melt polycondensation and theircharacterization [J]. J. Appl. Polym. Sci.,2006,102:577-587.
    [89] Gopferich A., Peter S.J. Modulation of marrow stromal cell function using poly(D,L-lactic acid)-block-poly(ethylene glycol)-monomethyl ether surfaces [J]. J. Biomed.Mater. Res. Part A,1999,46(3):390-398.
    [90] Hori Y., Takahashi Y., Yanaguchi A., Nishishita T. Ring-opening copolymerizationof optically active β-butyrolactone with several lactones catalyzed by distannoxanecomplexes: synthesis of new biodegradable polyesters [J]. Macromolecules,1993,26:4388-4390.
    [91] Hiki S., Miyamoto M., Kimura Y. Synthesis and characterization of hydroxyl-terminated (RS)-poly(3-hydroxybutyrate) and its utilization to block copolymerizationwith1-lactide to obtain a biodegradable thermoplastic elastomer [J]. Polymer,2000,41:7369-7379.
    [92] Storey R.F., Warren S.H., Allision C.J., Wiggins J.S., Puckett A.D. Synthesis ofbioabsorbable networks from methacrylate-endcapped polyesters [J]. Polymer,1993,34:4365-4372.
    [93] Storey R.F., Hicckey T.P. Degradable polyurethane networks based on D,L-lactide,glycolide, ε-caprolactone, and trimethylene carbonate homopolyester and copolyeatertrials [J]. Polymer,1994,35:830-838.
    [94] Jin F., Hyon S.H., Iwata H., Tsutsumi S. Crosslinking of poly(L-lactide) byγ-irradiation [J]. Macromol. Rapid. Commun.,2002,23:909-912.
    [95] Metters A.T., Anseth K.S., Bowman C.N. Fundamental studies of a novel,biodegradable PEG-b-PLA hydrogel [J]. Polymer,2000,41(11):3993-4004.
    [96] Ohya Y., Maruhashi S., Ouchi T. Preparation of poly(l-lactide)-grafted amylasethrough protection method and degradation of the graft copolymers [J]. Macromol.Chem. Phys.,1998,199:2017-2022.
    [97] Ohya Y., Maruhashi S., Ouchi T. Graft polymerization of l-lactide on pullulanthrough the trimethylsilyl protection method and degradation of the graft copolymers [J].Macromolecules,1998,31:4662-4665.
    [98] Ohyari J.M., Huang S.J. Graft copolymers of poly(vivyl alcohol) and poly(lacticacid)[J]. Polym. Prepr.,1996,37:145-146.
    [99] de Jong S.J., Smedt S.C., De Wahls M. C., Demeester J., Kettenes-van den BoschJ.J., Hennink W.E. Novel self-assembled hydrogels by stereocomplex formation inaqueous solution of enantiometric lactic oligomers grafted to dextran [J].Macromolecules,2000,33:3680-3686.
    [100] Agrawal C.M., Athanasiou K.A., Heckman J.D. Biodegradable PLA-PGApolymer for tissue engineering in orthopedics [J]. Mater. Sci. Forum.,1997,250:115-128.
    [101] Eguiburu J.L., Fernandez-Berridi J., Roman J.S. Graft copolymers for biomedicalapplications prepared by free radical polymerization of poly(lactide) macromonomerswith vinyl and acrylic monomers [J]. Polymer,1996,37:3615-3622.
    [102] Tsuchiya F., Tomida Y., Fujimoto K., Kawaguchi H. Surface modification of poly(l-lactic acid) by plasma discharge [J]. Polym. Prepr. Jpn.,1993,42:4916-4918.
    [103] Hsu S.H., Chen W.C. Improved adhesion by plasma-induced grafting of L-lactideonto polyurethane surface [J]. Biomaterials,2000,21:359-368.
    [104] Sodegard A. Preparation of poly (L-lactide-graft-crylic acid)[J]. Polym. Prepr.,1998,39:214-215.
    [105] Hoffman D.W., Roy R., Komarneri S. Diphasicxero-gels, a new class of materials:Phases in the system Al2O3/SiO2[J]. J. Am.Ceram.Soc.,1984,67(7):468-471.
    [106]张立德,牟季美.纳米材料和纳米结构[M].科学出版社,2001,1-20.
    [107]李笃信,贾德民.聚合物/无机物纳米复合材料研究进展及应用前景[J].高分子材料科学与工程,2003,19(4):22-26.
    [108]吴唯,徐种德.纳米刚性微粒与橡胶弹性微粒同时增强增韧聚丙烯的研究[J].高分子学报,2000,(1):99-104.
    [109]黄玉强,张彦奇,华幼卿. LLDPE/纳米SiO2复合材料的制备与性能研究[J].中国塑料,2003,17(1):25-29.
    [110] Asuka K., Kouzai I., Liu B., Terano M., Nitta K. Effects of silica particles on thetransparency of polypropylene based nanocomposites[J]. Progress in OlefinPolymerizagion Catalysts and Polyolefin Materials,2006,41:237-240.
    [111] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [112] Kymakis E., Amaratunga Gehan A. Optical properties of polymer-nanotubecomposites [J]. J. Synth. Metal.,2004,142:161-167.
    [113] Qian D., Kickey E. C., Load transfer and deformation mechanisms in carbonnanotube-polystyrene composites [J]. J. Appl. Phys.,2000,76:2868-2870.
    [114] Shofner M. L., Rodrígues-Macías F.J., Barrera E. V. Single wall nanotube andvapor grown carbon fiber reinforced polymers processed by extrusion freeformfabrication[J]. Composites Part A,2003,34:1207-1217.
    [115] Deng J. G., Ding X., Zhang W., Peng Y., Wang J., Long X., Li P., Albert S. C.Carbon nanotube-polyaniline hybrid materials[J]. Eur. Polym. J.,2002,38:2497-2501.
    [116] P tschke P., Bhattacharyya A.R., Janke A. Morphology and electrical resistivelyof melt mixed blends of polyethylene and carbon nanotube filled polycarbonate [J].Polymer,2003,44:8061-8069.
    [117] Saeed K., Park S. Y. Preparation and properties of multiwalled carbonnanotube/polycaprolactone nanocomposites [J]. J. Appl. Polym. Sci.,2007,104(3):1957-1963.
    [118] Shi D.L., Lian J., He P., Wang L.M., Ooij W.J., Schulz M., Liu Y.J., Mast D.B.Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding inpolymer composites [J]. Appl. Phys. Lett.,2003,83:5301-5303.
    [119] Gorga R.E., Cohen R.E., Toughness enhancements in poly(methyl methacrylate)by addition of oriented multiwall carbon nanotubes [J]. J. Polym. Sci., Part B: Polym.Phys.,2004,42(14):2690-2702.
    [120] Zhang H., Zhang Z. Impact behavior of polypropylene filled with multi-walledcarbon nanotubes [J]. Eur. Polym. J.,2007,43:3197-3207.
    [121] Ogata N., Jimenez G., Kawai H., Ogihara T. Structure and thermal/mechanicalproperties of poly (L-lactide)-clay blend [J]. J. Polym. Sci. B: Polym. Phys.,1997,35:389-396.
    [122] Ray S.S., Maiti P., Okamoto M., Yamada K., Ueda K. New polylactide/layeredsilicate nanocomposites.1. Preparation, characterization, and properties.[J].Macromolecules,2002,35:3104-3110.
    [123] Maiti P., Yamada K., Okamoto M., Ueda K., Okamoto K. New polylactide/layered silicate nanocomposites: Role of organoclays [J]. Chem. Mater.,2002,14:4654-4661.
    [124] Moon S.I., Jin F.Z., Lee C.J., Tsutsumi S. Novel carbon nanotube/poly(L-lacticacid) nanocomposites: Their modulus, thermal stability, and electrical conductivity [J].Macromol. Symp.,2005,224:287-296.
    [125] Chen G.X., Kim H.S., Park B.J., Jin-San Yoon. Controlled functionalization ofmultiwalled carbon nanotubes with various molecular-weight poly (L-lactic acid)[J]. J.Phys. Chem. B,2005,109:22237-22243.
    [126] Kuan C.F., Kuan H.C., Ma C.C.M., Chen C.H. Mechanical and electricalproperties of multi-wall carbon nanotube/poly (lactic acid) composites [J]. J. Phys.Chem. Solids,2008,69:1395-1398.
    [127] Kim H.S., Park B.H., Choi J.H., Yoon J.S. Mechanical properties and thermalstability of poly (L-lactide)/calcium carbonate composites [J]. J. Appl. Polym. Sci.,2008,109:3087-3092.
    [128] Jiang L., Zhang J., Wolcott M.P. Comparison of polylactied/nano-sized calciumcarbonate and polylactide/montrmorillonite composites: Reinforcing effects andtoughening mechanisms [J]. Polymer,2007,48:7632-7644.
    [129] Yan S., Yin J., Yang Y., Dai Z., Ma J., Chen X. Surface-grafted silica linked withL-lactic acid oligomer: A novel mamofiller to improve the performance ofbiodegradable poly (L-lactide)[J]. Polymer,2007,48:1688-1694.
    [130] Wahit M.U., Akos N. I., Laftah W. A. Influence of natural fibers on themechanical properties and biodegradation of poly(lactic acid) and poly(ε-caprolactone)composites: A review [J]. Polym. Compos.,2012,33:1045-1053.
    [131] Matzinos P., Tserki V., Kontoyiannis A., Panayiotou C. Surface structure,morphology and stability of polyhydroxyalkanoate inclusions characterised by atomicforce microscopy [J]. Polym. Degrad. Stabil.,2002,77:77-85.
    [132] Antolín-Cerón V.H., Gómez-Salazar S., Rabelero V., Soto V., Luna-Bárcenas G.,Katime I., Nu o-Donlucas S.M. Comparative study of the thermal and mechanicalproperties of nanocomposites prepared by in situ polymerization of ε-caprolactone andfunctionalized carbon nanotubes [J]. Polym. Compos.,2012,33:562-572.
    [133] Avella M., Errico M. E., Laurienzo P., Martuscelli E., Raimo M., Rimedio R.Preparation and characterisation of compatibilised polycaprolactone/starch composites[J]. Polymer,2000,41:3875-3881.
    [134] Wang L., Ma W., Gross R.A., McCarthy S.P. Reactive compatibilization ofbiodegradable blends of poly(lactic acid) and poly(ε-caprolactone)[J]. Polym. Degrad.Stabil.,1998,59:161-168.
    [135] Han J., Christopher J., White B., Zhu L.M. Preparation of poly(ε-caprolactone)/poly(trimethylene carbonate) blend nanofibers by electrospinning [J]. Carbohyd.Polym.,2010,79:214-218.
    [136] Vertuccio L., Gorrasi G., Sorrentino A., Vittoria V. Nano clay reinforcedPCL/starch blends obtained by high energy ball milling [J]. Carbohyd. Polym.,2009,75:172-179.
    [137] Han C. Y., Ran X. H., Zhang K. Y., Zhuang Y. G., Dong L. S. Effect of peroxidecrosslinking on thermal and mechanical properties of poly (ε-caprolactone)[J]. Polym.Int.,2007,56:593-600.
    [138] Han C.Y., Ran X.H., Zhang K.Y, Zhuang Y.G., Dong L.S. Thermal andmechanical properties of poly(ε-caprolactone) crosslinked with γ radiation in thepresence of triallyl isocyanurate [J]. J. Appl. Polym. Sci.,2007,103:2676-2681.
    [139] Lepoittevin B., Devalckenaere M., Pantoustier N., Alexandre M., Kubies D.,Calberg C., Jér me R., Dubois P. Poly(ε-caprolactone)/clay nanocomposites preparedby melt intercalation: mechanical, thermal and rheological properties [J]. Polymer,2002,43:4017-4023.
    [140] Wu D.F., Wu L., Sun Y.R., Zhang M. Rheological properties and crystallizationbehavior of multi-walled carbon nanotube/poly(ε-caprolactone) composites [J] J. Polym.Sci. Pol. Phys.,2007,45:3137-3147.
    [141] Pan H. P., Yu J., Qiu Z.B. Crystallization and morphology studies ofbiodegradable poly(ε-caprolactone)/polyhedral oligomeric silsesquioxanesnanocomposites [J]. Polym. Eng. Sci.,2011,51:2159-2165.
    [142] Bikiaris D.N., Papageorgiou G.Z., Pavlidou E., Vouroutzis N., Palatzoglou P.,Karayannidis G. P. Preparation by melt mixing and characterization of isotacticpolypropylene/SiO2nanocomposites containing untreated and surface-treatednanoparticles [J]. J. Appl. Polym. Sci.,2006,100:2684-2696.
    [143] Nie M.K., Zheng S.X., Lu F., Zhu Q.R. Inorganic–organic hybrids involvingpoly(ε-caprolactone) and silica network: Hydrogen-bonding interactions and isothermalcrystallization kinetics [J]. J. Polym. Sci. Pol. Phys.,2005,43:2594-2603.
    [144] Vassiliou A., Papageorgiou G., Achilias D., Bikiaris D. Non-IsothermalCrystallisation Kinetics of In Situ Prepared Poly(ε-caprolactone)/Surface-Treated SiO2Nanocomposites [J]. Macromol. Chem. Phys.,2007,208:364-376.
    [145] Nie K.M., Pang W.M., Zheng S.X., Wang Y.S., Lu F., Zhu Q.R. Non-isothermalcrystallization kinetics of poly(ε-caprolactone) in hydrogen-bond-coupled polymeric-inorganic hybrid materials [J]. Polym. Int.,2005,54:327-335.
    [146] Fukushima K., Tabuani D., Abbate C., Arena M., Rizzarelli P. Preparation,characterization and biodegradation of biopolymer nanocomposites based on fumedsilica [J]. Eur. Polym. J.,2011,47:139-152.
    [147] Bian J.J., Han L.J., Wang X.M., Wen X., Han C.Y., Wang S.S., Dong L.S.Nonisothermal crystallization behavior and mechanical properties of poly(butylenesuccinate)/Silica nanocomposites [J]. J. Appl. Polym. Sci.,2010,116:902-912.
    [148] Han L.J., Han C.Y., Cao W.L., Wang X.M., Bian J.J., Dong L.S. Preparation andcharacterization of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/silicananocomposites [J]. Polym. Eng. Sci.,2012,52:250-258.
    [149] Krishnamoorti R., Giannelis E.P. Rheology of end-tethered polymer layeredsilicate nanocomposites[J]. Macromolecules,1991,30(14):4097-4102.
    [150] Han C.D., Kim J.K. On the use of time-temperature superposition inmulticomponent/multiphase polymer systems [J]. Polymer,1993,34:2533-2539.
    [151] Li Y., Han C.Y., Bian J.J., Han L.J., Dong L.S., Gao G. Rheology andBiodegradation of Polylactide/Silica Nanocomposites [J]. Polym. Compos.,2012,33:1719-1727.
    [152] Cole K.S., Cole R.H. Dispersion and absorption in dielectrics I. Alternatingcurrent characteristics [J]. J. Chem. Phys.,1941,9:341-351.
    [153] Guth E. Theory of filler reinforcement [J]. J. Appl. Phys.,1945,16:20-25.
    [154] Nicolais L., Narkis M. Stress-strain behavior of styrene-acrylonitrile/glass beadcomposites in the glassy region [J]. Polym. Eng. Sci.,1971,11(3):194-199.
    [155] Fu S., Feng X., Lauke B., Mar Y. Effects of particle size, particle/matrix interfaceadhesion and particle loading on mechanical properties of particulate-polymercomposites [J]. Composites Part B,2008,39(6):933-961.
    [156] Raya S. S., Yamadab K., Okamotoa M., Uedab K. New polylactide-layeredsilicate nanocomposites.2. Concurrent improvements of material properties,biodegradability and melt rheology [J]. Polymer,2003,44:857-866.
    [157] Eastmond G.C. Poly(epsilon-caprolactone) blends [M]. Biomedical Applications:Polymer Blends, Adv. Polym. Sci.,1999,149:59-223.
    [158] Maio E.D., Iannace S., Sorrentino L.G., Nicolais L.G. Isothermal crystallization inPCL/clay nanocomposites investigated with thermal and rheometric methods [J].Polymer,2004,45:8893-8900.
    [159] Chen E.C., Wu T.M. Isothermal crystallization kinetics and thermal behavior ofpoly(epsilon-caprolactone)/multi-walled carbon nanotube composites [J]. Polym.Degrad. Stabil.,2007,92:1009-1015.
    [160] Avrami M. Kinetics of phase change I-General theory [J]. J. Chem. Phys.,1939,7:1103-1112.
    [161] Avrami M. Granulation, Phase Change, and Microstructure-Kinetics of PhaseChange. III [J]. J. Chem. Phys.,1941,9:177–184.
    [162] Lai W.C., Liau W.B., Lin T.T. The effect of end groups of PEG on thecrystallization behaviors of binary crystalline polymer blends PEG/PLLA [J]. Polymer,2004,45:3073-3080.
    [163] Bhattacharya M. Viscoelastic properties of extrusion cast sheets of natural andsynthetic aliphatic polyesters [J]. Polym. Eng. Sci.,2005,45:1452-1460.
    [164] Yu L., Dean K., Li L. Polymer blends and composites from renewable resources[J]. Prog. Polym. Sci.,2006,31:576-602.
    [165] Dong T., Kai W.H., Pan P.J., Cao A., Inoue Y. Effects of host-guest stoichiometryof alpha-cyclodextrin-aliphatic polyester inclusion complexes and molecular weight ofguest polymer on the crystallization behavior of aliphatic polyesters [J].Macromolecules,2007,40:7244-7251.
    [166] Gorrasi G., Vittoria V., Murariu M., Ferreira A., Alexandre M., Dubois P. Effect offiller content and size on transport properties of water vapor in PLA/calcium sulfatecomposites [J]. Biomacromolecules,2008,9:984-990.
    [167] Jiang L., Wolcott M., Zhang J. Study of biodegradable polyactide/poly(butyleneadipate-co-terephthalate) blends [J]. Biomacromolecules,2006,7:199–207.
    [168] Pillin I., Montrelay N., Grohens Y. Thermo-mechanical characterization ofplasticized PLA: Is the miscibility the only significant factor?[J]. Polymer,2006,47:4676-4682.
    [169] Xu H., Teng C.Q., Yu M.H. Improvements of thermal property and crystallizationbehavior of PLLA based multiblock copolymer by forming stereocomplex with PDLAoligomer [J]. Polymer,2006,47:3922-3928.
    [170] Dobreva T., Pere a J.M., Pérez E., Benavente R., García M. Crystallizationbehavior of poly(L-lactic acid)-based ecocomposites prepared with kenaf fiber and ricestraw [J]. Polym. Composite,2010,31:974-984.
    [171] Wu D.F., Wu L., Wu F.L., Xu B., Zhang, M. You have full text access to thiscontent Nonisothermal cold crystallization behavior and kinetics of polylactide/claynanocomposites [J]. J. Polym. Sci. Pol. Phys.,2007,45:1100-1113.
    [172] Wu D.F., Wu L., Zhang M., Zhao Y.L. Viscoelasticity and thermal stability ofpolylactide composites with various functionalized carbon nanotubes [J]. Polym.Degrad. Stabil.,2008,93:1577-1574.
    [173] Ruan W.H., Huang X.B., Wang X.H., Rong M.Z., Zhang M.Q. Effect of DrawingInduced Dispersion of Nano-Silica on Performance Improvement of Poly(propylene)-Based Nanocomposites [J]. Macromol. Rapid Comm.,2006,27:581-585.
    [174] Zou H., Wu S., Shen J. Polymer/silica nanocomposites: Preparation,Characterization, properties, and applications [J]. Chem. Rev.,2008,108:3893-3957.
    [175] Yan S.f., Yin J.B., Yang J., Dai Z.Z., Ma J., Hen X.S. Surface-grafted silica linkedwith L-lactic acid oligomer: A novel nanofiller to improve the performance ofbiodegradable poly(L-lactide)[J]. Polymer,2007,48:1688-1694.
    [176] Yan S., Yin J., Yang J, Chen X. In-situ formation of Cu metal crystals withinnanostructured ZnO electrospun fibers [J]. Mater. Lett.,2007,61:2683-2685.
    [177] Wu L.B., Cao D., Yuan H., Li B.G. Poly(l-lactic acid)/SiO2nanocomposites via insitu melt polycondensation of l-lactic acid in the presence of acidic silica sol:Preparation and characterization [J]. Polymer,2008,49:742-748.
    [178] Wen X., Lin Y., Han C.Y., Zhang K.Y., Ran X.H., Li Y.S., Dong L.S.Thermomechanical and Optical Properties of Biodegradable Poly(L-lactide)/SilicaNanocomposites by Melt Compounding [J]. J. Appl. Polym. Sci.,2009,114:3379-3388.
    [179] Wen X., Zhang K.Y., Wang Y., Han L.J., Han C.Y., Zhang H.L., Chen S., DongL.S. Study of the thermal stabilization mechanism of biodegradablepoly(L-lactide)/silica nanocomposites [J]. Polym. Int.,2011,60:202-210.
    [180] Elias L., Fenouillot F., Majesté J.C., Alcouffe P., Cassagnau P. Immisciblepolymer blends stabilized with nano-silica particles: Rheology and effective interfacialtension [J]. Polymer,2008,49:4378-4385.
    [181] Elias L., Fenouillot F., Majeste J.C., Cassagnau P.H. Morphology and rheology ofimmiscible polymer blends filled with silica nanoparticles [J]. Polymer,2007,48:6029-6040.
    [182] Cassagnau P.H. Melt rheology of organoclay and fumed silica nanocomposites [J].Polymer,2008,49:2183-2196.
    [183] Han C.Y., Bian J.J., Liu H., Han L.J., Wang S.S., Dong L.S., Chen S. Aninvestigation of the effect of silane water-crosslinking on the properties ofpoly(L-lactide)[J]. Polym. Int.,2010,59:695-703.
    [184] Wu C.L., Zhang M.Q., Rong M.Z., Friedrich K. Tensile performanceimprovement of low nanoparticles filled-polypropylene composites [J]. Compos. Sci.Technol.,2002,62:1327-1340.
    [185] Bikiaris D.N., Vassiliou A., Pavlidou E., Karayannidis P. Compatibilisation effectof PP-g-MA copolymer on iPP/SiO2nanocomposites prepared by melt mixing [J]. Eur.Polym. J.,2005,41:1965-1978.
    [186] Cox W.P., Merz E.H. Correlation of dynamic and steady flow viscosities [J]. J.Polym. Sci.,1958,28:619-622.
    [187] Solomon M.J., Almusallam A.S., Seefeldt K.F., Varadan P. Morphology andrheology of immiscible polymer blends filled with silica nanoparticles [J].Macromolecules,2001,34:1864-1870.
    [188] Bendix D. Chemical synthesis of polylactide and its copolymers for medicalapplications [J]. Polym. Degrad. Stabil.,1998,59:129-135.
    [189] Kovalchuk A., Fischer W., Epple M. Controlled release of goserelin frommicroporous polyglycolide and polylactide [J]. Macromol. Biosci.,2005,5:289-298.
    [190] Paul M.A., Alexandre M., Degee P., Henrist C., Rulmont A., Dubois P. Newnanocomposite materials based on plasticized poly(L-lactide) and organo-modifiedmontmorillonites: thermal and morphological study [J]. Polymer2003,44:443-450.
    [191] Yan S.F., Yin J.B., Yang Y., Dai Z.Z., Ma J., Chen X.S. Surface-grafted silicalinked with L-lactic acid oligomer: A novel nanofiller to improve the performance ofbiodegradable poly(L-lactide)[J]. Polymer,2007,48:1688-1694.
    [192] Zhang D.H., Kandadai M.A., Cech J., Roth S., Curran S.A. Poly(L-lactide)(PLLA)/multiwalled carbon nanotube (MWCNT) composite: Characterization andbiocompatibility evaluation [J]. J. Phys. Chem. B,2006,110:12910-12915.
    [193] Kasuga T., Ota Y., Nogami M., Abe Y. Preparation and mechanical properties ofpolylactic acid composites containing hydroxyapatite fibers [J]. Biomaterials,2001,22:19-23.
    [194] Ray S.S., Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: In greening the21st century materials world [J]. Prog. Mater. Sci.,2005,50:962-1079.
    [195] Zou G.X., Zhang X., Zhao C.X., Li J.C. The Crystalline and MechanicalProperties of PLA/Layered Silicate Degradable Composites [J]. Polymer Science, Ser. A,2012,54:393-400.
    [196] Martino V.P., Jiménez A., Ruseckaite R.A., Avérous L. Structure and properties ofclay nano-biocomposites based on poly(lactic acid) plasticized with polyadipates [J].Polymer Advanced Technologies,2011,12:2206-2213.
    [197] Kontou E., Georgiopoulos P., Niaounakis M. The role of nanofillers on thedegradation behavior of polylactic acid [J]. Polymer Composites,2012,33:282-294.
    [198] Zhong Y., Zhu Z.Y., Wang S.Q. Synthesis and rheological properties of polystyrene/layered silicate nanocomposite [J]. Polymer,2005,46:3006-3013.
    [199] Rohlmann C.O., Failla M.D., Quinzani L.M. Linear viscoelasticity and structureof polypropylene-montmorillonite nancomposites [J]. Polymer,2006,22:7795-7804.
    [200] Sevim S., Nurfer G., Ayse A. Influence of clay surface modification onmorphology and rheology of polyethylene glycol/montmorillonite nanocomposites [J].Journal of Composite Materials,2007,41:1521-1533.
    [201] Dal Castel C., Bianchi O., Oviedo M. A. S. The influence of interfacial agents onthe morphology and viscoelasticity of PP/MMT nanocomposites [J]. Materials Science&Engineering C-Biomimetic and Supramolecular Systems,2009,29:602-606.
    [202] Wu D.F., Zhou C.X., Zheng H., et al. Study on Rheological Behavior ofPoly(butylenes terephalate)/Montomorillonite Nanocomposites [J]. Eur. Polym. J.,2005,41:2199-2207.
    [203] Li J., Zhou C.Y., Wang G., et al. Study on Rheological Properties of PP/ClayNanocomposites [J]. J. Appl. Polym. Sci.,2003,89(13):3609-3617.
    [204] Ren J., Silva A.S., Krishnammoorti R. Linear Viscoelasticity of DisorderedPolystyrene-Polyisoprene Block Copolymer Based Layered-silicate Nanocomposites [J].Macromolecules,2000,33(10):3739-3746.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700