用户名: 密码: 验证码:
稀土掺杂特殊形貌二氧化钛纳米材料的制备及其发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于科技的进步,照明材料已经从过去的煤油灯时代发展到今天五光十色的高性能的电灯照明时代。并且随着人们对物质方面的要求的提高,照明材料的需求也越来越高。基于这些,研究者们加大了对发光材料的研究,制备了更多性能优异的发光材料。TiO_2因其具有优异的性能而常被用作发光材料的基质,展现出良好的应用前景。本文以TiO_2为基质,采用水热法制备了Eu~(3+)掺杂的TiO_2纳米棒、纳米带和纺锤形纳米结构,采用微乳法制备了Eu~(3+)掺杂的TiO_2三维花状结构。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、光致发光光谱(PL)等现代分析技术,对发光材料进行了表征,系统研究了材料的形貌对发光性能的影响,并探讨了不同形貌的形成及其对发光性能影响的机理。主要工作有以下几个方面:
     1、通过一种简单的水热过程成功合成了钛酸纳米管和纳米带。纳米管是由包含数层的片状结构组成的。纳米管的形成是一个从纳米粒子到纳米片的生长过程,接着纳米片在反应条件提供的驱动力下发生卷曲,最后得到纳米管结构;纳米带的形成是由纳米粒子在一定的实验条件下先形成小的纳米带,最后小的纳米带聚集形成较大的带状结构。
     2、采用水热方法成功地制备了Eu~(3+)掺杂和Eu~(3+)/Gd~(3+)共掺的TiO_2纳米带。研究表明,煅烧温度不仅对TiO_2的晶体结构和形貌有很大影响,同时也影响其发光性能。在UV激发下,Eu~(3+)掺杂的TiO_2纳米带显示红光发射。纳米带的发光强度与Gd~(3+)和Eu~(3+)的掺杂浓度有关,发光性质主要取决于Eu~(3+)。
     3、通过一步简单水热反应以及随后的煅烧过程成功制备出TiO_2:Eu~(3+)纳米棒。研究发现制得的前驱体为钛酸结构纳米管;煅烧处理后,纳米管转变为纳米棒。最终的TiO_2:Eu~(3+)纳米棒和纳米带由于Eu~(3+)的f-f跃迁在紫外激发下有强的红光发射。
     4、通过两步水热过程得到了形貌规则、均一好、分散性好的的TiO_2:Eu~(3+)纺锤形纳米粒子。详细地研究了锐钛矿、钛酸钠和钛酸间的相转化和纺锤形TiO_2纳米粒子可能的形成机理。最终产物TiO_2:Eu~(3+)纺锤形纳米粒子在紫外光激发下显示强的红光发射。
     5、成功制备了三种不同形貌的三维花状结构TiO_2纳米颗粒。花状TiO_2晶型为金红石型。对其形成机理进行了简单的分析。荧光光谱研究表明花状结构的发光强度较弱,这主要是由基体的晶型不同引起的。
With the development of the society, people's physical requirements are alsogetting higher and higher. Lighting materials have been already developed from thepast kerosene lamp era to today's resplendent with variegated coloration of highperformance electric lighting Era. It was required that the lighting materials shouldalso be developed with the demand of the people. Therefore, the researchers increasedthe luminescent materials research investment, and found much more luminescentmaterials. TiO_2, as a kind of good matrix, has shown a good application prospect inluminescent materials. In this work, TiO_2was used as matrix, and Eu~(3+)-doped TiO_2nanorods, nanobelts and spindle-shaped nanoparticles were prepared by hydrothermalmethod. In addition, Eu~(3+)ions doped3-dimensional flower-like TiO_2nanoparticleswere fabricated by micro-emulsion method. To study the effects of the morphology onthe luminescent properties, modern analysis techniques including SEM, TEM, XRD,FT-IR and PL were used to investigate the characteristics of these materials. The mainresults of the research work are as follows:
     1. Titanate nanotubes and nanobelts were successfully synthesized via a simplehydrothermal process. The TiO_2nanoparticles are grown to nanosheets, finally turnedinto nanotubes structure under the driving force in this process. Nanobelts were alsoformed from the TiO_2nanoparticles under certain experimental conditions. Smallnanobelts were formed, and the small nanobelts bind together to form the finalnanobelt structure. The crystallization rate has great influence on the formation ofmorphology. If the crystallization rate is large enough so that the growth of thenanosheets can be more than the general value, and then they will overlap each other,become hard and difficult to curl, resulting in the formation of nanobelt instead of nanotubes.
     2. TiO_2:Eu~(3+)nanobelts have been successfully prepared using the hydrothermalmethod. The XRD results show that anatase-phase TiO_2can be formed attemperatures above300oC, and the optimal calcination temperature is500oC. Underthe UV excitation, TiO_2:Eu~(3+)nanobelts exhibit red emission. The calcinationtemperature has a great influence not only on the crystal structure and morphology,but also on the luminescence properties. It is expected that TiO_2:Eu~(3+)nanobelts can bea potential candidate as the novel semiconductor fluorescence materials.
     3. The controllable synthesis of TiO_2:Eu~(3+)nanorods have been successfullyachieved through a simple hydrothermal process followed by the calcination process.The as-obtained precursors have the structure of titanate. The morphology of thenanotubes changed to nanorods after calcination process. The final TiO_2:Eu~(3+)nanorods showed a strong red emission under ultraviolet excitation.
     4. Highly uniform TiO_2:Eu~(3+)spindle-shaped nanoparticles were synthesized bytwo-step hydrothermal processes. The width of the nanobelt precursor is about50–200nm and the lengths are about several micrometers. The diameters of the TiO_2:Eu~(3+)spindle shaped nanoparticles are about50–200nm and the lengths about200-1000nm.The phase transformation among the anatase structure, sodium titanate and titanateand the possible formation mechanism were also investigated in detail. The finalproducts of the TiO_2:Eu~(3+)spindle shaped nanoparticles show strong red emissionintensity under ultraviolet excitation, which is due to the lack of inversion symmetryat the Eu~(3+)ions site and depends strongly on the site symmetry in a host crystal. It canbe anticipated that the as-prepared product is a potential candidate as the novelsemiconductor luminescent materials.
     5. TiO_2:Eu~(3+)nanorods and spindle-shaped nanoparticles have been synthesized through simple calcination and two-step hydrothermal processes using titanate as theprecursors. Not only the morphologies of the precursors have been changed fromnanotubes to nanorods and spindle-shaped nanoparticles, but also the structures of theprecursors have been transformed into anatase nanostructure. Under UV lightexcitation, the TiO_2:Eu~(3+)nanorods and spindle-shaped nanoparticles exhibit the strongred emission corresponding to the5D0-7F2transition of the Eu~(3+)ions. In addition, theluminescence intensity of the TiO_2:Eu~(3+)nanorods is stronger than that of spindle-shaped nanoparticles, which is due to the defects on the surface of the samples.
     6. We have demonstrated a facile route to synthesize3-dimensional flower-likeTiO_2using commercial CTAB as the reacting surfactant and template in the acidsurrounding. The PL spectrums show that the3-dimensional flower-like TiO_2:Eu~(3+)exhibited emission peak centered at around614nm when the excitation wavelength is393nm. However, It was found that the emission intensity of the3-dimensionalflower-like TiO_2:Eu~(3+)is lower than that of the other morphologies TiO_2, which is dueto the matrix can not transfer their energy to rare earth ions, and rare earth ion returnto the excited state by itself. The synthesis of3-dimensional flower like TiO_2:Eu~(3+)crystals in the acid surrounding will provide a new route to other compounds withcontrolled shapes and sizes.
引文
[1]BURKE M. Information technology Chips with nano-LEDs [J]. Chem Ind-London,2011,23:9-15.
    [2]PRIARONE P C, RIZZUTI S, SETTINERI L, et al. Effects of cutting angle, edgepreparation, and nano-structured coating on milling performance of a gamma titaniumaluminide [J]. J Mater Process Tech,2012,212(12):2619-28.
    [3]ZHANG H M, NIE Z X, XIAO X, et al. Design and Simulation of SMES SystemUsing YBCO Tapes for Direct Drive Wave Energy Converters [J]. Ieee T ApplSupercon,2013,23(3):5700704
    [4]ROMANCHUK A Y, SLESAREV A S, KALMYKOV S N, et al. Graphene oxidefor effective radionuclide removal [J]. Phys Chem Chem Phys,2013,15(7):2321-7.
    [5]LEONHARDT U. Optical metamaterials-Invisibility cup [J]. Nat Photonics,2007,1(4):207-8.
    [6]ROHRER G B A H. SCANNING TUNNELING MICROSCOPY [J]. Surf Sci,1983,126:236-44.
    [7]QUATE G B A C F. Atomic Force Microscope [J]. Phys Rev Lett1986,56:930-3.
    [8]HAFEZ H S. Highly active ZnO rod-like nanomaterials: Synthesis,characterization and photocatalytic activity for dye removal [J]. Physica E,2012,44(7-8):1522-7.
    [9]PANDEY N K, TIWARI K, ROY A, et al. Ag-Loaded WO3CeramicNanomaterials: Characterization and Moisture Sensing Studies [J]. Int J Appl CeramTec,2013,10(1):150-9.
    [10]BERNAL A, KURITKA I, SAHA P. Preparation and characterization ofpoly(vinyl alcohol)-poly(vinyl pyrrolidone) blend: A biomaterial with latent medicalapplications [J]. J Appl Polym Sci,2013,127(5):3560-8.
    [11]MAHAJAN A, HAQUE R I, VILARINHO P M, et al. Microscopy Studies ofCarbon Nanotubes/Ferroelectric Composites for Microelectronics [J]. MicroscMicroanal,2012,18:107-8.
    [12]SAIF M, HAFEZ H, NABEEL A I. Photo-induced self-cleaning and sterilizingactivity of Sm3+doped ZnO nanomaterials [J]. Chemosphere,2013,90(2):840-7.
    [13]DEVARAJU M K, TOMAI T, UNEMOTO A, et al. Novel processing of lithiummanganese silicate nanomaterials for Li-ion battery applications [J]. Rsc Adv,2013,3(2):608-15.
    [14]GUPTA D C, RANA P. Study of semiconducting nanomaterials under pressure [J].J Mol Model,2012,18(7):3341-50.
    [15]KUMAR R T, SELVAM N C S, RAGUPATHI C, et al. Synthesis, characterizationand performance of porous Sr(II)-added ZnAl2O4nanomaterials for optical andcatalytic applications [J]. Powder Technol,2012,224:147-54.
    [16]NURAJE N, DANG X N, QI J F, et al. Biotemplated Synthesis of PerovskiteNanomaterials for Solar Energy Conversion [J]. Adv Mater,2012,24(21):2885-9.
    [17]HE Y P, ZHENG J B, SHENG Q L. Cobalt nanoparticles as sacrificial templatesfor the electrodeposition of palladium nanomaterials in an ionic liquid, and itsapplication to electrochemical sensing of hydrazine [J]. Microchim Acta,2012,177(3-4):479-84.
    [18]LAKOWICZ J R. Principles of Fluorescence Spectroscopy [M]. Plenum Press,New York,1983, ISBN0-387-31278-1.
    [19]张中太,张俊英.无机光致发光材料及应用[M].化学工业出版社,2005。
    [20]FELDMANN C, JUSTEL T, RONDA C R, et al. Inorganic luminescent materials:100years of research and application [J]. Adv Funct Mater,2003,13(7):511-6.
    [21]方容川.发光学研究及应用[M].合肥:中国科学技术大学出版社,1993。
    [22]LIU P, YU S, FAN W Q, et al. A new inorganic-organic hybrid In2Se3(en) ashollow nanospheres: hydrothermal synthesis and near-infrared photoluminescenceproperties [J]. Dalton T,2013,42(8):2887-93.
    [23]GUPTA V, GUPTA B K, KOTNALA R K, et al. Defect inducedphotoluminescence and ferromagnetic properties of bio-compatible SWCNT/Nihybrid bundles [J]. J Colloid Interf Sci,2011,362(2):311-6.
    [24]WHANG D R, YOU Y, CHAE W S, et al. Solid-State Phosphorescence-to-Fluorescence Switching in a Cyclometalated Ir(III) Complex Containing an Acid-Labile Chromophoric Ancillary Ligand: Implication for Multimodal Security Printing[J]. Langmuir,2012,28(44):15433-7.
    [25] SERVICE S. LUMINESCENCE FROM CATHODE RAYS [J]. science,1927,66:1717.
    [26]JUNJI KIDO M K, KATSUTOSHI NAGAI Multilayer white light-emittingorganic electroluminescent device.[J]. science,1995.267(5202):1332-4
    [27]SUGIE H, IWATA N, KOHN K. Magnetic ordering of rare earth ions andmagnetic-electric interaction of hexagonal RMnO3(R=Ho, Er, Yb or Lu)[J]. J PhysSoc Jpn,2002,71(6):1558-64.
    [28]DIVIS M, SCHWARZ K, BLAHA P, et al. Rare earth borocarbides: Electronicstructure calculations and electric field gradients [J]. Phys Rev B,2000,62(10):6774-85.
    [29]ROSENKRANZ S, MEDARDE M, FAUTH F, et al. Crystalline electric field ofthe rare-earth nickelates RNiO3(R=Pr, Nd, Sm, Eu, and Pr1-xLax,0<=x <=0.7)determined by inelastic neutron scattering [J]. Phys Rev B,1999,60(21):14857-67.
    [30]HAO S E, WEI Y D. Studies of gas thermochemical penetrating of rare earth toBaTiO3ceramics and their electric characteristics [J]. Chin J Inorg Chem,2003,19(2):147-52.
    [31]MATSUMOTO H, TSURU T G, KOYAMA K, et al. Discovery of a luminous,variable, off-center source in the nucleus of M82with the Chandra High-ResolutionCamera [J]. Astrophys J,2001,547(1): L25-L8.
    [32]SCHUBERT E, KLASSEN M, ZERNER I, et al. Light-weight structuresproduced by laser beam joining for future applications in automobile and aerospaceindustry [J]. J Mater Process Tech,2001,115(1):2-8.
    [33]MEDINTZ I L, CLAPP A R, MATTOUSSI H, et al. Self-assembled nanoscalebiosensors based on quantum dot FRET donors [J]. Nat Mater,2003,2(9):630-8.
    [34]JARES-ERIJMAN E A, JOVIN T M. FRET imaging [J]. Nat Biotechnol,2003,21(11):1387-95.
    [35]KOBERLING F, PATTING M, KAPUSTA P, et al. Fluorescence lifetime imagingmicroscope: Single molecule detection and fret capability with up to4detectionchannels.[J]. Abstr Pap Am Chem S,2004,228: U264-U5.
    [36]LUWANG M N, NINGTHOUJAM R S, JAGANNATH, et al. Effects of Ce3+Codoping and Annealing on Phase Transformation and Luminescence of Eu3+-DopedYPO4Nanorods: D2O Solvent Effect [J]. J Am Chem Soc,2010,132(8):2759-68.
    [37]RIWOTZKI K, MEYSSAMY H, SCHNABLEGGER H, et al. Liquid-phasesynthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce,Tb nanocrystals [J]. Angewandte Chemie-International Edition,2001,40(3):573-6.
    [38]NISHIHAMA S, HIRAI T, KOMASAWA I. The preparation of rare earthphosphate fine particles in an emulsion liquid membrane system [J]. J Mater Chem,2002,12(4):1053-7.
    [39]NINGTHOUJAM R S, SUDARSAN V, GODBOLE S V, et al. SnO2: Eu3+nanoparticles dispersed in TiO2matrix: Improved energy transfer betweensemiconductor host and Eu3+ions for the low temperature synthesized samples [J].Appl Phys Lett,2007,90(17):173113-15.
    [40]ZHENG Y H, YOU H P, JIA G, et al. Facile synthesis ofY4O(OH)(9)NO3:Eu3+/Y2O3:Eu3+nanotubes and nanobundles from nanolamellarprecursors [J]. Crystengcomm,2010,12(2):585-90.
    [41]QU X, YANG H K, PAN G H, et al. Controlled Fabrication and Shape-DependentLuminescence Properties of Hexagonal NaCeF4, NaCeF4:Tb3+Nanorods via Polyol-Mediated Solvothermal Route [J]. Inorg Chem,2011,50(8):3387-93.
    [42]XU Z H, LI C X, YANG P P, et al. Rare Earth Fluorides Nanowires/NanorodsDerived from Hydroxides: Hydrothermal Synthesis and Luminescence Properties [J].Cryst Growth Des,2009,9(11):4752-8.
    [43]ZALLEN R, MORET M P. The optical absorption edge of brookite TiO2[J].Solid State Commun,2006,137(3):154-7.
    [44]PFAFF G, REYNDERS P. Angle-dependent optical effects deriving fromsubmicron structures of films and pigments [J]. Chem Rev,1999,99(7):1963-81.
    [45]SALVADOR A, PASCUAL-MARTI M C, ADELL J R, et al. Analyticalmethodologies for atomic spectrometric determination of metallic oxides in UVsunscreen creams [J]. J Pharmaceut Biomed,2000,22(2):301-6.
    [46]JUERGEN H. BRAUN A B, ROBERT E. MARGANSKI TiO2pigmenttechnology: a review [J]. Progress in Organic Coatings1992,20(2):105-38.
    [47]HONDA A F A K. Electrochemical Photolysis of Water at a SemiconductorElectrode [J]. Nature,1972,238:37-8.
    [48]TRYK D A, FUJISHIMA A, HONDA K. Recent topics in photoelectrochemistry:achievements and future prospects [J]. Electrochim Acta,2000,45(15-16):2363-76.
    [49]CHEN X, MAO S S. Titanium dioxide nanomaterials: Synthesis, properties,modifications, and applications [J]. Chem Rev,2007,107(7):2891-959.
    [50]AMY L. LINSEBIGLER G L, JOHN T. YATES. Photocatalysis on TiO2Surfaces:Principles, Mechanisms, and Selected Results [J]. Chem Rev,1995,95(3):735-58.
    [51]PIERRE A C, PAJONK G M. Chemistry of aerogels and their applications [J].Chem Rev,2002,102(11):4243-65.
    [52]LU Z L, LINDNER E, MAYER H A. Applications of sol-gel-processedinterphase catalysts [J]. Chem Rev,2002,102(10):3543-77.
    [53]WIGHT A P, DAVIS M E. Design and preparation of organic-inorganic hybridcatalysts [J]. Chem Rev,2002,102(10):3589-613.
    [54]SERP P, KALCK P, FEURER R. Chemical vapor deposition methods for thecontrolled preparation of supported catalytic materials [J]. Chem Rev,2002,102(9):3085-128.
    [55]PROCESS T S-G. The sol-gel process [J]. Chem Rev,1990,90(1):33–72.
    [56]T. MORITZ J R, K. DIESNER, D. SU, AND A. CHEMSEDDINE.Nanostructured Crystalline TiO2through Growth Control and Stabilization ofIntermediate Structural Building Units [J]. J Phys Chem B,1997,101(41):8052-3.
    [57]OSKAM G, NELLORE A, PENN R L, et al. The growth kinetics of TiO2nanoparticles from titanium(IV) alkoxide at high water/titanium ratio [J]. J PhysChem B,2003,107(8):1734-8.
    [58]LIU P, BANDARA J, LIN Y, et al. Formation of nanocrystalline titanium dioxidein perfluorinated ionomer membrane [J]. Langmuir,2002,18(26):10398-401.
    [59]ZHANG H Z, BANFIELD J F. Understanding polymorphic phase transformationbehavior during growth of nanocrystalline aggregates: Insights from TiO2[J]. J PhysChem B,2000,104(15):3481-7.
    [60]ZHANG H Z, BANFIELD J F. Size dependence of the kinetic rate constant forphase transformation in TiO2nanoparticles [J]. Chem Mater,2005,17(13):3421-5.
    [61]ERIC A. BARRINGER H K B. High-purity, monodisperse TiO2powders byhydrolysis of titanium tetraethoxide.1. Synthesis and physical properties [J].Langmuir,1985,1(4):414–20.
    [62]ERIC A. BARRINGER H K B. High-purity, monodisperse TiO2powders byhydrolysis of titanium tetratethoxide.2. Aqueous interfacial electrochemistry anddispersion stability [J]. Langmuir,1985,1(4):420-8.
    [63]J. H. JEAN T A R. Nucleation and growth of monosized titania powders fromalcohol solution [J]. Langmuir,1986,2(2):251-5.
    [64]ZHANG Q H, GAO L, GUO J K. Preparation and spectral characterization ofquantum-size titanium dioxide in the rutile phase [J]. J Inorg Mater,2000,15(5):929-34.
    [65]KARATCHEVTSEVA I, CASSIDY D J, ZHANG Z M, et al. Crystallization ofTiO2powders and thin films prepared from modified titanium alkoxide precursors [J].J Am Ceram Soc,2008,91(6):2015-23.
    [66]ZHANG D B, QI L M, MA J M, et al. Formation of crystalline nanosized titaniain reverse micelles at room temperature [J]. J Mater Chem,2002,12(12):3677-80.
    [67]LI Y Z, LEE N H, HWANG D S, et al. Synthesis and characterization of nanotitania powder with high photoactivity for gas-phase photo-oxidation of benzene fromTiOCl2aqueous solution at low temperatures [J]. Langmuir,2004,20(25):10838-44.
    [68]LIM K T, HWANG H S, RYOO W, et al. Synthesis of TiO2nanoparticles utilizinghydrated reverse micelles in CO2[J]. Langmuir,2004,20(6):2466-71.
    [69]LIN J, LIN Y, LIU P, et al. Hot-fluid annealing for crystalline titanium dioxidenanoparticles in stable suspension [J]. J Am Chem Soc,2002,124(38):11514-8.
    [70]YU J C, YU J G, HO W K, et al. Preparation of highly photocatalytic active nano-sized TiO2particles via ultrasonic irradiation [J]. Chem Commun,2001,19):1942-3.
    [71]KIM K D, CHOI D W, CHOA Y H, et al. Optimization of parameters for thesynthesis of zinc oxide nanoparticles by Taguchi robust design method [J]. ColloidSurface A,2007,311(1-3):170-3.
    [72]LI G L, WANG G H. Synthesis of nanometer-sized TiO2particles by amicroemulsion method [J]. Nanostruct Mater,1999,11(5):663-8.
    [73]HONGBO LI K Z, YE SHENG, YANHUA SONG, HONGGUANG ZHANG,JING HUANG, QISHENG HUO,HAIFENG ZOU. Facile synthesis andluminescence properties of TiO2:Eu3+nanobelts [J]. Optics&Laser Technology2013,49:33-7.
    [74]ANDERSSON M, OSTERLUND L, LJUNGSTROM S, et al. Preparation ofnanosize anatase and rutile TiO2by hydrothermal treatment of microemulsions andtheir activity for photocatalytic wet oxidation of phenol [J]. J Phys Chem B,2002,106(41):10674-9.
    [75]CHAE S Y, PARK M K, LEE S K, et al. Preparation of size-controlled TiO2nanoparticles and derivation of optically transparent photocatalytic films [J]. ChemMater,2003,15(17):3326-31.
    [76]ZHANG Y J, ZHANG L, DENG J G, et al. Controlled Synthesis, Characterization,and Morphology-Dependent Reducibility of Ceria-Zirconia-Yttria Solid Solutionswith Nanorod-like, Microspherical, Microbowknot-like, and Micro-octahedral Shapes[J]. Inorg Chem,2009,48(5):2181-92.
    [77]AGRAWAL M, GUPTA S, PICH A, et al. A Facile Approach to Fabrication ofZnO-TiO2Hollow Spheres [J]. Chem Mater,2009,21(21):5343-8.
    [78]BYUN H Y, VITTAL R, KIM D Y, et al. Beneficial role ofcetyltrimethylammonium bromide in the enhancement of photovoltaic properties ofdye-sensitized rutile TiO2solar cells [J]. Langmuir,2004,20(16):6853-7.
    [79]CHEN J S, TAN Y L, LI C M, et al. Constructing Hierarchical Spheres fromLarge Ultrathin Anatase TiO2Nanosheets with Nearly100%Exposed (001) Facets forFast Reversible Lithium Storage [J]. J Am Chem Soc,2010,132(17):6124-30.
    [80]NIAN J N, TENG H S. Hydrothermal synthesis of single-crystalline anatase TiO2nanorods with nanotubes as the precursor [J]. J Phys Chem B,2006,110(9):4193-8.
    [81]ARMSTRONG A R, ARMSTRONG G, CANALES J, et al. Lithium-ionintercalation into TiO2-B nanowires [J]. Adv Mater,2005,17(7):862-+.
    [82]ARMSTRONG A R, ARMSTRONG G, CANALES J, et al. TiO2-B nanowires [J].Angewandte Chemie-International Edition,2004,43(17):2286-8.
    [83]YOSHIDA R, SUZUKI Y, YOSHIKAWA S. Syntheses of TiO2(B) nanowires andTiO2anatase nanowires by hydrothermal and post-heat treatments [J]. J Solid StateChem,2005,178(7):2179-85.
    [84]XU J, GE J P, LI Y D. Solvothermal synthesis of monodisperse PbSe nanocrystals[J]. J Phys Chem B,2006,110(6):2497-501.
    [85]WEN B M, LIU C Y, LIU Y. Bamboo-shaped ag-doped TiO2nanowires withheterojunctions [J]. Inorg Chem,2005,44(19):6503-5.
    [86]WEN B M, LIU C Y, LIU Y. Depositional characteristics of metal coating onsingle-crystal TiO2nanowires [J]. J Phys Chem B,2005,109(25):12372-5.
    [87]YANG L X, HE D M, CAI Q Y, et al. Fabrication and catalytic properties of Co-Ag-Pt nanoparticle-decorated titania nanotube arrays [J]. J Phys Chem C,2007,111(23):8214-7.
    [88]XIAO F X. Construction of Highly Ordered ZnO-TiO2Nanotube Arrays(ZnO/TNTs) Heterostructure for Photocatalytic Application [J]. Acs Appl Mater Inter,2012,4(12):7054-62.
    [89]KIM C S, MOON B K, PARK J H, et al. Synthesis of nanocrystalline TiO2intoluene by a solvothermal route [J]. J Cryst Growth,2003,254(3-4):405-10.
    [90]LI X L, PENG Q, YI J X, et al. Near monodisperse TiO2nanoparticles andnanorods [J]. Chem-Eur J,2006,12(8):2383-91.
    [91]FRINDELL K L, BARTL M H, ROBINSON M R, et al. Visible and near-IRluminescence via energy transfer in rare earth doped mesoporous titania thin filmswith nanocrystalline walls [J]. J Solid State Chem,2003,172(1):81-8.
    [92]XIN H, MA R Z, WANG L Z, et al. Photoluminescence properties of lamellaraggregates of titania nanosheets accommodating rare earth ions [J]. Appl Phys Lett,2004,85(18):4187-9.
    [93]LI J G, WANG X H, WATANABE K, et al. Phase structure and luminescenceproperties of Eu3+-doped TiO2nanocrystals synthesized by Ar/O-2radio frequencythermal plasma oxidation of liquid precursor mists [J]. J Phys Chem B,2006,110(3):1121-7.
    [94]CACCIOTTI I, BIANCO A, PEZZOTTI G, et al. Synthesis, thermal behaviourand luminescence properties of rare earth-doped titania nanofibers [J]. Chem Eng J,2011,166(2):751-64.
    [95]FENG X A, YANG L, ZHANG N C, et al. A facile one-pot hydrothermal methodto prepare europium-doped titania hollow phosphors and their sensitizedluminescence properties [J]. J Alloy Compd,2010,506(2):728-33.
    [96]JIA C W, XIE E Q, PENG A H, et al. Photoluminescence and energy transfer ofterbium doped titania film [J]. Thin Solid Films,2006,496(2):555-9.
    [1]XIA Y N, YANG P D, SUN Y G, et al. One-dimensional nanostructures: Synthesis,characterization, and applications [J]. Adv Mater,2003,15(5):353-89.
    [2]DJENADIC R R, NIKOLIC L M, GIANNAKOPOULOS K P, et al. One-dimensional titanate nanostructures: Synthesis and characterization [J]. J Eur CeramSoc,2007,27(13-15):4339-43.
    [3]IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-8.
    [4]WEI M D, QI Z M, ICHIHARA M, et al. Synthesis of one-dimensional sodiumtitanate nanostructures [J]. J Nanosci Nanotechno,2007,7(3):1065-8.
    [5]MAO Y B, KANUNGO M, HEMRAJ-BENNY T, et al. Synthesis and growthmechanism of titanate and titania one-dimensional nanostructures self-assembled intohollow micrometer-scale spherical aggregates [J]. J Phys Chem B,2006,110(2):702-10.
    [6]HEITSCH A T, HESSEL C M, AKHAVAN V A, et al. Colloidal Silicon NanorodSynthesis [J]. Nano Lett,2009,9(8):3042-7.
    [7]SU Y K, PENG S M, JI L W, et al. Ultraviolet ZnO Nanorod Photosensors [J].Langmuir,2010,26(1):603-6.
    [8]LUO Y S, LUO J S, ZHOU W W, et al. Controlled synthesis of hierarchicalgraphene-wrapped TiO2@Co3O4coaxial nanobelt arrays for high-performance lithiumstorage [J]. J Mater Chem A,2013,1(2):273-81.
    [9]LING B, SUN X W, ZHAO J L, et al. A SnO2Nanopartiele/Nanobelt and SiHeterojunction Light-Emitting Diode [J]. J Phys Chem C,2010,114(43):18390-5.
    [10]KASUGA T, HIRAMATSU M, HOSON A, et al. Titania nanotubes prepared bychemical processing [J]. Adv Mater,1999,11(15):1307-1311.
    [11]KOJIMA R, KIMURA Y, BITOH M, et al. Investigation of Influence ofElectrolyte Composition on Formation of Anodic Titanium Oxide Nanotube Films [J].J Electrochem Soc,2012,159(11): D629-D36.
    [12]CONNOR P A, DOBSON K D, MCQUILLAN A J. Infrared spectroscopy of theTiO2/aqueous solution interface [J]. Langmuir,1999,15(7):2402-8.
    [13]CHEN Y, KANG K S, YOO K H, et al. Cause of Slow Phase Transformation ofTiO2Nanorods [J]. J Phys Chem C,2009,113(46):19753-5.
    [14]NAKAHIRA A, KUBO T, NUMAKO C. Formation Mechanism of TiO2-DerivedTitanate Nanotubes Prepared by the Hydrothermal Process [J]. Inorg Chem,2010,49(13):5845-52.
    [15]GONG X Q, SELLONI A. Reactivity of anatase TiO2nanoparticles: The role ofthe minority (001) surface [J]. J Phys Chem B,2005,109(42):19560-2.
    [1]GATES B, YIN Y D, XIA Y N. A solution-phase approach to the synthesis ofuniform nanowires of crystalline selenium with lateral dimensions in the range of10-30nm [J]. J Am Chem Soc,2000,122(50):12582-3.
    [2]LIN S S, HONG J I, SONG J H, et al. Phosphorus Doped Zn1-xMgxO NanowireArrays [J]. Nano Lett,2009,9(11):3877-82.
    [3]XIA Y N, YANG P D, SUN Y G, et al. One-dimensional nanostructures: Synthesis,characterization, and applications [J]. Adv Mater,2003,15(5):353-89.
    [4]SONG Y H, YOU H P, YANG M, et al. Facile Synthesis and Luminescence of Sr-5(PO4)(3)CI:Eu2+Nanorod Bundles via a Hydrothermal Route [J]. Inorg Chem,2010,49(4):1674-8.
    [5]LIU K, YOU H P, ZHENG Y H, et al. Facile and rapid fabrication of metal-organicframework nanobelts and color-tunable photoluminescence properties [J]. J MaterChem,2010,20(16):3272-9.
    [6]LIPSITZ R S, TJANDRA N. Carbonyl CSA restraints from solution NMR forprotein structure refinement [J]. J Am Chem Soc,2001,123(44):11065-6.
    [7]YANG R S, WANG Z L. Springs, rings, and spirals of rutile-structured tin oxidenanobelts [J]. J Am Chem Soc,2006,128(5):1466-7.
    [8]TANG Y B, CONG H T, LI F, et al. Synthesis and photoluminescent property ofAlN nanobelt array [J]. Diam Relat Mater,2007,16(3):537-41.
    [9]MAO H B, YU K, WANG J Q, et al. Photoluminescence eigenmodes in a singleZnO nanobelt covering the ultraviolet and visible band [J]. Opt Express,2009,17(14):11860-8.
    [10]LU H Q, WU L L, ZHANG E, et al. Formation and photoluminescence of one-dimensional SiOx dot array-ZnO nanobelt heterostructures [J]. Crystengcomm,2010,12(1):85-8.
    [11]HE Z Q, XU X, SONG S, et al. A Visible Light-Driven Titanium DioxidePhotocatalyst Codoped with Lanthanum and Iodine: An Application in theDegradation of Oxalic Acid [J]. J Phys Chem C,2008,112(42):16431-7.
    [12]CACCIOTTI I, BIANCO A, PEZZOTTI G, et al. Terbium and ytterbium-dopedtitania luminescent nanofibers by means of electrospinning technique [J]. Mater ChemPhys,2011,126(3):532-41.
    [13]MOHAMED R M, MKHALID I A. The effect of rare earth dopants on thestructure, surface texture and photocatalytic properties of TiO2-SiO2prepared by sol-gel method [J]. J Alloy Compd,2010,501(1):143-7.
    [14]LI J G, WANG X H, WATANABE K, et al. Phase structure and luminescenceproperties of Eu3+-doped TiO2nanocrystals synthesized by Ar/O-2radio frequencythermal plasma oxidation of liquid precursor mists [J]. J Phys Chem B,2006,110(3):1121-7.
    [15]LI H B, ZHAO H, SHENG Y, et al. Preparation, characterization andphotoluminescence properties of TiO2:Eu3+nanorods and nanobelts [J]. J NanopartRes,2012,14(6):947.
    [16]LI H B, ZHENG K Y, XU X C, et al. Facile synthesis of TiO2:Eu3+spindle shapednanoparticles from titanate nanobelt precursors [J]. Powder Technol,2012,228:277-83.
    [17]CHEN S Y, TING C C, HSIEH W F. Comparison of visible fluorescenceproperties between sol-gel derived Er3+-Yb3+and Er3+-Y3+co-doped TiO2films [J].Thin Solid Films,2003,434(1-2):171-7.
    [18]SETIAWATI E, KAWANO K. Stabilization of anatase phase in the rare earth; Euand Sm ion doped nanoparticle TiO2[J]. J Alloy Compd,2008,451(1-2):293-6.
    [19]CAO Y C, ZHAO Z Y, YI J, et al. Luminescence properties of Sm3+-doped TiO2nanoparticles: Synthesis, characterization, and mechanism [J]. J Alloy Compd,2013,554:12-20.
    [20]JEON S, BRAUN P V. Hydrothermal synthesis of Er-doped luminescent TiO2nanoparticles [J]. Chem Mater,2003,15(6):1256-63.
    [21]TOMOKO KASUGA M H, AKIHIKO HOSON, TORU SEKINO ANDKOICHI NIIHARA Formation of Titanium Oxide Nanotube [J]. Langmuir,1998,14(12):3160–3.
    [22]KOJIMA R, KIMURA Y, BITOH M, et al. Investigation of Influence ofElectrolyte Composition on Formation of Anodic Titanium Oxide Nanotube Films [J].J Electrochem Soc,2012,159(11): D629-D36.
    [23]NAKAHIRA A, KATO W, TAMAI M, et al. Synthesis of nanotube from a layeredH2Ti4O9center dot H2O in a hydrothermal treatment using various titania sources [J].J Mater Sci,2004,39(13):4239-45.
    [24]GUO N, YOU H P, SONG Y H, et al. White-light emission from a single-emitting-component Ca9Gd(PO4)(7):Eu2+,Mn2+phosphor with tunable luminescentproperties for near-UV light-emitting diodes [J]. J Mater Chem,2010,20(41):9061-7.
    [25]CHEN Y, KANG K S, YOO K H, et al. Cause of Slow Phase Transformation ofTiO2Nanorods [J]. J Phys Chem C,2009,113(46):19753-5.
    [26]FERDOV S, FERREIRA R A S, LIN Z. Hydrothermal synthesis, structuralinvestigation, photoluminescence features, and emission quantum yield of Eu and Eu-Gd silicates with apatite-type structure [J]. Chem Mater,2006,18(25):5958-64.
    [27]WU C C, CHEN K B, LEE C S, et al. Synthesis and VUV photoluminescencecharacterization of (Y,Gd)(V,P)O-4: Eu3+as a potential red-emitting PDP phosphor [J].Chem Mater,2007,19(13):3278-85.
    [28]LU Z G, CHEN L M, TANG Y G, et al. Preparation and luminescence propertiesof Eu3+-doped MSnO3(M=Ca, Sr and Ba) perovskite materials [J]. J Alloy Compd,2005,387(1-2): L1-L4.
    [29]V.V. J C K R K K. Judd–Ofelt intensity analysis and spectral studies of Pr(III)ions in alkali zinc borosulphate glasses [J]. Mater Chem Phys,1996,46(84-91.
    [30]QIAN X H, PU X P, ZHANG D F, et al. Combustion synthesis and luminescenceproperties of NaY1-xEux(WO4)(2) phosphors [J]. J Lumin,2011,131(8):1692-5.
    [31]BUCKNER S W, KONOLD R L, JELLISS P A. Luminescence quenching in PbSnanoparticles [J]. Chem Phys Lett,2004,394(4-6):400-4.
    [32]JING F L, HARAKO S, KOMURO S, et al. Luminescence properties of Sm3+-doped TiO2thin films prepared by laser ablation [J]. J Phys D Appl Phys,2009,42(8):085109
    [1]IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature1991,354):56-8.
    [2]XU Z H, LI C X, YANG P P, et al. Rare Earth Fluorides Nanowires/NanorodsDerived from Hydroxides: Hydrothermal Synthesis and Luminescence Properties [J].Cryst Growth Des,2009,9(11):4752-8.
    [3]CHEN G Z, SUN S X, SUN X, et al. Formation of CeO2Nanotubes fromCe(OH)CO3Nanorods through Kirkendall Diffusion [J]. Inorg Chem,2009,48(4):1334-8.
    [4]WANG G F, QIN W P, ZHANG J S, et al. Synthesis, growth mechanism, andtunable upconversion luminescence of Yb3+/Tm3+-codoped YF3nanobundles [J]. JPhys Chem C,2008,112(32):12161-7.
    [5]ZHU Y C, MEI T, WANG Y, et al. Formation and morphology control ofnanoparticles via solution routes in an autoclave [J]. J Mater Chem,2011,21(31):11457-63.
    [6]DING S, LU P, ZHENG J G, et al. Textured tubular nanoparticle structures:Precursor-templated synthesis of GaN sub-micrometer sized tubes [J]. Adv FunctMater,2007,17(12):1879-86.
    [7]WANG H L, QI L M. Controlled synthesis of Ag2S, Ag2Se, and Ag nanofibersusing a general sacrificial template and their application in electronic devicefabrication [J]. Adv Funct Mater,2008,18(8):1249-56.
    [8]DAWOOD F, SCHAAK R E. ZnO-Templated Synthesis of Wurtzite-Type ZnS andZnSe Nanoparticles [J]. J Am Chem Soc,2009,131(2):424-5.
    [9]IMANAKA G-Y A A N. The Binary Rare Earth Oxides [J]. Chem Rev,1998,98:1479-514.
    [10]ZHENG Y H, YOU H P, JIA G, et al. Facile synthesis ofY4O(OH)(9)NO3:Eu3+/Y2O3:Eu3+nanotubes and nanobundles from nanolamellarprecursors [J]. Crystengcomm,2010,12(2):585-90.
    [11]DANG S, LIU Q H, LIU K, et al. Controllable Synthesis of NIR-LuminescentErQ(3) Nano-/Microstructures through Self-assembly Growth [J]. Cryst Growth Des,2010,10(10):4662-7.
    [12]HE Z Q, XU X, SONG S, et al. A Visible Light-Driven Titanium DioxidePhotocatalyst Codoped with Lanthanum and Iodine: An Application in theDegradation of Oxalic Acid [J]. J Phys Chem C,2008,112(42):16431-7.
    [13]CACCIOTTI I, BIANCO A, PEZZOTTI G, et al. Terbium and ytterbium-dopedtitania luminescent nanofibers by means of electrospinning technique [J]. Mater ChemPhys,2011,126(3):532-41.
    [14]MOHAMED R M, MKHALID I A. The effect of rare earth dopants on thestructure, surface texture and photocatalytic properties of TiO2-SiO2prepared by sol-gel method [J]. J Alloy Compd,2010,501(1):143-7.
    [15]WANG H Y, WANG Y, YANG Y, et al. Photoluminescence properties of the rare-earth ions in the TiO2host nanofibers prepared via electrospinning [J]. Mater Res Bull,2009,44(2):408-14.
    [16]TOMOKO KASUGA M H, AKIHIKO HOSON, TORU SEKINO ANDKOICHI NIIHARA Formation of Titanium Oxide Nanotube [J]. Langmuir,1998,14(12):3160–3.
    [17]TOMOKO KASUGA M H, AKIHIKO HOSON, TORU SEKINO, AND KOICHINIIHARA. Formation of Titanium Oxide Nanotube [J]. Langmuir1998,14:3160-3.
    [18]CHEN Y, KANG K S, YOO K H, et al. Cause of Slow Phase Transformation ofTiO(2) Nanorods [J]. J Phys Chem C,2009,113(46):19753-5.
    [19]WANG Y Q, HU G Q, DUAN X F, et al. Microstructure and formationmechanism of titanium dioxide nanotubes [J]. Chem Phys Lett,2002,365(5-6):427-31.
    [20]LU Z G, CHEN L M, TANG Y G, et al. Preparation and luminescence propertiesof Eu(3+)-doped MSnO(3)(M=Ca, Sr and Ba) perovskite materials [J]. J AlloyCompd,2005,387(1-2): L1-L4.
    [21]YANG J, LI C X, CHENG Z Y, et al. Size-tailored synthesis and luminescentproperties of one-dimensional Gd2O3: Eu3+nanorods and microrods [J]. J Phys ChemC,2007,111(49):18148-54.
    [22]JIA G, ZHENG Y H, LIU K, et al. Facile Surfactant-and Template-Free Synthesisand Luminescent Properties of One-Dimensional Lu2O3:Eu3+Phosphors [J]. J PhysChem C,2009,113(1):153-8.
    [1]JIA G, HUANG C M, LI L F, et al. Hydrothermal synthesis and luminescenceproperties of uniform BaMoO4:Ln(3+)(Ln=Eu, Tb, Dy, and Sm) microspheres [J].Opt Mater,2012,35(2):285-91.
    [2]EDELMANN F T. Lanthanide amidinates and guanidinates in catalysis andmaterials science: a continuing success story [J]. Chem Soc Rev,2012,41(23):7657-72.
    [3]ZHOU S S, XUE X, WANG J F, et al. Synthesis, optical properties and biologicalimaging of the rare earth complexes with curcumin and pyridine [J]. J Mater Chem,2012,22(42):22774-80.
    [4]XIA Y N, YANG P D, SUN Y G, et al. One-dimensional nanostructures: Synthesis,characterization, and applications [J]. Adv Mater,2003,15(5):353-89.
    [5]XIA Y N, XIONG Y J, LIM B, et al. Shape-Controlled Synthesis of MetalNanocrystals: Simple Chemistry Meets Complex Physics?[J]. Angewandte Chemie-International Edition,2009,48(1):60-103.
    [6]JUN Y W, CHOI J S, CHEON J. Shape control of semiconductor and metal oxidenanocrystals through nonhydrolytic colloidal routes [J]. Angewandte Chemie-International Edition,2006,45(21):3414-39.
    [7]QU X, YANG H K, PAN G H, et al. Controlled Fabrication and Shape-DependentLuminescence Properties of Hexagonal NaCeF4, NaCeF4:Tb3+Nanorods via Polyol-Mediated Solvothermal Route [J]. Inorg Chem,2011,50(8):3387-93.
    [8]KAR A, KUNDU S, PATRA A. Surface Defect-Related Luminescence Propertiesof SnO2Nanorods and Nanoparticles [J]. J Phys Chem C,2011,115(1):118-24.
    [9]JIA G, YOU H P, SONG Y H, et al. Facile Chemical Conversion Synthesis andLuminescence Properties of Uniform Ln(3+)(Ln=Eu, Tb)-Doped NaLuF4Nanowires and LuBO3Microdisks [J]. Inorg Chem,2009,48(21):10193-201.
    [10]WANG X, SUN X M, YU D P, et al. Rare earth compound nanotubes [J]. AdvMater,2003,15(17):1442-5.
    [11]WANG X, LI Y D. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: Synthesis, characterization, and properties [J]. Chem-Eur J,2003,9(22):5627-35.
    [12]GHEZELBASH A, SIGMAN M B, KORGEL B A. Solventless synthesis ofnickel sulfide nanorods and triangular nanoprisms [J]. Nano Lett,2004,4(4):537-42.
    [13]WANG X, LI Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires [J]. Angewandte Chemie-International Edition,2002,41(24):4790-3.
    [14]HUANG M H, MAO S, FEICK H, et al. Room-temperature ultraviolet nanowirenanolasers [J]. Science,2001,292(5523):1897-9.
    [15]KIM J Y, JEONG H, JANG D J. Hydrothermal fabrication of well-ordered ZnOnanowire arrays on Zn foil: room temperature ultraviolet nanolasers [J]. J NanopartRes,2011,13(12):6699-706.
    [16]LI J G, WANG X H, WATANABE K, et al. Phase structure and luminescenceproperties of EU3+-doped TiO2nanocrystals synthesized by Ar/O-2radio frequencythermal plasma oxidation of liquid precursor mists [J]. J Phys Chem B,2006,110(3):1121-7.
    [17]DAS K, SHARMA S N, KUMAR M, et al. Morphology DependentLuminescence Properties of Co Doped TiO2Nanostructures [J]. J Phys Chem C,2009,113(33):14783-92.
    [18]ZHANG S, CHEN Q, PENG L M. Structure and formation of H2Ti3O7nanotubes in an alkali environment [J]. Phys Rev B,2005,71(1):
    [19]JIA G, YOU H P, LIU K, et al. Highly Uniform YBO3Hierarchical Architectures:Facile Synthesis and Tunable Luminescence Properties [J]. Chem-Eur J,2010,16(9):2930-7.
    [20]COOKE D J, EDER D, ELLIOTT J A. Role of Benzyl Alcohol in Controlling theGrowth of TiO2on Carbon Nanotubes [J]. J Phys Chem C,2010,114(6):2462-70.
    [21]WANG J Y, LIU Z H, CAI R X. A new role for Fe(3+) in TiO(2) hydrosol:Accelerated photodegradation of dyes under visible light [J]. Environ Sci Technol,2008,42(15):5759-64.
    [22]CHEN Y, KANG K S, YOO K H, et al. Cause of Slow Phase Transformation ofTiO2Nanorods [J]. J Phys Chem C,2009,113(46):19753-5.
    [23]CONNOR P A, DOBSON K D, MCQUILLAN A J. Infrared spectroscopy of theTiO2/aqueous solution interface [J]. Langmuir,1999,15(7):2402-8.
    [24]MA H. Structural sensitivity in the dissociation of water on TiO2single-crystalsurfaces [J]. Langmuir,1996,12:5093-8.
    [25]WANG Y Q, HU G Q, DUAN X F, et al. Microstructure and formationmechanism of titanium dioxide nanotubes [J]. Chem Phys Lett,2002,365(5-6):427-31.
    [26]JEREMY K. BURDETT T H, GORDON J. MILLER, JAMESW. RICHARDSONJR.,, SMITH J V. Structural-electronic relationships in inorganic solids: powderneutron diffraction studies of the rutile and anatase polymorphs of titaniumdiox-ide at15and295K [J]. J Am Chem Soc,1987,109:3639-46.
    [27]ZHENG Y Q, SHI E W, LI W J, et al. The formation of titania polymorphs underhydrothermal condition [J]. Sci China Ser E,2002,45(2):120-9.
    [28]JIA G A, YOU H P, ZHENG Y H, et al. Synthesis and characterization of highlyuniform Lu2O3:Ln(3+)(Ln=Eu, Er, Yb) luminescent hollow microspheres [J].Crystengcomm,2010,12(10):2943-8.
    [29]ZHANG L H, JIA G, YOU H P, et al. Sacrificial Template Method for Fabricationof Submicrometer-Sized YPO4:Eu3+Hierarchical Hollow Spheres [J]. Inorg Chem,2010,49(7):3305-9.
    [30]XU Z H, LI C X, YANG P P, et al. Rare Earth Fluorides Nanowires/NanorodsDerived from Hydroxides: Hydrothermal Synthesis and Luminescence Properties [J].Cryst Growth Des,2009,9(11):4752-8.
    [31]ZHANG M, LI X H, WANG Z X, et al. Synthesis and characterization ofmonodispersed BaSO4/Y2O3:Eu3+core-shell submicrospheres [J]. Powder Technol,2009,195(2):69-72.
    [1]CAI P Y, BAI W, ZHANG L C, et al. Hierarchical hollow microsphere and flower-like indium oxide: Controllable synthesis and application as H2S cataluminescencesensing materials [J]. Mater Res Bull,2012,47(9):2212-8.
    [2]ZHANG X M, WANG J, GUO K, et al. Synthesis and luminescence properties ofY2O3:Eu with flower-like microstructure [J]. J Alloy Compd,2012,517:149-56.
    [3]HUANG Y, ZHOU L Q, YANG L, et al. Self-assembled3D flower-likeNaY(MoO4)(2):Eu3+microarchitectures: Hydrothermal synthesis, formationmechanism and luminescence properties [J]. Opt Mater,2011,33(6):777-82.
    [4]JIA G, HUANG C M, LI L F, et al. Hydrothermal synthesis and luminescenceproperties of uniform BaMoO4:Ln(3+)(Ln=Eu, Tb, Dy, and Sm) microspheres [J].Opt Mater,2012,35(2):285-91.
    [5]EDELMANN F T. Lanthanide amidinates and guanidinates in catalysis andmaterials science: a continuing success story [J]. Chem Soc Rev,2012,41(23):7657-72.
    [6]FU J X, PARK B, ZHAO Y P. Limitation of a localized surface plasmon resonancesensor for Salmonella detection [J]. Sensor Actuat B-Chem,2009,141(1):276-83.
    [7]SUN G, KHURGIN J B. Limitation of spontaneous emission enhancement usingsurface plasmon polaritons [J]. Pr Electromagn Res S,2008,1116-21.
    [8]BURKE M. Information technology Chips with nano-LEDs [J]. Chem Ind-London,2011,23:9-12.
    [9]PRIARONE P C, RIZZUTI S, SETTINERI L, et al. Effects of cutting angle, edgepreparation, and nano-structured coating on milling performance of a gamma titaniumaluminide [J]. J Mater Process Tech,2012,212(12):2619-28.
    [10]ZHANG H M, NIE Z X, XIAO X, et al. Design and Simulation of SMES SystemUsing YBCO Tapes for Direct Drive Wave Energy Converters [J]. Ieee T ApplSupercon,2013,23(3):
    [11]ROMANCHUK A Y, SLESAREV A S, KALMYKOV S N, et al. Graphene oxidefor effective radionuclide removal [J]. Phys Chem Chem Phys,2013,15(7):2321-7.
    [12]ZHOU S S, XUE X, WANG J F, et al. Synthesis, optical properties and biologicalimaging of the rare earth complexes with curcumin and pyridine [J]. J Mater Chem,2012,22(42):22774-80.
    [13]PAVITRA E, YU J S. A facile large-scale synthesis and luminescence propertiesof Gd2O3:Eu3+nanoflowers [J]. Mater Lett,2013,90:134-7.
    [14]LIU Y X, YANG Q B, XU C F. Single-narrow-band red upconversionfluorescence of ZnO nanocrystals codoped with Er and Yb and its achievingmechanism [J]. J Appl Phys,2008,104(6):064701
    [15]LEITE E R, LEE E J H, RIBEIRO C, et al. Photoluminescence in quantum-confined SnO2nanocrystals: Evidence of free exciton decay [J]. Appl Phys Lett,2004,84(10):1745-7.
    [16]PATRA A, KAR A, KUNDU S. Surface Defect-Related Luminescence Propertiesof SnO(2) Nanorods and Nanoparticles [J]. J Phys Chem C,2011,115(1):118-24.
    [17]CACCIOTTI I, BIANCO A, PEZZOTTI G, et al. Synthesis, thermal behaviourand luminescence properties of rare earth-doped titania nanofibers [J]. Chem Eng J,2011,166(2):751-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700