用户名: 密码: 验证码:
金属材料内裂纹愈合过程的物理模拟与计算机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对金属材料内部裂纹愈合的机理、行为和规律进行深入研究,是改善金属材料性能、提高品质和延长使用寿命的重要基础性工作,对丰富材料学理论具有十分重要的意义,在材料设计、材料成形和材料使用指导方面有广泛的工程应用背景和潜在的经济和社会效益。本文选题结合国家自然科学基金重点项目“金属材料内部裂纹愈合研究”的主要研究工作,采用物理模拟和数值模拟分析方法对金属材料内部裂纹愈合规律进行了研究,并在此基础上进行了裂纹愈合过程的扩散热力学分析及裂纹愈合内变量分析。
    在物理模拟研究方面:对于用平板撞击和钻孔压缩两种方法制备的试样,平板撞击铜试样中的层状内部裂纹由微孔洞连接形成的裂纹及临域离散分布的显微孔洞组成;钻孔压缩纯铁、20 钢、45 钢、16Mn 和5CrMnMo 钢试样中的内部裂纹由预置孔洞演化形成的一次裂纹及临域放射状二次裂纹组成。通过高温显微镜裂纹愈合的原位动态观察发现:在平板撞击纯铜试样剖分面上,10~100μm 级孔洞在温度为750℃时开始愈合,在900℃时明显愈合;扫描电镜观察发现:愈合孔洞的精细结构由μm 级团状颗粒与nm 级颗粒组成。基于上述观察研究认为,对于试样观察面上的开放式孔洞,其愈合过程是由位于基体内部的孔洞内表面向观察面进行的;由此推之对于封闭在试样内部的孔洞,其愈合过程的发生将会是从孔洞的内表面向孔洞的中心部位进行的。对纯铁、20 钢、45钢、16Mn 和5CrMnMo 钢钻孔压缩试样内部裂纹进行了热愈合处理,并对愈合区域进行了形态、组织结构、化学成分和力学性能的观察与分析。扫描电镜分析确定,愈合区内精细组织主要为铁素体,并存在许多大小为数百nm 级的多边晶块和析出颗粒。X 射线能谱分析结果表明,基体区、愈合区及析出颗粒中的主体元素均为Fe、Mn、S 和Si,各元素在不同区域的相对含量接近。出现析出颗粒说明愈合区是过饱和区,即愈合过程必须有原子的长距离扩散以满足成分上的需要。成分趋于一致说明在随后的保温过程中,发生了成分均匀化的扩散过程。维氏硬度测试结果显示,出现在愈合区的铁素体组织维氏硬度高于基体区铁素体组织,可能原因是愈合区中出现的多边晶块结构所引发的强化。
    在数值模拟研究方面:利用分子动力学方法,对Cu 单晶中心贯穿裂纹的愈合形态演化过程进行了模拟,结果表明裂纹形态演化与建立在大量实验观察基础上所获得的形态演化物理模型类似。用ANSYS 有限元分析软件,模拟了压缩过程中45 钢圆柱试样中心孔洞的闭合过程,分析了孔洞的闭合规律及闭合过程中孔洞周围的应力状态。
The Research on the mechanism of the internal crack healing in metals is an important basic work for improving metal quality and prolonging its lifetime, and it is very significant for developing the theory of materials. There is a broad engineering application background and potential benefits of economic and social as the main work of the key project “Inner crack healing in metal”supported by National Natural Sciences Foundation of China, physical and mathematic simulation were taken to study the internal crack healing in metals. On this basis diffusion thermodynamics and inner variable analysis in crack healing processing have been discussed.
    Physical simulation: sample preparation, in situ observation of inner crack healing, experiment research on inner crack healing process.
    Two methods were adopted to obtain the samples containing internal pre-cracks. One is plate impacting and the other is compressing drilled hole in column sample. It were found that the internal cracks in the samples of pure copper made by plate impacting consist of the micro-voids connected by micro-cracks and many dispersed micro-voids, while the internal cracks made by compressing drilled hole in the samples of pure iron, 20, 45, 16Mn and 5CrMnMo steel consist of lentoid primary cracks and spokewise secondary cracks.
    In situ observation of the internal crack healing on the section of pure copper sample under high temperature metallograph showed that the micro-voids of 10-100μm begin to be healed at the temperature of 750℃, and obviously healed at the temperature of 900℃. SEM analyze showed that the healed micro-voids consist of some agglomerate particles at the scale of micrometer and much smaller particles on these agglomerate particles. According to the above observation, the healing processing is proceeded from inner surface of holes in matrix to observation plane for opening holes of the sample. Conclusion can be drawn that the healing processing of closed holes in the sample will be done from inner surface to the center.
    After healing processing of the samples of pure iron, 20, 45, 16Mn and 5CrMnMo steel, the healing area of internal cracks made by compressing drilled hole was observed and analyzed. SEM analysis displayed that the fine structure exists in healing area is mostly ferrite and there exists many polyangular grains of several hundreds nanometer and precipitated particles which means that bulk diffusion resulted in the supersaturated healing area. X-ray analyze showed that the content of main elements Fe、Mn、S and Si in matrix, healing area and precipitated
引文
[1] Griffith A. Phenomena of Rupture and Flow in Solids. Phil.Trans. Roy. Soc. London, Ser, A, 1920, 221(4): 163~198
    [2] Lange F F, Gupta T K. Crack healing by heat treatment, Journal of The American Ceramic Society, 1970, 53(1): 54~55
    [3] Wiederhor S M, Townsend P R. Crack healing in glass. Journal of The American Ceramic Society, 1970, 53(9): 486~421
    [4] Roberts J T, Wrona B J. Crack healing in UO2, Journal of The American Ceramic Society, 1973, 56(6): 297~299
    [5] Gupta T K. Crack healing in thermally shocked MgO. Journal of The American Ceramic Society, 1975, 58(3,4): 143~151
    [6] Gupta T K. Crack healing and strengthening of thermally shocked Alumina. Journal of The American Ceramic Society, 1975, 58(5,6): 259~262
    [7] Gupta T K. Instability of cylindrical void in Alumina. Journal of The American Ceramic Society, 1978, 61(5,6): 191~195
    [8] Singh R N, Routbort J L. Fracture and crack healing in (U, Pu)C. Journal of The American Ceramic Society, 1979, 62(3,4): 128~133
    [9] Scott C, Tran V B. Diffusion bonding of ceramics. Am. Ceram. Soc. Bull., 1985, 64(8): 1129~1131
    [10] Lehman R L, Hill R E, Sigel G H. Low-temperature crack closure in fluoride glass. Journal of The American Ceramic Society, 1989, 72(3): 474~477
    [11] Holden M K C, Frechette V D. Healing of glass in environments. Journal of The American Ceramic Society, 1989, 72(11): 2189~2193
    [12] Wang Z Y, Li Y Z, Harmer M P, et al. Thermal healing of laser-induced internal cracks in lithium fluoride crystals. Journal of The American Ceramic Society, 1992, 75(6): 1596-1602
    [13] Mark A T, Helen M C, Martin P H. Crack healing and stress relaxation in Al2O3-SiC “Nanocomposite”. Journal of The American Ceramic Society, 1993, 78(3): 567-571
    [14] Mamoru M. Crack healing, an innovative approach for improving the reliability of ceramics. Mat. Tech., 1997, 12(1): 10~12
    [15] 韩静涛.大型饼块类锻件夹杂物裂纹形成机理及控制锻造工艺研究:学位论文.北京:清华大学,1995.
    [16] 沈以赴,周本濂,何冠虎,等.材料疲劳恢复新途径的探索Ⅰ——低碳钢疲劳寿命的延长.材料研究学报,1996,10(2):165~166
    [17] 肖永亮,郭义,姚戈,等.Co 基高温合金疲劳裂纹的修复.材料研究学报,1996,10(3):271~274
    [18] 韦东滨.金属材料内部裂纹愈合规律的研究:学位论文.北京:北京科技大学,2001.
    [19] 韦东滨,韩静涛,谢建新,等.金属材料内部损伤愈合研究进展.材料导报,1999,13(6):10~11
    [20] 韦东滨,韩静涛,谢建新,等.热塑性变形条件下钢内部裂纹愈合的实验研究.金属学报,2000,36(6):622~625
    [21] 韦东滨,韩静涛,谢建新,等.真空环境中金属材料裂纹高温愈合的研究.金属学报,2000,36(7):713~717
    [22] 韦东滨,韩静涛,谢建新,等.金属材料内部裂纹高温愈合的实验研究,北京科技大学学报,2000,22(3):245~248
    [23] Sun Z. Study of solidification crack susceptibility using the solidification cycle hot-tension test. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 154(1): 85~92
    [24] 韩静涛,赵钢,曹起镶.20MnMo 钢内裂纹修复现象的发现及其金属组织的变化.金属学报,1996,32(7):724~729
    [25] 韩静涛,赵钢,曹起骧,等.温度及时间对20MnMo 钢内裂纹修复作用的SAM 研究.中国机械工程,1997,8(3):88~91
    [26] 韩静涛,许树森,陈钢,等.大型锻件的夹杂性裂纹与控制锻造工艺.钢铁,1997,32(3):35~39
    [27] 韩静涛,赵钢,曹起骧.20MnMo 钢内裂纹修复规律的研究,中国科学,1997, 27(1): 23~27
    [28] 周亦胄,周本濂,郭晓楠,等.脉冲电流对45 钢损伤的恢复作用.材料研究学报,2000,14,(1):29~36
    [29] Zhou Y Z, Qin R S, Xiao S H, et al.Reversing effect of electropulsing on damage of 1045 steel. Journal of Materials Research, 2000, 15(5): 1056~1061
    [30] Zhou G H, Gao K W, Qiao L J, et al. Atomistic simulation of microcrack healing in aluminum. Modelling and Simulation in Materials Science and Engineering,2000,8(4):603~609
    [31] Huang P Z, Li Z H, Sun J.Finite element analysis on evolution process for damage microcrack healing. Acta Mechanica Sinica(English Letters), 2000, 16(3): 254~263
    [32] Yang J G; Sun J, Zhang H L. Diffusive healing of internal fatigue micro-cracks in pure titanium. Transactions of Nonferrous Metals Society of China (English Edition),2001, 11(5): 675~680
    [33] Li S, Gao K W, Qiao L J.Molecular dynamics simulation of microcrack healing in copper. Computational Materials Science, 2001, 20(2): 143~150
    [34] Zhou Y H, Zeng Y, He G H, et al. The healing of quenched crack in 1045 steel under electropulsing. Journal of Materials Research, 2001, 16(1):17~19
    [35] 董超芳,李晓刚,沈卓身,等.热处理作用下碳钢氢腐蚀裂纹愈合规律.北京科技大学学报,2001,23(4):352~356
    [36] Huang P Z, Li Z H, Sun J. Finite element analysis of the splitting and cylinderization processes of damage microcracks. Modelling and Simulation in Materials Science and Engineering, 2001, 9(3): 193~206
    [37] Li X G, Dong, C F, Chen H. Healing of hydrogen attack in austenite stainless steel under heat treatmen. Acta Metallurgica Sinica (English Letters), 2002, 15(4): 385~390
    [38] Gao K W, Qiao L J, Chu W Y. In situ TEM observation of crack healing in alpha-Fe. Scripta Materialia, 2002, 44(7): 1055~1059
    [39] 钟约先,袁朝龙,马庆贤.材料内部裂纹自修复中组织生长机制.清华大学学报, 2002,42(4):512~515
    [40] 张海龙,杨君刚,孙军.工业纯铁内部穿晶疲劳微裂纹的扩散愈合过程.金属学报,2002,38(10):1015~1020
    [41] Betekhtin V I, Petrov A I, Kadomtsev A G, et al. Influence of hydrostatic pressure on healing of grain-boundary microvoids and high-temperature creep of metals and alloys. Physics of Metals and Metallography, 1990, 69(5): 165~169
    [42] Gur'ev V A. Laser treatment of structural steel with defects in stress concentrators zones. Fizika i Khimiya Obrabotki Materialov, 1992, (4): 150~152
    [43] Kon'kova V A. Propagation and healing of microcracks in deformed aluminium. Metallovedenie i Termicheskaya Obrabotka Metallov, 1996, (11): 30~32
    [44] Machova A. Dynamic microcrack initiation in α-iron. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996,A206(2): 279~289
    [45] Akdut N, Foct J. Microstructure and deformation behavior of high nitrogen duplex stainless steels. ISIJ International, 1996, 36 (7): 883~892
    [46] Rybakov L M. Microfracture in metal under static tension. Metallovedenie i Termicheskaya Obrabotka Metallov, 1996, (7):9~10
    [47] Raman S, Ganesh S, Argence D, et al. High temperature short fatigue crack behaviour in a stainless steel. Fatigue and Fracture of Engineering Materials & Structures, 1997, 20(7) : 1015~1031
    [48] Shinya N, Kyono J. Self-healing of creep damage in heat resisiting steels.Proceedings of SPIE -The International Society for Optical Engineering, 2002, 47~54
    [49] Kolmogorov V L, Smirnov S V. The restoration of the margin of metal plasticity after cold deformation. Journal of Materials Processing Technology, 1998, 74 (1): 83~88
    [50] Kon'kova V A. Propagation and healing of microcracks in deformed aluminium. Metallovedenie i Termicheskaya Obrabotka Metallov , 1996, (11): 30~32
    [51] Larikov L N, Mudruk P V, Yurchenko Y. The Formation and Healing of Microcracks During Deformation and Annealing of an Austenitic Steel. Metallofizika, 1989, 11 (5): 71~76
    [52] Belov V A, Bogatov A A, Golovin V A, et al. A Study of the Change in Damage of the Steel 40Kh During Cold Plastic Deformation and Heat Treatment. Fiz. Met. Metalloved., 1985, 60 (5): 1004~1009
    [53] 高克玮,乔利杰,褚武扬.Fe 单晶中裂纹愈合过程中的TEM 原位观察.金属学报,2001,37(2):118~120 The current version does not support copying Cyrillic text to the Clipboard. You should activate the program
    [54] 董超芳,徐璟,李晓刚,等.用高温显微镜原位观察钢中氢腐蚀裂纹愈合过程.中国腐蚀与防护学报,2003,23(3):179~182
    [55] 周亦胄,肖素红,甘阳,等.脉冲电流作用下碳钢淬火裂纹的愈合.金属学报,2000,36(1):43~45
    [56] Qin R, Su S. Thermodynamics of crack healing under electropulsing. Journal of Materials Research (USA), 2002, 17 ( 8): 2048~2052
    [57] 张海龙. 工业纯铁内部疲劳微裂纹扩散愈合过程中形态演变. 金属学报,2002,38(3):239~244
    [58] 柴东朗.材料内部损伤的愈合过程.第五届全国典型零件热处理学术及技术交流会&第二届全国热处理学会物理冶金学术交流会,1998,183~192
    [59] 徐永东,张文兴,柴东朗.材料裂纹型损伤愈合过程观测.宇航材料工艺,2001,(3):37~41
    [60] Finkel' V M, Ivanov V M, Golovin Y. Crack Healing in Metals by Crossed Electric and Magnetic Field. Probl. Prochn., 1983,(4): 54~58
    [61] 钟志平.大型筒体锻件组织性能控制与高温裂纹修复实验研究:学位论文.北京:清华大学,1998.
    [62] 康建军.45 钢轧材裂纹缺陷的抑制与控制:论文论文.北京:北京科技大学,2000.
    [63] 康建军,祁化昆,韩静涛.石钢45 钢棒材内裂分析.轧钢,1999,专辑:120~123
    [64] 安敬竹.以修复热处理消除金属材料的损伤.国外金属热处理,1996,17 (5):2~7
    [65] АнтикайнПА. Накоплениеизалечиваниеповреждаемостиперлитныхсталейвходеэксплуатации. Тепроэнергетика, 1962, (11): 59~62
    [66] АнтикайнПА, РябоваЛИ, ЭстринБ. М. Опытвосстановительнойтермообработкипаропроводныхтрубизстали12х1мф.Тепроэнергетика, 1973, (1): 42~45
    [67] БерезинаИИ, ХодыкинаЛЕ. Влияниевосстановительнойтермическойобработкинаструктуруисвойствапаропроводовизстали12х1мф. Тепроэнергетика, 1976, (10): 22~25
    [68] АшихминаЛА, БерезинаТГ. Оптимизациярежимоввосстановительнойтермическойобработкитеплопроводовизперлитныхсталей. Тепроэнергетика, 1978, (10): 21~24
    [69] АшихминаЛА, БерезинаТГ, ШтейнбергММ. Особенностипроцессазалечиваниямикропорыобразовавшейсяприползучести. ФММ, 1980, 49(2): 348~355
    [70] АлейниковаИЛ, КуманинВИ. Восстановлениеслужебныхсвойствметалласпомощьюциклическойтермообработки. Телоэнергетика, 1982, (4): 64~66
    [71] АлейниковаИЛ, КовалеваЛА, КуманинВИ. Механизмзалечиваниямикропорвперлитнойсталиприповторнойтермообработке.Телоэнергетика, 1984, (10): 65~67
    [72] КуманинВИ, КовалеваЛА, АлексеевСВ. Долговечностьметалловвусловияхползучести. М.: Металлургия, 1988.
    [73] КуманинВИ, ТуляковГА, ЧеховойАН, идр. Новыеспособывосстановительнойтермическойобработкистали. Металловедениеитермическаяобработкаметаллов,1988, (12): 27~28
    [74] БетехтинВИ, ПетровАИ, ОрмановНК, идр. Залечиваниемикропорподдействиемгидростатическогодавленияиупрочнениемметаллов. ФФМ, 1989, 58(2): 318~322
    [75] ЧеремскойПГ, СлезовВБ, БетехтинВИ. Порвтвёртомтеле. М.: энергоиздат, 1990.
    [76] АнтикайнПА. Совершенствованиетехнологиивосстановительнотермическойобработкипаропроводовизперлитныхсталей. Тепроэнергетика, 1993, (11): 2~6
    [77] АнтикайнПА, БорисовВЕ, СамарецГН, идр. Восстановительнаятермическаяобработкауглеродистойстали. Тепроэнергетика, 1993, (12): 49~52
    [78] КуманинВИ, СоколоваМЛ, ЛуневаСВ. Повреждённостьметаллческихматериаловиспособыеёустранения. Металловедениеитермическаяобработкаметаллов, 1995, (4): 2~7
    [79] КуманинВИ, КовалеваЛА, СоколоваМЛ. Устранениеповрежденностиметаллическихматериаловспомощьювосстановительнойтермическойобработки. металловедениеитермическаяобработкаметаллов, 1995, (4): 7~12
    [80] КуманинВИ, ТундыбаеваЭК, СоколоваМЛ. Повышениеслужебныхсвойствповрежденнойсталиазотированиемизазотсодержащихпаст. металловедениеитермическаяобработкаметаллов, 1995, (4): 12~15
    [81] ШкляровМИ, ОсмаковВН, АлексеевСВ, идр. Продлениересурсадеталейэнергооборудованияспомошьювосстановительнойтермическойобработки. Тепроэнергетика, 1995, (4): 2~7
    [82] АнтикайнПА, ЛысковВГ, ФайбисовичВВ. Длительнаяпластичностьсталипослевосстановительнойтермическойобработки. Тепроэнергетика, 2000, (1): 64~66
    [83] ЧеботаревОМ, ДитяшевБД. Опытработпоразгрузкепаропроводовприпроведениивосстановительнойтермическойобработки. Тепроэнергетика, 2000, (4): 19~21
    [84] Kenji Hibi, Minoru Ikeda. Decrease of density and its recovery by heating in cold-deformed steels. Journal of the Japan society for technology of plasticity, 1996, 37(3): 409~416
    [85] 刘尚慈.12Cr1MoV 钢经修复热处理后蠕变性能的恢复.机械工程学报,1995, 31(1):89~96
    [86] 卢春生.层裂表面的分形特征及临界破坏的计算机模拟:学位论文.北京:中国科学院力学研究所,1992.
    [87] 崔忠圻,刘北兴.金属学与热处理原理.哈尔滨:哈尔滨工业大学出版社,1998.
    [88] Wilson B A, Case E D. In situ microscopy of crack healing in borosilicate glass, Journal of materials Science, 1997, 32(12):3163~3175
    [89] Wilson B A, Case E D. Effect of humidity on crack healing in glass from in-situ investigations using an ESEM. Journal of Material Science,1999, 34(2):388~392
    [90] 沈桂琴编著.光学金相技术.第一版.北京:国防工业出版社,1983.
    [91] 宋维锡.金属学.修订版.北京:冶金工业出版社,1997.
    [92] 上海市机械制造工艺研究所主编.金相分析技术.上海:上海科学技术文献出版社,1987.
    [93] Allen M P, Tidesley D J. Computer Simulation of Liquids. Oxford: Oxford University Press, 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700