用户名: 密码: 验证码:
永磁式直驱风电机组控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁式直驱风电机组具有无齿轮箱、功率密度高和可靠性高等优点,已经成为风力发电市场内的主流机型之一。针对这种快速变化的非线性复杂系统,人们已提出了多种控制方案,这些控制方案主要为解决风机的最大风能捕获,延长机组寿命及降低疲劳载荷等问题,以提高风电能量转换率和达到系统的可靠运行。这些方法一方面存在片面性,只是针对单个系统问题提出一定的方法及控制策略,另一方面,由于缺乏实际应用对象,大多数方法和策略还处于理论探索和研究阶段。
     本文在分析永磁式直驱风电机组的国内外研究现状基础上,以校企合作课题“1.5MW直驱风力发电机组的研制”中的SUT-1500永磁式直驱风电机组为对象,对目前机组控制技术面临的关键问题进行深入的研究,主要研究内容和成果如下:
     (1)推导了永磁式直驱风电机组的模态线性化方程,建立了包括发电机转速、驱动链扭矩、塔架前后位移和速度模态的线性模型。充分考虑了风轮、传动系统、塔架的各阶振动模态以及它们之间的相互影响,提出了永磁式直驱风电机组的整机综合控制策略以及一种新型的桨距角控制器和转矩控制器之间协调切换的控制策略。仿真结果表明机组具有良好的控制品质。
     (2)在额定风速以下的最大风能捕获控制中,有针对性地提出了基于自适应模糊控制的转矩控制方法,用于低风速下转速控制,使机组具有稳定快速的电磁转矩响应能力,仿真结果表明转速控制效果和抗扰动性能优于传统的PI控制器。
     (3)在额定风速以上的恒功率控制中,针对变桨距系统非线性、强扰动特点及永磁式直驱风电机组变距控制要求,提出一种基于模糊与滑模变结构复合桨距角控制方法,利用桨距角位置误差的切换函数及其导数作为模糊控制器的输入,通过模糊推理和反模糊化得到模糊控制器的输出代替滑模切换控制进行变桨角度调节,来减少风速变化对机组的影响。仿真与实验结果表明该控制策略是行之有效的。
     (4)从提高机组稳定性出发,针对永磁式直驱风电机组传动系统扭转振动问题,提出了一种新颖的转矩阻尼控制方法,通过变流器的直流电压进行相位补偿来提供阻尼转矩的方法来抑制风轮平面内一阶模态频率引起的传动链扭矩波动,仿真结果表明,在没有增加发电机功率波动的情况下,加入转矩阻尼控制后消除了系统谐振,减少了机组的振动和载荷对传动链的冲击,验证了转矩阻尼算法的可行性。
     (5)针对永磁式直驱风电机组塔架振动控制,在对风轮-塔架耦合振动分析的基础上,提出了通过专家PID控制提供附加桨距角的方案,采用在闭环控制中加入塔架一阶模态频率的阻尼滤波器设计方法进行塔架振动控制,仿真与样机验证结果表明,与无塔架阻尼控制算法的情况进行比较,施加阻尼后塔架前后受力情况明显好转,验证了算法的有效性。
     (6)实现仿真和实际控制算法应用的结合,利用既有的校企合作研究课题和实际机组对象,采取分系统控制策略仿真实现到多系统控制策略仿真实现的技术路线,降低单系统控制策略研究的片面性,最终达到整机控制策略的优化,具有实际应用价值。
With the advantages of gearless, high power density and reliability, the permanent-magnet direct-drive wind turbine has become one of the main types in wind generation. Considering such rapidly changeable nonlinear complicated system, researchers have proposed many control methods, which mainly focus on the maximum wind capture, life extension of the wind turbine and the reduction of fatigue load, in order to meet the demand of safety operation. On the one hand, methods above have the one-sidedness that control strategy is proposed to deal with single system, on the other hand, lack of practical application objectives makes those methods and strategy still in the theoretical stage.
     This essay, on the basis of current national and international research situation of permanent-magnet direct-drive wind turbine, targeting the school-enterprise cooperation project-1.5MW direct-drive wind turbine research and manufacture, deeply study current control technology problems. Main research and achievement are as follows:
     (1) In this essay, model linear formula of permanent-magnet direct-drive wind turbine mode is derived. And. linear models of generation rotation speed, drive train torque, tower pre-and post displacement and speed mode are included. In view of vibrating mode of variable orders of rotor, drive train and tower as well as the impact between them, this essay proposes an integrated control strategy for permanent-magnet direct-drive wind turbine and a new control strategy for switch between pitch angle controller and torque controller. Simulating results show that the turbine has a good control quality.
     (2) As to maximum wind capture control under rated wind speed, this essay promotes a torque control method on basis of self-adaptive fuzzy control, in order to accomplish speed control under low wind speed. This method makes the turbine have the ability of steady and rapid electromagnetic torque response. Simulating results show that speed control effect and disturbance resistance ability are better than that of the traditional PI controller.
     (3) As to constant power control above rated wind speed, this essay provides a creative control method on basis of compound pitch control of fuzziness and SMC, in accordance with nonlinear and disturbance resistance of pitch system and permanent-magnet direct-drive wind turbine pitch control. This method uses pitch position errors switching function and its derivative as input. Through the controller output derived from fuzzy reasoning and defuzzification, pitch regulation can be realized instead of sliding mode switch control, aiming at reducing the impact of wind speed on the turbine. Simulating and experimental results show that this control method is effective.
     (4) From the aspect of increasing stability of wind turbine, this essay proposes a new torque damping control method, regarding to the drive train torque vibrating problem of permanent-magnet direct-drive wind turbine. Through the method of using direct voltage out of convertor to carry out phase compensation, in order to erase drive train torque turbulence caused by first-order mode frequency in sweeping area. Simulating results show that, without increasing generator power wave, when we add torque damping control, system resonance is eliminated, and the vibration and load impact on drive train is reduced. Therefore, torque damping algorithm is effective.
     (5) Considering tower vibration control of permanent-magnet direct-drive wind turbine, on basis of rotor-tower coupling vibration analysis, this essay promotes the method of supplying additional pitch by expert PID control. This method controls the tower vibration by adding tower first-order mode frequency damping filter into closed loop control. Simulating results show that comparing with the case without tower damping control algorithm, tower with damping is in a better force situation on both front and back side. This method proves that this algorithm is effective.
     (6) This essay realizes the combination of simulation research and practical control algorithm. Through existing school-enterprise cooperation and practical wind turbine object, this essay employs the technical route of using respective control strategy simulation to realize multi-system control strategy simulation, which reduces the one-sidedness of single system control strategy, and optimizes themselves and the whole wind turbine control strategy. This essay, of application value, lays a foundation for practical use of wind turbine.
引文
[1]Polinder H, Van der Pijl F F A, Vilder G.-1, et al. Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Transactions on Energy Conversion,2006,21(3):725-733.
    [2]Di Tommaso A O, Miceli R, Galluzzo G R, et al. Optimum performance of permanent magnet synchronous generators coupled to wind turbines.2007 IEEE Power Engineering Society General Meeting,24-28 June,2007:1-7.
    [3]Dubois M R, Polindcr H, Fereira J A. Comparison of generator topologies for direct-drive wind turbines. IEEE Nordic Workshop on Power and Industrial Electronics,2002,13(16):22-26.
    [4]Eduard Muljadi, Buttcrfield C P, Wan Yih-huie. Axialflux modular permanent-magnet generator with a toroidal winding for wind turbine applications. IEEE Trans on Industry Application,1999, 35(4):831-836.
    [5]Chinchilla, Amaltes M, Burgos S. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Trans on Energy Conversion, 2006,21(1):130-135.
    [6]王丰收,沈传文,孟永庆.基丁MPPT算法的风力永磁发电系统的仿真研究.电气传动,2007,37(1):6-10.
    [7]Chen Z Spooner E. Grid interface options for variable-speed permanent-magnet generators.IEE Proc Electric Power Applications,1998,145(4):273-283.
    [8]包广清,施进浩,江建中.大功率直驱式变速恒频风力发电技术综述.微特电机,2008,9,53-55.
    [9]Manwell J F, McGowan J G, Rogers A L. Wind energy explained theory design and application. London John Wiley&Sons Ltd,2002.
    [10]Tan K, Islam S. Optimum control strategiesin energy conversion of PMSG wind turbine system without mechanical sensors. IEEE Trans Energy Convers.2004,19(2):392-399.
    [11]院海.直驱风机建模及其最大功率跟踪控制:(工学博士学位论文).新疆:新疆大学,2008.
    [12]邓秋玲,黄守道,肖峰.变速直驱永臌磁同步发电机风力发电系统的控制.微特电机,2008,6,51-54.
    [13]Monica Chinchilla, Santigao Arnaltes, Juan Carlos Burgos. Control of permanent-magnet generators applied to variable-speed wind-energy eystems connected to the grid. IEEE Transaction on Energy Conversion,2006,21 (1):130-135.
    [14]Ki-Chan Kim, Seung-Bin Lim. Analysis on the direct-driven high power permanent magnet generator for wind turbine. IEEE Power Electronics and Drive Systems 2005:243-247.
    [15]Morren J, Pierik J.T.G, Haan, S.W.H. Fast dynamic modelling of direct-drive wind turbines, in Proc PClM Europe 2004, N mberg, Germany May 2004:25-27.
    [16]尹明,李庚银,张建成等.直驱式永磁同步风力发电机组建模及其控制策略.电网技术,2007,31(15):61-65.
    [17]盛旺.直驱风力发电模糊PID变桨距离控制.制造业自动化,2008,30(10):100-103.
    [18]闫耀民,范瑜,汀至中.永磁同步电机风力发电系统的自寻优控制.电工技术学报,2002.17(6):82-86.
    [19]Connor B. LQG control of a constant speed horizontal axis wind turbine. The 3rd IEEE Conf. on Control Appl.1994, (1):251-252.
    [20]E.A.Bossanyi. Adaptive pitch control for a 250kW wind turbine, Proc. British Wind Energy Conference.1986, pp.85-92.
    [21]YD. Song, B Dhinakaran. Nonlinear variable speed control of wind turbines. IEEE International Conference on Control Applications.1999, Hawai 1, USA.814-819.
    [22]YD. Song, B.Dhinakaran. Adaptive field excitation Chicago,1551-1555. X.Bao. Control of Wind Turbines Using Nonlinear Algorithms. American Control Conferences,2000.
    [23]De Battisa H, Mantz R J, Christiansen C F. Dynamical sliding mode power control of wind driven induction generators. IEE Trans on Energy Conversion,2000,5(4):451-457.
    [24]P Ruben, systems D S Daniel. Interger proceedings computer engineering, of the 1999. variable structure controllers for small wind energy 1999 IEE Canadian conference on Electrical and 1067-1072.
    [25]陈堂贤,代琴,吕雷涛等.风力永磁同步发电机串级滑模变结构控制.电气自动化,2008,30(3):8-11.
    [26]Anca D Hansen, Henrik Bindner, Anders Rebsdorf. Improving transition between power optimization and power limitation of variable speed/variable pitch wind turbines. European Wind Energy Conference,1-5 March 1999, Nice France:889-892.
    [27]Kelouwani S, Agbossou K. Nonlinear model identification of wind turbine with a neural network. IEEE Transactionsion on Energy Conversion. Sept.2004, Vol.19, Issue 3, Page(s):607-612.
    [28]Shuhui Li, Wunsch D.C, OHair E.A, et al. Using neural networks to estimate wind turbine power generation. IEEE Transactionsion on Energy Conversion, Sept.2001, Vol.16, Issue 3, Page(s):276-282.
    [29]Li S. Wind power prediction using recurrent multilayer perceptron neural networks.2003 IEEE Power Engineering Society General Meeting,13-17 July 2003, Vol.4, Page(s):2325-2330.
    [30]杨俊华,吴捷,杨金明等.风力发电系统中的最优控制策略综述.微特电机,2004,3,30-42.
    [31]Papathanassiou S A. Papadopoulos M P. Dynamic behavior of variable speed wind turbines under stochastic wind. Energy Conversion, IEEE Transaction on 1999,14(4):1617-1623.
    [32]Akhmatov V. Variable-speed wind turbines with doubly-fed induction generators. Part Ⅳ: Uninterrupted operation features at grid faults with converter control coordination Wind Engineering,2003, Vol.27, No.6, pp 519-529.
    [33]Akhmatov V. Variable-speed wind turbines with doubly-fed induction generators. Part Ⅱ:Power System Stability. Wind Engineering,2003, Vol.26, No.3, pp:171-188.
    [34]Jauch C. Stability and control of wind farms in power systems, Riso-PhD-24, Danmark, Riso National Laboratory.2006.
    [35]Ekelund T. Dynamics and control of structural loads of wind turbines. Proc of the American Control Conf, Pennsylvania,1998,6:1720-1724.
    [36]Ekelund T. Yaw control for reduction of structural dynamic loads in wind turbines. J. Wind Eng. Ind. Aerodyn,2000,85:241-262.
    [37]Liebst B S. A pitch control system for the KaMeWa wind turbine. Jof. Dynamic Systems, Measurement and Control,1985,3,107:47-52.
    [38]Murdoch A. Control design and performance analysis of a 6MW wind turbine-generator. IEEE Trans. PAS,1983,102(5):1340-1347.
    [39]M.M. Hand. Variable-speed wind turbine controller systematic design methodology:A Comparsom of Non-Linear and Limear Model-Based Designs, July 1999 NREL/TP-500-25540.
    [40]Hansen A D, Sorensen P, Blaabjerg F Bech J. (2002) Dynamic modelling of wind farm grid interaction.Wind Engineering, Vol.26, No.4, p191-208.
    [41]Sorensen P, Hansen A D, Janosi L. Simulationof interaction between wind farm and power system. Riso-R-1281, Riso National Labora.
    [42]Slootweg JG. Wind power modeling and impact on power system dynamics. PhD. Thesis. Delft, Netherlands:Delft University of Technology.2003.
    [43]王介龙,陈彦,薛克宗.风力发电机耦合转子/机舱/塔架的气弹响应.清华大学学报(自然科版),2002,2(2):211-215.
    [44]Alan D.Wright. Modern control design for flexible wind turbines. NREL/TP-500-35816, July 2004.
    [45]Horiuchi N, Kawahito T. Torque and power limitations of variable speed wind turbines using pitch control and generator power control. Power Engineering Sociey Summer Meeting, Vols 1-3, Conference Proceedings, Vancouver Canada:IEEE, Jul 15-19,2001,638-643.
    [46]叶杭冶,潘东浩.风电机组变速与变桨距控制过程中的动力学问题研究.太阳能学报,2007,28(12):1321-1328.
    [47]叶杭冶.风力发电机组的控制技术.北京:机械上业出版社,2002.
    [48]Tony Burton, David Sharpe, Nick Jenkins, et al. Wind energy handbook. England:Wiley,2001, P:486-489.
    [49]窦修荣,张耀荣,艾兴等.水平轴风轮转子/塔架动态特性分析.山东工业大学学报,2001,(5)17-21.
    [50]A.D.Diop, C.Vivhita, et al. Modeling variable pitch HAWT characteristics for a real time wind turbine simulator. Wind Eng.1999,23(4):225-243.
    [51]廉小亲.模糊控制技术.北京:中国电力出版社,2003.
    [52]杨永灯.同步发电机模糊自调整PlD励磁控制策略研究:(硕十学位论文).西安:西安理工大学,2006.
    [53]诸静.模糊控制理论与系统原理.北京:机械工业出版社,2005.
    [54]李十勇.模糊控制·神经控制和科能控制理论.黑龙江:哈尔滨大学出版社,1998.
    [55]李洪兴.变论域自适应模糊控制器.中国科学E辑,1999,29(1):32-42.
    [56]Hilloowala, R.M. Sharaf A M. A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme. IEEE Trans Industry Applications,1996,32(1):57-65.
    [57]黄燕.规则自凋整的自适应模糊控制研究:(硕士学位论文).汕头:汕头大学,2003,3.
    [58]吴刚,李小明.大型风力发电机的典型控制策略.新疆工学院学报,2000,21(3):213-216.
    [59]高峰,徐大平,吕跃刚.大型风力发电机组的前馈模糊-PI变桨距控制.动力工程,2008,28(4):537-542.
    [60]Hsin J S, Kuo K S. Nonlinear sliding mode torque control with adaptive backsteping approach for induction motor drive. IEEE Trans, on IE.1999,46(2):380-389.
    [61]Wai R, Lin F J. Fuzzy neural network sliding servo motor drive. IEE Proc. Elects. Power mode position controller for induction Appl.1999,146(3):297-308.
    [62]吴捷,钱来,杨金明.感应电动机锁相及滑动模控制.控制理论与应用.2000,2:198-203.
    [63]高为柄.变结构控制的理论及设计方法.北京:科学出版社,1996.
    [64]王丰尧.滑模变结构控制.北京:机械工业出版社,1994.
    [65]胡跃明.变结构控制理论与应用.北京:科学出版社,2003.
    [66]Bose, B K. Power electronics and AC drives. Prentice-Hall, Englewood Cliffs, New Jersey,1986.
    [67]Leonhard W. Control of electrical drives. Springer-Verlag, Berlin,1996.
    [68]Novotny D W, Lipo T A. Vector control and dynamics of AC drives. Oxford University Press, New York,1996.
    [69]Wai R J. Adaptive sliding-mode control for induction servomotor drives. IEE Proc. Electric. Power Appl,2000,147, pp:553-562.
    [70]孙宜标,郭庆鼎,刘洋.模糊自学习滑模变结构控制的研究及在直线AC伺服系统中的应用,控制理论与应用,2001,18(6):391-396.
    [71]Kevin M, Passino, Stephen Yurkovich. Fuzzy control. Addison Wesley Longman, Inc.
    [72]何东霞.风力发电用盘式永磁同步发电机的设计研究:(硕十学位论文).湖南:湖南大学,2006.
    [73]王江,李韬,曾启明等.基于观测器的永磁同步电动机微分代数非线性控制.中国电机工程学报,2005,25(2):87-92.
    [74]Malinowsk M, Kazmierkowski M P. Direct power control of three-phase PWM rectifier using space vector modulation simulation study. IEEE on Industrial Electronics 2002,2002, 7(4):1114-1118.
    [75]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究.中国电机工程学报,2005,25(8):90-94.
    [76]Lindholm M. (2004), Doubly-fed Drives for Variable Speed Wind Turbines-A 40kW laboratory setup. PhD thesis,Orestad-DTU, Denmark.
    [77]孙朝晖,王冲,戴扬等.结构振动主动控制理论及实验研究.振动工程学报,1994,7(2):154-160.
    [78]马扣根,顾仲权.最优极点配置法在梁式结构振动主动控制中的应用.振动与冲击,1991,(3):85-89.
    [79]刘华,黄田,曾子平.一类非线性振动的智能主动控制方法.非线性动力学报,1994,1(3):288-292.
    [80]Chopra Ⅰ. Non-linear response of wind turbine roto. Wind Energy Conversion,1978, 15(3):351-358.
    [81]Warmbrodt W, Friedmann P. Formulation of the aeroelastic stability and response problem of coupled rotor/support system. Structural Dynamics and Materials Conferenees, Part 2,1979:39-52.
    [82]Wang Chun Ming, Chen Gang, Zhang Su Zhen. Expert PID controller. Automation in Petro-Chemical Industry.2002, (5)25-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700