用户名: 密码: 验证码:
振动场中散体的动力效应与分形特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文对振动场中散体的动力效应和分形特征展开了系统的研究。研究工作结合国家自然科学基金资助项目“基于散体媒介的弹性波传播和作用机理研究”,以振动作用下散体的动力效应(尤其是波动效应)为线索,对散体的动力特性、液化特征、波动规律、振动助流、振动减阻、振动助滤、分形特征等展开详细全面的研究。论文的主要研究工作如下:
     (1)利用DSA-1型振动直剪仪,对散体的动态参数(动抗剪强度τ,黏聚力C,内摩擦角φ)进行测试:并试验研究了振幅、振频、水分、激振方式、振动速度、颗粒尺寸、散体的流动性等对动抗剪强度的影响。
     (2)在试验的基础上,对散体的动力特性展开研究。
     分析了散体在动荷载作用下的动应力-应变关系,并对散体动强度的有关性质及与循环次数的关系进行详细阐述。建立散体的黏滞阻尼力学模型来研究激励响应。并在此基础上给出了散体激励响应的运动方程和简谐激励作用下的振型-位移近似表达式和坐标响应的稳态效应解。利用逐步积分算法求解了散体激励响应的位移、速度和加速度的递推关系矩阵,并给出了计算流程图和算例。
     (3)利用波动理论,对波在弹性、黏弹性及流动散体介质中的传播和耗散规律进行了分析,并给出了振动助流机理。
     1) 当应变值ε<10~(-4)时,认为散体介质的变形为弹性变形。分析给出了各向同性散体介质中弹性波的波动方程、传播速度和波动能量的表达式,和横观各向同性介质中的弹性波的波动方程和能量透过系数表达式,并试验验证了能量衰减与分层介质密度有关。此外,分析了瑞利波及勒夫波的传播特性。
     2) 从黏弹性角度来分析松散岩土介质中波的相关规律,给出了三种黏弹性模型及其本构方程:Maxwell模型、Kelvin模型及标准线性固体模型。分析并给出了小变形条件下黏弹性介质中的波动方程、传播向量和衰减向量的复数形式表达式、以及纵波和横波的衰减系数复数形式表达式。
     3) 首次利用波动理论解释了流动场中散体的振动助流机理。视流动中的散体为弱横观各向同性介质,给出了P波、SH波和SV波的相速度表达式,分析了它们在流动散体介质中的传播特点。由波的传播特点得出:在振幅和频率较小的情况下,振波对散体的流动性影响不大;当振幅和频率逐渐增加时,椭球体的偏心率减小,散体间的黏性阻力和内摩擦力降低,散体的松散系数增加,抗剪强度降低,使散体具有更好的流动性。试验结果也印证了此结论的正确性。
     (4) 对饱和散体的振动液化进行了研究。
     首先对散体振动液化的力学机理进行了详细的分析和阐述。然后详细研究了饱和散体中的波的传播规律,分析给出波在无耗散情况下的势矢量方程和三种体波的速度表达式,以及具有耗散情形的势矢量的普遍方程式和P波与S波的衰减系数。并利用波动理论和试验结果,详细分析了振动过程中饱和散体介质的二种体波的传播对孔隙水和颗粒的作用情况,首次用波动理论揭示了孔隙水压力迅速升高的原因和饱和散体液化的机理。此外,还对散体液化后的密实现象、液化的影响因素和液化势的判断进行了分析研究。
     (5)利用液固两相流理论和波动理论,对高浓度浆体的振动减阻机理进行研究。
     分析了高浓度浆体中应力波的反射与透射规律,并利用多重网格法分析了振动波对层流流态转捩的影响。认为应力波在管道垂直方向上传播时逐渐衰减且对层流附面层有较大影响,使边壁浆体的速度梯度减小,并导致边壁剪切应力的降低:同时使附面层的厚度加大,中性稳定雷诺数增加,阻止流态的转捩。应力波的作用以及附面层的改变,最终导致输送阻力的降低。创造性地解释了高浓度浆体管道的振动减阻机理。
     (6)通过试验对高湿度细粒散体振动助滤进行了详细研究,并探讨振动助滤的机理。
     1)通过真空施振助滤与真空过滤的对比试验,以及加压施振助滤与加压过滤的对比试验可以看出,对于高湿度细粒散体,加振都具有较大的助滤效果,可以降低平均含湿率为5~9%。而散体浓度、振动频率
    
    博士学位论文
    和振动方式对试验结果影响很小,而且,同种情况下加压比真空的过滤效果也会稍好一些。此外,寻求合
    适浓度的絮凝剂也是可以适当降低含湿率的。
     2)由于振动作用的影响,导致散体颗粒的移动和活化,以及散体介质的液化,使固体颗粒将向滤饼
    面移动,使紧缩活动减弱,孔隙率增大,滤饼比阻减小。因此使液体更容易被挤压出来,从而达到助滤的
    目的。而絮凝剂的作用是通过吸附和架桥作用,将不稳定状态的颗粒群或己经凝结的小絮团结合成表观直
    径较大的絮团,以利于固液分离。
     (7)利用分形几何学,对散粒、孔隙的分形行为、渗流的分形行为、散体振动时的分形行为、散体堆
    的自组织行为和饱和散体液化的自组织临界性作系统研究。并利用VisualC一(6.0版本)对这些分形行为
    进行计算机模拟。
     1)首次完整系统地将分形理论引入到散体动力学的研究之中,分析得出散体粒度的分布、孔隙的分布
    和颗粒比表面积都具有分形特征,服从标度律。振动过程中,时间序列、功率谱密度、振动脉冲积分分布,
    时间序列的自相关函数均服从幂律关系,具有分形特征。用元胞自动机来模拟一维散体堆的
In this Ph D dissertation, the granular dynamic effect and fractal characteristic under vibration are studied systematically. The research work is supported by the National Natural Science Foundation of China. The principal item is to study on the propagation and mechanism of elastic wave in the granular media. This dissertation focuses on the granular dynamic effect under vibration, especially, the wave effect. The granular dynamic characteristic, liquefaction property, wave law, vibrating aided flow, vibrating drag reduction, vibrating aided filtration and fractal behavior are studied in detail and in depth. The following are the main research findings:
    (1) Utilizing the DSA-1 type vibration direct shearing apparatus, the granular dynamic parameters, such as the dynamic shearing strength τ, the cohesion C, and the angle of internal friction ψ have been identified. Moreover, the experimental researches on the factors that will affect the granular dynamic shearing strength, such as the amplitude, the frequency, the moisture content, the excitation method, the vibration velocity, the granular size and the granular flowability, are well experimented.
    (2) Based on the experiments, the granular dynamic characteristic is studied.
    The granular dynamic stress-strain relation under the dynamic load is analyzed. The related properties of the granular dynamic strength and the relation between the dynamic strength and cyclical index are described in detail. A granular mechanical model of viscosity and damping is given. On the basis of it the motion equation of the excited response of the granules is established, and an approximate expression of vibrating-displacement by harmonic excitation and the steady effect solution of the coordinate response is deduced. By the stepwise integration method, the recursion relation matrix of the displacement, the velocity and the acceleration of the excited response of the granules are resolved, and a calculating flow chart and a calculating example are also given.
    (3) By the use of the wave theory, the characteristics of the wave propagation and their dissipation in the elastic granules, the viscoelastic granules and the flowing granules are analyzed. Then the mechanism of the vibrating aided flow is given.
    1) The deformation of granular materials would be the elastic deformation when the strain number e < 10-4.
    The expressions of wave equation, propagation velocity and wave energy in the elastic homogenous and anisotropic media have been analyzed. At the same time, an expression of energy passing coefficient was deduced, and the conducted experiment has proved that the attenuation of wave has a relation to the density of layered media. The propagation characteristics of Rayleigh and Love waves are also analyzed.
    2) In terms of viscoelasticity the related theory in the granular media is analyzed. Three kinds of viscoelasticity models were given: Maxwell model, Kelvin model and standard linear model of solid. The wave equation, the complex number expressions of propagation and attenuation vectors, and the attenuation coefficient
    III
    
    
    
    expressions of longitudinal and transverse waves under the conditions of small distortion have been deduced.
    3) The flowing granular media is regarded as a weak transverse isotropic media, and the phase velocity expressions of waves P, SH and SV are deduced. The propagation specialties of waves in the flowing granular media have been analyzed. It is the first time that the mechanism of the vibrating aided flow is explained creatively as depicted in this Ph D dissertation.
    (4) The vibrating liquefaction of saturated granules is studied.
    Firstly, the mechanism of liquefaction is described in detail. Then, the characteristic of wave propagation in saturated granular media is studied in depth. The potential vector equation and the velocity expressions of three kinds of body waves under the conditions of no dissipation, as well as the general equation of potential vector and the attenuation coefficients of waves P and S under the conditions of dissip
引文
[1] 吴爱祥.振动场中矿岩散体特性与动力学理论研究:[博士学位论文].长沙:中南工业大学,1991
    [2] [日]日本七质工学会.粗粒料的现场压实.北京:中国水利水电出版社,1999
    [3] 郭庆国.粗粒土的工程特性及应用.郑州:黄河水利出版社:1998
    [4] 龚晓南.高等土力学.杭州:浙江大学出版社,1998
    [5] 胡中雄.七力学与环境土工学.上海:同济大学出版社,1997
    [6] 洪毓康.七质学与土力学.北京:人民交通出版社,2000
    [7] 戴兴国.贮矿空间内散体矿岩的压力理论与流动机理的研究:[博士学位论文].长沙:中南工业大学,1990
    [8] 吴爱祥.散体振动液化与密实作用试验及机理探讨.中南矿冶学院学报,1991,23(增):15~20
    [9] 戴兴国,吴贤振.细粒散料振动松散与密实机理探讨.矿冶工程,2000,20(1):12~14
    [10] 普拉卡什S.土动力学.北京:水利电力出版社,1984
    [11] 谢定义.七动力学.西安:西安交通大学出版社,1988
    [12] 刘成宇.七力学.北京:中国铁道出版社,2000
    [13] 何广讷.土工的若干新理论研究与应用.北京:水利电力出版社,1994
    [14] 吴爱祥,古德生.矿岩散体动抗剪强度机理的研究.中南矿冶学院学报,1992,23(增):7~14
    [15] 吴爱祥.占德生.振动场中松散矿石动态特性的研究.中南矿冶学院学报,1991,22(3):242~248
    [16] Wu Aixing,.Gu Desheng. The characteristics of inner and boundary friction of back solid under vibration, J Cen-South Inst Min Metall, 1993, 24 (4): 459~463
    [17] 汪闻韶.七的动力强度和液化特性.北京:中国电力出版社,1997
    [18] Smart P, Tovey N K. Theoretical aspects of intensity gradient analysis. Scanning, 1988,8:75~90
    [19] Gutierrez M, Ishihara K, Towhata I. Model for the deformation of sands during rotation of principal stress direction. Soils & Foundations, 1993, 33 (3):105~117
    [20] Wang Z L, Dafalias Y F, Shen C K. Bounding surface hypoplastic model for sand. J Eng Mech, ASCE, 1990, 116 (5):983~1001
    [21] Iai S, Matsunaga Y, Kameoka T. Strain space plasticity model for cyclic mobility. Soils & Foundations, 1992, 32 (2): 1~15
    [22] Bhatia S K, Soliman A F. Frequency distribution of void ratio of granular materials determined by an image analyzer. Soils and Foundations, 1990,30(1): 1~16
    [23] Tobita Y. Fabric tensors in constitutive equations for granular materials. Soils and Foundations, 1989, 29 (4): 91~104
    [24] Nakata Y. Hyodo M, Murata H, et al. Flow deformation of sands subjected to principal stress rotation. Soils & Foundations, 1998,38 (2): 115~128
    [25] 石兆吉,王兰民.土壤动力特性、液化势及其危害性评价.北京:地震出版社,1999
    [26] Shamoto Y, Zhang J M. Evaluation of seismic settlement potential of saturated sandy ground based on concept of relative compression. Soils and Foundations, 1998, 38 (2): 57~65
    [27] Zhang J-M, Shamoto Y, Tokimatsu K. Moving critical and phases-transformation stress state lines of saturated sand during undrained cyclic shear. Soils and Foundations, 1997, 37 (2): 51~59
    [28] Pradhan T B S, Tatsuoka E On stress-dilatancy equations of sand subjected to cyclic loading. Soils and Foundations, 1989,29 (1): 65~81
    [29] 吴世明,徐攸在.土动力学现状与发展.岩土工程学报,1998,20(3):125~131
    [30] 马秀嫒,徐又建.青岛市官路水库分散性粘土工程特性及改性试验研究.岩土工程学报,2000,22(4):441~444
    [31] 张建发.砂土的可逆性和不可逆剪胀规律.岩土工程学报,2000,22(1):12~17
    [32] Zhang J-M, Shamoto Y, Tokimatsu K. Cyclic critical stress states of sand with nonfrictional effects. Journal of Engineering Mechanics, 1999,125 (10): 1106~1115
    
    
    [33] 刘斯宏,卢廷浩.用离散单元法分析单剪试验中粒状体的剪切机理(英文).岩土工程学报,2000,22(5):608~611
    [34] 吴恒,张信贵,易念平.水土作用与土体细观结构研究.岩石力学工程学报,2000,19(2):199~204
    [35] 付磊,王洪瑾,周景星.主应力偏转角对砂砾料动力特性影响的试验研究.岩土工程学报,2000,22(4):435~440
    [36] 李世海,徐以鸿,张均锋.冲击荷载下饱和砂土孔压特性的简化力学模型与分析.岩石力学与工程学报,2000,19(3):321~325
    [37] Meneses J, Ishihara K, Towhata i. Effects of superimposing cyclic shear stress on the undrained behavior of saturated sand under monotonic loading. Soils and Foundation, 1998,38 (4): 115~127
    [38] Bartleit S F, Yould T L. Empirical prediction of liquefaction-in-duced later spread. J Geotech Engrg ASCE, 1995, 121 (4): 316~329
    [39] Anthony T C. Seismic liquefaction potential assessed by neural networks. Journal of Geotechnical Engineering, 1994,120 (9): 1467~1480
    [40] 汪明武,罗国煜.最优化法在砂土液化势评价中的应用.岩土工程学报,1999,21(6):704~706
    [41] Tokimatsu K, Yoshimi Y. Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils and Foundations, 1883,23 (4): 56~74
    [42] Vaid Y P. Thomas J. Liquefaction and postliquefaction behavior of sand. J Geotec Engrg, ASCE, 1995,121 (2): 163~173
    [43] Yoshimine M, Ishihara K. Flow potential of sand during liquefaction. Soils and Foundations, 1998, 38 (3): 189~198
    [44] Meneses J, Ishihara K, Towhata I. Effects of superimposing cyclic shear stress on the undrained behavior of saturated sand under monotonic loading. Soils and Foundation, 1998,38 (4): 115~127
    [45] Towhata I, Sasadi Y, Tokida K et al. Prediction of permanent displacement of liquefaction ground by means of minimum energy principle. Soils and Foundations, 1992,32 (3): 97~116
    [46] Yasuda S. Nagase H, Kiku H el al. The mechanism and a simplified procedure of the analysis of permanent ground displacement due to liquefaction. Soils and Foundations, 1992, 32(1): 149~160
    [47] Kuwano J, Ishihara K. Analysis of permanent deformation of earth dams due to earthquakes. Soils and Foundations, 1988. 28(1): 41~55
    [48] Orense P R, Towhata I. Three dimension analysis on lateral displacement of liquefied subsoil. Soils and Foundations, 1998.38(4): 1~15
    [49] Yoshimi Y, Tokimatsu K, Kaneko O, Makihora Y. Undrained cyclic shear strength of a dense Niigata sand. Soils and Foundations. 1984, 24(4): 131~145
    [50] Gastro G, Poutos S J. Factors affecting liquefaction and cyclic mobility. Proc ASCE J GED, 1977, 103 (GT6): 501~516
    [51] Poulos S .I, Castro G, France J W. Liquefaction evaluation procedure. J Ge ASCE, 1985, 111 (6): 772~792
    [52] 高玉峰,刘汉龙,朱伟.地震液化引起的地面大位移研究进展.岩土力学,2000,21(3):294~297
    [53] 张建发,时松孝次,田屋裕司.饱和砂土液化的剪切吸水效应.岩土工程学报,1999,21(4):398~402
    [54] Kramer S L, Seed H B. Initiation of soil liquefaction under static loading. J Ge ASCE, 1988, 114(4): 412~430
    [55] Alarcon-Cuzman A, Leonards G A, Chameau J L. Undrained nomotonic and cyclic strength of sands. J Ge ASCE, 1988.114(10): 1089~1109
    [56] Castro G. Poulos S J, Leathers F D. Re-examination of slide of lower San Fernando dam. J Ge ASCE, 1985, 111(9):1093~1107
    [57] 汪明武,罗国煜.可靠性分析在砂土液化势评价中的应用.岩土工程学报,2000,22(5):542~544
    [58] 宫全美,周顺华,方炽华.南京地铁地基地震液化规范判别的差异分析.岩土力学,2000,21(1):141~144
    [59] 沈珠江.砂土液化分析的散粒体模型(英文).岩土工程学报,1999,21(6):742~748
    [60] 孙更生,郑大同.软土地基与地下工程.北京:中国建筑工业出版社,1987
    [61] 古德生,王惠英,李觉新.振动出矿技术.长沙:中南工业大学出版社,1989
    [62] [美]K J巴斯.工程分析中的有限元法.北京:机械工业出版社,1991
    [63] [美]Roy R Craig Jr结构动力学.北京:人民交通出版社,1996
    [64] 王铎.弹性动力学最新进展.北京:科学出版社,1995
    
    
    [65] 马宏伟,吴斌.弹性动力学及其数值算法.北京:中国建材出版社,2000
    [66] [美]M帕兹.结构动力学.北京:地震出版社,1993
    [67] 李宏男.结构多维抗震理论与设计方法.北京:科学出版社,1998
    [68] 朱合华,陈清军,杨林德.边界元法及其在岩土工程中的应用.上海:同济大学出版社,1997
    [69] Anderson K H, Pool J H, Brown S F, et al. Cyclic and static laboratory tests on drammen clay. Proc ASCE J Ged, 1980, 106 (GT5): 499~529
    [70] Fourney W L, Barker D B, Holloway D C. Model studies of explosive well stimulation technique. Int J Rock Mech.Min Sci & Geomech. Abstr, 1981, 18(2): 113~127
    [71] Blanton T L. Effect of strain rates from 10~(-2) to 10 sec~(-1) in triaxial compression tests on three rocks. Int J Rock Mech.Sci & Geomech.Abstr, 1981, 18(1): 47~62
    [72] Nilson R H, Proffer W J, DuffR.E. Modelling of gas-driven fractures induced by propellant combustion within a borehole. Int J Rock Mech Min Sci & Geomech Abstr, 1985, 22(1): 3~9
    [73] 吴世明.七介质中的波.北京:科学出版社,1997
    [74] Nicholas T. Tensile testing of materials at high rate of strain. Experimental Mechanics, 1981, 21(5): 177~185
    [75] Bogy D B, Gracewski S M. Reflection coefficient for plane waves in a fluid incident on a layered elastic half-space. J Appl Mech, 1983, 50:405~414
    [76] Zhou D H, Miller H D S. Simulation of Microseismic emission during rock failure. Int J Rock Mech Min Sci & Geomech Abstr, 1991, 28 (4): 275~284
    [77] Lankfbrk J. The role of tensile microfracture in the strain rate dependence of compressive strength of fine-grained limestone-analogy with strong ceramics. Int J Rock Mech Min Sci & Geomech Abstr, 1981.18:173~175
    [78] Goldsmith W, Wu W Z. Response of rock to impact loading by bars with pointed ends. Rock Mechanics, 1981, 13:157~184
    [79] Rogers C O, Pang S S, Kumano A, et al. Response of dry-and liquid-filled porous rocks to static and dynamic loading by variously-shaped projectiles. Rock Mechanics and Rock Engineering, 1986, 19:235~260
    [80] Kumano A, Goldsmith W. Projectile impact on soft. porous rock. Rock Mechanics, 1982. 15:113~132
    [81] Kumano A, Goldsmith W. An analytical and experimental investigation of the effect of impact on coarse granular rocks. Rock Mechanics, 1982, 15:67~97
    [82] 夏唐代,张忠苗,吴世明.Raileigh面波法原理的数值模拟.浙江大学学报,1996.30(3):277~285
    [83] Vardoulakis 1, Vrettos C. Dispersion law of Rayleigh-type waves in a compressible Gibson half-space. Int J Numer Methods Geomech. 1988, 12:639~655
    [84] 夏唐代,蔡袁强,陈云敏.利用瑞利波特性计算动力响应的进一步探讨.岩土工程学报,1996,18(3):28~34
    [85] 陈云敏,是世明.成层地基的Rayleigh波特征方程的解法.浙江大学学报,1991,25(1):40~52
    [86] 夏唐代,蔡袁强,吴世明.各向异性成层地基中Rayleigh波的弥散特性.振动工程学报,1996,9(2):191~197
    [87] Vrettos C. In-plane vibration of soil deposits with variable shear modulus: I. Surface wave. Int J Numer Methods Geomech.1990, 14:209~222
    [88] 胡家富.Rayleigh波在工程勘察中的解释方法探讨.岩土工程学报,1999,21(5):599~602
    [89] 夏唐代,张忠苗,吴世明.Love面波特性计算动力响应的进一步探讨.振动工程学报.1996,9(3):281~285
    [90] 周光泉,刘孝敏.粘弹性理论.合肥:中国科学技术大学出版社,1996
    [91] 徐仲达.地震波理论.上海:同济大学出版社,1997
    [92] Ostrander W J. Plane-wave reflection coeffients for gas sands at nonnormal angles of incidence. Geophysics, 1984, 49(10): 1637~1648
    [93] Pelissier M A, Betts A T, Vestergouard P D. Azimuthal variations in scattering amplitudes induced by transverse isotropy. Geophysics, 1991, 56(10): 1584~1595
    [94] Rokhlin S I, Bolland T L, Laszlo Adler. Reflection and refraction of elastic waves on a plane interface between two generally anisotropic media. J Acoust Soc Am, 1986, 79(4).: 906~918
    [95] Parscau J D. Relationship between phase velocities and polartzation in transversely isotropie media. Geopysics, 1991.
    
    56(10): 1578~1583
    [96] Richards P G, Menke W. The apparent attenuation of a scattering medium. Bull Seis Soc Am, 1983, 73:1005~1021
    [97] Berrman J G. Confirmation of theory, Appl Phys Lett, 1980, 37:382~384
    [98] Gatmiri B. Response of cross-anisotropic seabed to ocean waves. Journal of Geotechnical Engineering, ASCE, 1992, 118(9):1295~1314
    [99] Levin F K. The reflection, refraction, and diffraction of waves in media with an elliptical velocity dependence. Geophysics, 1978, 43(3): 528~537
    [100] Krebes E S. Discrepancieson energy calculations for inhomogeneous waves. Geophys J R Astr Soc, 1983, 75:839~846
    [101] Mithal R. Vera E E. Comparison of plane-wave decomposition and slant stacking of pointsource seismic data. Geophysics,1987, 52(12): 1631~1638
    [102] Rommel B E. Approximate stacking velocities in a weakly transversly isotropic layer. Can J Expl Geophys, 1993, 29:98~105
    [103] Rommel B E. Approximate polarization of plane waves in a medium having weak transverse isotropy. Geophysics, 1994,59(10): 1605~1612
    [104] Shuey R T. A simplification of the Zoeppritz equations. Geophysics, 1985, 50(4): 609~614
    [105] Thomsen T. Reflection seismoloogy over azimuthally anisotropic media. Geophysics, 1988, 53(3): 304~313
    [106] Wright J. The effects of transverse isotropy on reflextion amplitude versus offset. Geophysics, 1987, 52(4): 564~567
    [107] Chow Y K, Smith I M. Static and periodic infinite solid elements. Int J for Num Methods in Engrg, 1981, 17 (4): 501~526
    [108] Vrettos C. Dispersive SH-surface waves in soil deposits of variable shear modulus. Soil Dynamics and Earthquake Engineering, 1990, 9 (5): 25~264
    [109] Waas G, Riggs H R, Werkle H. Displacement solution for dynamic loads in trasversely-isotropic stratified media. Earthquake Engineering and structural Dynamics, 1985, 13:173~193
    [110] Zienkiewicz O C, Chang C T, Bettess P. Drained. undrained, consolidating and dynamic behavior assumptions in soils. Geotechnique, 1980, 30:385~395
    [111] Lervin F K. Seismic velocities in transversely media. Geophysics, 1980, 45 (1), 3-17
    [112] Rommel B E. Approximate stacking velocities in a weakly transversely isotropic layer. Can J Expl Geophys, 1993, 29 (1),98~108
    [113] Thomsen L. Weak elastic anisotropy. Geophysics, 1986, 51 (10), 1954~1966
    [114] Lervin F K. Seismic velocities in transversely isotropic media. Geophysics, 1979, 44(5), 818~936
    [115] Beltzer A I. Dispersion of seismic waves by a causual approach. Pure Appl Geophys, 1988,44 (5): 896~917
    [116] Byunand B S, Cheng S W. Apparent axial properties of transversely isotropic media. Geophysics, 1986, 51(4): 1012-1013
    [117] 国家地震局.地震波分析与应用.北京:地震出版社,1998
    [118] Banik N C. An effective anisotropy parameter in transversely isotropic media. Geophsics, 1987,52 (12): 1654~1664
    [119] Beltzer A I. Dispersion of seismic waves by a causal approach. Pure appl.Geophys, 1988,128:147~156
    [120] Byun B S. Seismic parameters for media with elliptical velocity dependencies. Geophysics, 1982, 47:1621~1626
    [121] Berryman J G.Long-wave elastic anisotropy in transversely isotropic media. Geophysics, 1979, 44(5): 896~917
    [122] Byun B S. Sersmic parameters for transversely isotropic media. Geophysics. 1984, 49(11): 1908~1914
    [123] Brennan B J, Smylie D E. Linear viscoelasticity and dispersion in seismic wave propagation. Rev Geophys Space phy, 1981,19:233~246
    [124] Byunand B S, Cheng S W. Apparent axial properties oftransversily isotropic media. Geophysics, 1986, 51(4): 1012~1013
    [125] Crampin S. Suggestions for consistent terminology for seismic anisotropy. Geophys Prop, 1984, 37:753~770
    [126] Crampin S. A review of wave motion in anisotropic and cracked elastic-media. Wave Motion, 1981,3:343~391
    [127] Crampin S. Effective elastic constants for wave propagation through cracked solids. Geophys J R astr Soc, 1984, 76:135~145
    [128] Crampin S. Effects of singularities on shear-wave propagation in sedimentary basins. Geophys J Int, 1991, 107(3): 531~543
    
    
    [129] Hudsom J A. Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J R Astr Soc, 1981, 64:133~150
    [130] Gorich V. Muller G. Apparent and intrinsic Q: the one-dimensional case. J Geophys, 1987, 61:46~54
    [131] Fryer G J. A slowness approach to the refleetivity method of seismogram synthesis. Geophys J R astr Soc, 1980, 63:747~758
    [132] Helbig K. Elliptical anisotropy-It's significance and meaning. Geophysics, 1983, 48(7): 825~832
    [133] Hudson J A. Overall properties of cracked solid. Math Proc Camb phil Soc, 1980, 88:371~384
    [134] Kim K Y. Wrolstad K H, Aminzaden F. Effects of transverse isotropy on P-wave AVO for gas sands. Geophysics, 1993.58(6): 883~888
    [135] Thomsen L. Weak elastic anisotropy. Geophysics, 1986, 51(10): 1954~1966
    [136] [北宋]沈括.梦溪笔谈.北京:团结出版社,1996
    [137] 刘惠珊,徐凤萍,李鹏程.液化引起的地面大位移对工程的影响及研究现状.工程抗震,1997,(2):21~26
    [138] Juang C H, Rosowsky D V, Tang W H. Reliability-based method for assessing liquefaction potential of soils. Journal of Geotechnical and Geoenvironmental Engineering, 1999,125 (8): 684~689
    [139] Sasaki Y, Towhata I, Tokida K et al. Mechanism of permanent displacement of ground caused by seismic liquefaction. Soils and Foundations, 1992, 32 (3): 79~96
    [140] Low B K. Tang W H. Efficient reliability evaluation using spreadsheet. J Engrg Mech, 1997, 123 (7) : 749~752
    [141] Youd T L. Perkins D M. Mapping of liquefaction severity index. Geotech Engrg, ASCE, 1987,113 (11): 1347~1391
    [142] Seed H B. Tokimatsu K, Harder L F, et al. Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Engrg, 1985,111(12): 1425~1445
    [143] 杨峻,吴世明,蔡袁强.饱和土中弹性波的传播特性.振动工程学报,1996,9(2):128~137
    [144] 诸国桢.流体饱多孔介质中的声波.应用声学,1994,13(4):1~6
    [145] Chen J. Time domain fundamental solution to Biot's complete equations of dynamic poroelasticity. Int J Solid Stract, 1994,31: 169~202; 1447~1480
    [146] Mei C C. Foda M A. Wave induced responses in a fluid poroelastic solid with a free surface. Geophy J Roy Astr Soc, 1981,66:597~631
    [147] [法]T布尔贝,O库索,B甄斯纳.孔隙介质声学.北京:石油工业出版社,1994
    [148] Philippacoplulos A J. Waves in a partially saturated layered halfspace: analytic formulation. Bull Seism Soc Am, 1987, 77:1838~1853
    [149] Plona J. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequency. Appl Phys Lett,1980, 36:259~261
    [150] Philippacopoulos A J. Lamb's problem for fluid-saturated porous media. Bull Seism Soc Am, 1988, 78 (2): 908~923
    [151] Stoll R D. Kan T K. Reflection of acoustic waves at a water-sediment interface. J Acoust Soc Am, 1981, 70:149~156
    [152] Bardet J P. A viscoelstic model for dynamic behavior of saturated poroelastic soils. Transactions of the ASME, J Appl Mech.1992, 59:128~135
    [153] Zienkiewicz O C. Dynamic behavior of saturated porous media: the generalized Blot's formulation and numerical solution.Int J Numer Meth Geomech, 1984, 8:71~96
    [154] [美]E J瓦斯普等.固体物料的浆体管道输送.北京:水力电力出版社,1984
    [155] 费祥俊.浆体与粒状物料输送水力学.北京:清华大学出版社,1994.
    [156] 候辉昌.减阻力学.北京:科学出版社,1987
    [157] 陈广文.高浓度浆体输送特性与振动减阻试验研究:[博士学位论文].长沙:中南工业大学,1994
    [158] 张远君等.两相流体力学.北京:北京航空学院出版社,1987
    [159] 孙祥海等.计算流体力学.上海:上海交通大学出版社,1987
    [160] 张本照.流体力学中的有限元方法.北京:机械工业出版社,1986
    [161] 刘超群.多重网格法及其在计算流体力学中的应用.北京:清华大学出版社,1995
    
    
    [162] 王从约,夏源明,解艳宁.非均质变截面杆中弹性波的反射与透射.应用力学学报,1998,15(3):43~50
    [163] 丁启圣,王维一.新型实用过滤技术.北京:冶金工业出版社,2000
    [164] Svarovsky L. Solid-liquid separation. London: Butterworth & Co Publishers Ltd, 1990
    [165] Purchas D B. Solid-liquid separation technology. England: Uplands Press Ltd, 1981
    [166] Purchas D B. Solid-liquid separation equipment scale-up. England: Uplands Press Ltd, 1977
    [167] Wakeman R J. Progress in filtration and separation. New York: Elsevier Scientific Publishing Company, 1983
    [168] Matteson M J, Orr C. Filtration principles and practices. New York and Basel: Marcel Dekker, Inc 1989
    [169] Rushton A, Ward A S, Holdich R G Solid-liquid filtration and separation technology. New York: VCH Inc, 1996
    [170] 陈树章.非均相物系分离.北京:化学工业出版社,1995
    [171] 林国梁.矿石可选性研究.北京:冶金工业出版社,1998
    [172] Kesting R. Synthetic polymer membranes. Mc Graw Hill, 1985
    [173] 刘华杰.分形艺术.长沙:湖南科学技术出版社,1998
    [174] [美]D L特科特.分形与混沌.北京:地震出版社,1993
    [175] 陈颙,陈凌.分形几何学.北京:地震出版社,1998
    [176] 傅鹤林,李亮,李磊.膨胀土结构分形特征研究.长沙铁道学院学报,2000,18(1):1~5
    [177] Turcotte D L. Fractals and fragmentation. J Geophys Res, 1986, 91:1921~1926
    [178] 徐永富,孙婉莹,吴正根.我国膨胀士的分形结构的研究.河海大学学报,1997,25(1):18~23
    [179] 龙期威.金属中的分形与复杂性上海:上海科学技术出版社,1999
    [180] 谢和平.岩土介质的分形孔隙与分形粒子.力学进展,1993,23(2):145~164
    [181] A Petri, G Paparo, A Vespignani, et al. Experimental evidence for critical dynamics in microfacturing processes. Phys Rev Lett, 1994, 73 (25): 3423~3426
    [182] Ochiai M. Ozao R, Yamazaki Y. Self-similarity law of particle size distribution and energy law in size reduction of solids PhysicaA, 1992, 191:295~300
    [183] 张济忠.分形.北京:清华大学出版社, 1997
    [184] Mandelbrot B B. Fractals: form, chance, and dimension. San Francisco: W H Freeman and Co. 1997
    [185] Mandelbrot B B. The fractal geometry, of nature. New York: W H Freeman and Co, 1982
    [186] Maragos Petro, Sun Fang-Kuo. Measuring the fractal dimension of signals: Morphological covers and iterative optimization. IEEE Trans on SP, 1993, 1:108~121
    [187] 谢文录,谢维信.时间序列中的分形分析和参数提取.信号处理.1997,(2):97~104
    [188] Yokoya Naokazu. Fractal-based analysis and interpolation of 3D natural surface shapes and their applications to Terrain modeling. Computer Vision, Graphics and Image Processing, 1989, 46:1~8
    [189] 王正明,朱炬波.弹道跟踪数据的节省参数模型及应用.中国科学(E辑),1999,29(2):146~154
    [190] 朱炬波,梁甸农.组合分形Brown运动模型.中国科学(E辑),2000,30(4):312~319
    [191] 高翔,陆佶人,陈向东.舰船辐射噪声的分形Brown运动模型.声学学报,1999,(1):19~28
    [192] 王正明,易东云.测量数据建模与参数估计.长沙:国防科技大学出版社,1996
    [193] Haykin S. Li Xiaobo. Detection of signals in chaos. Proceedings of the IEEE, 1995, (1): 95~122
    [194] 黄润秋,许强.工程地质广义系统科学分析原理及应用.北京:地质出版社,1997
    [195] 秦四清.初论岩体失稳过程中耗散结构的形成机制.岩石力学与工程学报,2000,19(3):265~269
    [196] 李廷芥,王耀辉,张梅英.岩石裂纹的分形特性及岩爆机理研究.岩石力学与工程学报,2000,19(1):6~10
    [197] 王金发,谢和平,田晓燕.岩石断裂表面分形测量的尺度效应.岩石力学与工程学报.2000,19(1):11~17
    [198] 胡瑞林,李焯芬,王思敬等.动荷载作用下黄土的强度特征及结构变化机理研究.岩土工程学报,2000,22(2):174~181
    [199] Rice J R, Ruina. Stability of steady frictional slipping. J Appl Mech, 1983, 50:343~349
    [200] Krajcinovic D, Silva M A G. Statistical aspects of the continuous damage theory. Int J Solids structures, 1982, 18 (7):551~562
    [201] Huajie L. Jun L. A method for generation super large fractal image useful to decoration art. Communications in Nonlinear
    
    Science & Numerical Simulation,1996,1(3):25~27
    [202] Henley S.Catastrophe theory models in geology.Mathematical Geology,1976,8(6):649~655
    [203] John M Cubitt,Brian Shaw.The geological implication of steady-state mechanisms in catastrophe theory.Mathematical Geology.1976.8(6):657~662
    [204] Andy Ruina.Slip instability and state variable friction laws.J Geophys Res,1983,83:10359~10370
    [205] 刘松玉,方磊.试论粘性土粒度分布的分形结构.工程勘察,1992,19(2):1~4
    [206] 易顺民.泥石流堆积物的分形结构特征.自然灾害学报,1994,3(2):91~96
    [207] 谢惠民.复杂性与动力系统.上海:上海科学技术出版社,1995
    [208] 孙强,段法兵,谢和平.煤体爆破破碎分维评价方法的研究.岩石力学与工程学报,2000,19(4):505~508
    [209] Per Bak. Chao Tang, Kurt Wiesenfeld. Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett, 1987, 59:381~384
    [210] Per Bak. Chao Tang. Earthquakes as a self-organized critical phenomenon. J Geophys Res, 1989, 94:15635~15637
    [211] Keisuke Ito. Earthquakes as self-Organized critical phenomenon. J Geophys Res, 1990, 95:6835~6860
    [212] Per Bak, Chao Tang, Kurt Wiesenfeld. Self-organized criticality. Phys Rev A, 1988, 38(1): 364~374
    [213] J M Carlson, J S Langer. Mechanical model of an earthquake fault. Phys Rev Lett, A, 1989, 40:6470~6483
    [214] Hiizu Nakanishi. Cellular-automaton model of earthquakes with deterministic dynamics. Phys Rev A, 1990, 41:7086~7089
    [215] Shearer R R. From flatland to fractaland: new geometries in relationship to artistic and scientific revolutions. Fractals, 1995.3(3): 617~625
    [216] P A Johnson, et al. Magnitude and frequency of debris flows. J Hydro, 1991,123: 69~82
    [217] Vidar Frette, Kim Christensen, et al. Avalanche dynamics in a pile of rice. Letters to Nature, 1996, 379 (4): 49~52
    [218] Maya Paczuski. Stefan Boettcher. University in sandpiles, interface depinning, and earthquake models. Phys Rev Let-t, 1996.77(1): 111~114
    [219] Guido Caldarelli. Self-organization and annealed disorder in a fracturing process. Phys Rev Lett. 1996. 77(12): 2603~2506

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700