用户名: 密码: 验证码:
电池正极材料尖晶石LiMn_2O_4的合成及其性能的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石LiMn_2O_4因其放电电压高,成本低,制备工艺简单,结构稳定,绿色环保,是很有应用前景的锂离子电池正极材料。本文针对尖晶石LiMn_2O_4材料目前存在的问题进行了探究,得到了对其实际应用有着重要意义的发现成果。主要内容包括:
     1、高密度前驱体的制备:通过共沉淀和二次干燥法制备了高密度的尖晶石LiMn_2O_4正极材料的前驱体。并分别从滤饼含水量,烘干方式,聚沉剂的添加方式的角度对前驱体振实密度的影响进行制备工艺的改进优化。探究出了最佳制备高密度、高纯度前驱体的条件,为合成高性能尖晶石LiMn_2O_4正极材料提供了重要的参考。
     2、前驱体的不同处理方式对材料电性能的影响:通过采用共沉淀法经压滤、二次干燥制备出的锰氧化合物用作合成尖晶石LiMn_2O_4正极材料的前驱体,在共沉淀过程中,通过添加还原剂水合肼、通入保护气体氮气、添加氧化剂双氧水与空白试验作对比,研究了前驱体的不同处理方式对烧结合成的LiMn_2O_4结构与常温、高温下电化学性能的影响。实验结果表明:加入水合肼和通入氮气都能保证烧结产物LiMn_2O_4的纯度,并且二者结合可以有效地调产物LiMn_2O_4的纯度与颗粒粒径大小,并有较高的振实密度,高温高倍率下有较好的放电性能。
     3、电极制作细节对电池电性能的影响:在无水乙醇为分散剂进行充分研磨,并选择900oC的条件下烧结15h合成正极材料的基础上,通过改进电极的制作细节如超声波分散时间的延长,静置分层,改进碾压方式及烘干方法。实验结果证明这些细节的改进都有助于提高电池的循环性能。
     4、不同锰源对电池正极材料性能的影响:通过使用草酸钠法准确地测定了购买的EMD中MnO_2的含量,并使用EDTA直接滴定法测定了Mn2+的含量。用金属锰片和硫酸反应制备硫酸锰溶液,不仅节约了成本而且为前驱体的合成及以后的工作提供了准确的数据,有利于以后实验步骤的科学准确地开展。我们探究了电解二氧化锰用硝酸处理与非处理,自制的硫酸锰和草酸锰对电池材料性能的影响,发现不同锰源对电池性能有着一定的影响。
     5、LiMn_2O_4的掺杂改性的研究:通过共沉淀和二次干燥法,在氮气和水合肼的保护下,通过掺杂铝离子制备前驱体,进而烧结制备尖晶石LiAl_xMn_(2-x)O_4,结果表明随着掺杂铝含量的增加晶胞参数a逐渐变小,晶格的稳定性增强,虽然放电比容量和放电平台有所降低,但高温高倍率的循环性能得到提高,这有望解决锂离子电池在高温条件下容易出现的安全性问题。通过研究对比我们发现用Li_2CO_3制备的正极材料的振实密度相对较高,并且掺杂Al_2O_3的振实密度相对较高。这些性能的改进将对工业生产有着重要的指导意义。
Spinel LiMn_2O_4 as one of the most promising alternative cathode materiales because it has the advantages of high vlatage, naturally abundant, low cost, simple in preparation, structure stability, no toxicity, good safety and environmentally benign nature. we carried out a series of studies in order to resolve the present remaining problems of spinel LiMn_2O_4. And we obtained some meaningful results. Main points of these are listed as below:
     1. Synthesis of spinel LiMn_2O_4 precursor with high density: The precursor of spinel LiMn_2O_4 cathode material with high density was synthesized by co-precipitation and two-dryness method. we studied the relationship between the density of precursor and remaining water in filter cake, manner of dryness, manner of adding agglomerating agent. Our results provide an important reference on synthesis of high density spinel LiMn_2O_4 cathode material.
     2. Effects of the precursor treated on the structure and electrochemical properties of spinel LiMn_2O_4 cathode: The precursor of spinel LiMn_2O_4 cathode material was synthesized by co-precipitation and two-dryness method. In this paper, based on our previous studies, we via a two-step drying method to pretreat the precursor of LiMn_2O_4 in different methods. Effects of N2, hydrazine, H2O2 on the structure of LiMn_2O_4 and discharge capacity at room temperature and elevated temperature are researched in detail. Experiments show that with the precursor treated by adding hydrazine and puring N2 to synthesize LiMn_2O_4 with complete lattice, uniform paricle size, a very pure spinel phase with an ordered octahedron crystal morphology and a large tap density.The electrochemical results show that it has higher specific capacity and higher cyclic lif than other samples, especially at elevated temperature and high discharge current.
     3. Effects of the preparation process on the electrochemical properties of spinel LiMn_2O_4 cathode : The precursor and lithium salt were fully grinded with anhydrous alcohol as dispersant. The mixture was heated to 900oC for 15h, we improved the details in assembling batteries such as: prolong the time of spreating the mixture in an ultrasound, leave the pulp standing for a long time to layer, roller way and manner of dryness, et al. These measures can improve the cycle performance of cathode material.
     4. Effects of the raw materials on the electrochemical properties of spinel LiMn_2O_4 cathode : we accurately tested the MnO_2 content in EMD bought by using Na2C_2O_4, and using EDTA direct titrimetric method to measure the content of Mn2+. We use Mn and sulphuric acid to synthesis the solution of MnSO4 and measure it’s concentration of the solution.This not only cut the cost but also provide correct data to the experiment hereafter. We studied the effect on the electrochemical properties of spinel LiMn_2O_4 cathode of refluxed EMD, EMD, self-made MnSO4 and Na2C_2O_4. Accordingly we choosed the self-made MnSO_4 as the most suitable manganese source.
     5. The doping modification of LiMn_2O_4: Nitrogen, a certain amount of hydrazine and aluminum ions were added in while synthesizing LiAl_xMn_(2-x)O_4 precursor by co-precipitation and two-dryness method.The sintered product spinel LiAl_xMn_(2-x)O_4 with the increase of content of aluminum ions the lattice parameters get smaller enhance the crystal lattices. Although the discharge capacity decrease and plateau fall and become narrow with the increasing content of Al, these improve the cycle performance of cathode.
引文
[1] Q.S.Liu, L.H.Yu, H.H.Wang. Preparation of LiMn2O4 with an enhanced performance by mixed liquid and mechanical activations[J]. J Alloys and Compounds, 2009, 486: 886-889.
    [2]李景虹.先进电池材料[M].北京:化学工业出版社, 2004: 9-10.
    [3] Luiz C. Ferracin, Fabio A.Amaral, Nerilso Bocchi. Characterization and electrochemical performance of the spinel LiMn2O4 prepared fromε-MnO2[J]. Solid State Ionics, 2000, 130: 215-220.
    [4] Y. K. Li, R. X. Zhang, J. S. Liu, et al. Effect of heptamethyldisilazane as an additive on the stability performance of LiMn2O4 cathode for lithium-ion battery[J]. J Power Sources, 2009, 189: 685-688.
    [5] Kenneth A. Walz, Christopher S. Johnson, Jamie Genthe, et al. Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings[J]. J Power Sources, 2010, 195: 4943-4951.
    [6]郭炳坤,徐徽,王先友,等.锂离子电池[M].长沙:中南大学出版社, 2002: 1-2.
    [7] Yoshio Nishi.Lithiumion secondary batteries: past 10 years and the futher[J]. J Power Sources, 2001, 100(1-2): 101-107.
    [8]吴宇平,戴小兵,马军旗,等.锂离子电池-应用与实践[M].北京:化学工业工业出版, 2004, 14-15. [9 ]张胜利,余仲宝,韩周祥.锂离子电池的研究与发展[J].电池, 1999, 41(1): 26-28.
    [10] Manthiram. Recent Research Development of Lithium Cobalt Oxide[J]. Electrochemistry, 1999, 2: 31-37.
    [11] Reimers J. N, Dahn J R. Electrochemical and Instiu X-ray diffraction studies of lithium intercalation in LixCoO2[J]. J Electrochem Soc, 1992, 139(80): 2091-2097.
    [12] H Wang, Jang Y, B. Huang,et al. TEM study of electrochemical cycling-induceed damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries[J]. J Electrochem Soc, 1999, 146: 473-480.
    [13] M Mladenov, R Stoyanova, E Zhecheva, et al. Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes[J]. J Electroche Commun, 2001, 3: 410-416.
    [14]刘建睿,王猛,尹大川,等.锂离子蓄电池正极材料锂钒氧化物研究进展[J].电源技术, 2001, 25(4): 308-311.
    [15] Alcantara R, Lavela P, Tirado F L, et al. Structure and Electrochemical Properties of Boron-Doped LiCoO2[J]. Solid State Chem, 1997, 134: 265-273.
    [16] Yoon Won-sub, Lee Kyung-Keun, Kim Kwang-Bum. Synthesis of LiAlyCo1-YO2 using acrylic acid and its electrochemical properties of Li rechargeable batteries[J]. J Power Sources, 2001, 97-98: 303-307.
    [17] Jones C D W, Rossen E, Dahn J R.Structure and electrochemistry of LixCoyCo1-yO2[J]. Solid State Ionics, 1994, 68: 65-69.
    [18] Alcantara R, Jumas J C, Lavela P, et al. X-ray diffraction Fe Mossbauer and the step of potential electrochemical spectroscopy study of LiFeyCo1-yO2 compounds[J]. J Power Sources, 1999, 81-82: 547-553.
    [19] Stoyanova R, Zhecheva E, Zarkova L. Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1-yO2 solid solution[J]. Solid State Ionics,1994,73:233-241.
    [20] W Huang,R Frech.Vibrational spectroscopic and electrchemical studies of the low and high tempertarure phase of LiCo1-xMxO2(M=Ni or Ti)[J]. Solid State Ionics, 1996, 86-88: 395-400.
    [21] Yasunori Baba, Shigeto Okada, Jun-ichi Yamaki. Thermal stability of LixCoO2 cathode for lithium ion battery[J]. Solid State Ionics, 2002, 148(3-4): 311-316. [22 ]K. Hayashi, Y. Nemoto, T. Shirrichi, J. Yamaki. Electrolyte for high voltage Li/LiMn1.9Co0.1O4 cells [J]. J Power Sources, 1997, 68(2): 316-319.
    [23] Jephil. Cho. Direct micron-sized LiMn2O4 particle coating on LiCoO2 cathode matetial using surfactant[J]. Solid State Ionics, 2003, 160(3-4): 241-245.
    [24] Imanishi N, Fujii M, Hirano A, et al. Synthesis and characterization of nonstoichiometric LiCoO2[J]. J Power Sources, 2001, 97-98: 287-289.
    [25] Eishi Endo, Toshikazu Yasuda. A LiCoO2 Cathode Modified by Plasma Chemical Vapor Deposition for Higher Voltage Performance[J]. J Electrochem Soc, 2000, 147(4): 1291-1294.
    [26] Z. X. Wang, L. J. Liu, L. Q. Chen, et al. Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries[J]. Solid state Ionics, 2002, 148(3-4): 3352-342.
    [27] A G Rithchie, C O Giwa, J C Lee, et al. Future cathode materials for lithium rechargeable batteries[J]. J Power Source, 1999, 80(1): 98-102.
    [28] Bruce P G , Lisowska-Oleksiak A, Saida M Y, et al. Vacancy diffusion in the intercalation electrode Li1-xNiO2[J]. Soldi State Ionics, 1992, 57: 353-358.
    [29]闫俊美,杨金贤,贾永忠.锂电池的发展与前景[J].盐湖研究, 2001, 9(4): 58-62.
    [30]解晶莹,尹鸽平,史鹏飞,等.锂镍氧化物的合成和电化学行为研究[J].电源技术, 1997, 21(5): 185-189.
    [31] T Ohzuku. Electrochemistry and structural chemistry of LiNiO2(R3m) for 4V secondary lithium cells[J]. J Power Sources, 1993, 140(7): 1862-1870.
    [32] M Brouussely,F Petron.Li/LixNiO2 and Li/LiCoO2 rechargeable systems comparative study and performances of practical cells[J]. J Power Sources, 1993, (43/44): 209-216.
    [33] Mueller.Neuhaus J R,Dunlap R A..Understanding irreverible capacity in LiNiFeO cathode materials[J]. Electrochem Soc, 2000, 147(10): 3598-3605.
    [34] Pouillerie C, Croguennec L. Synthesis and Characterization of New LiNi1-yMgyO2 Positive Electrode materials for lithium-Ion Batteries[J]. Electrochem Soc, 2001, 147(6): 2016-2069.
    [35] M Broussely, P Biensan, B Simon. Lithium insertion into best materials: the key to success of Li ion batteries[J]. Electrochimica Acta.1999,45:7-12.
    [36] Eishi Endoaa, Toshikazu Yasudaa.Electrode modified by plasma chemical vapor deposition for highvoltage performance[J]. J Power Sources, 2001, 93(1-2): 87-92.
    [37] Kawakita J,Miuea T,Kishi T.Charging characterisitics of Li1+xV3O8[J]. Solid State Ionics, 1999, 118:141-148.
    [38]刘进,吴绍华,兰尧中.锂离子正极材料的研究与开发现状[J].云南冶金, 2005, 5(34): 36-39.
    [39]刘建睿,王猛,尹大川,等.锂离子电池正极材料LiV3O8的低温合成研究[J].无机化学学报, 2002, 17(30): 617-620.
    [40]吴宇平,万春荣,姜长印,等.锂离子电池-应用与实践[M].北京:化学化工出版社, 2004, 199-200.
    [41]刘业翔,胡国荣,禹莜元.锂离子电池研究与开发的新进展[J].电池, 2002, 5: 269-237.
    [42] T. Mstsumura, R. Kanno, Y. Inaba, Y. Kawamoto, et al. Synthesis,s tructure, and elecrochemical properties of a new caheode material LiFeO2, with a tunel structrue[J]. Electrochem. Soc, 2002, 149(12): 1509-1513.
    [43] Akahashi M, Tobishima S, Takei K, et al. Reaction behavior of LiFePO4[J]. J Power Sources, 2001, 97-98: 498-502.
    [44] Maxneil D D, Zhonghu L, Zhaohui C, et al. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Liion battery cathodes[J]. J Power Sources, 2002, 108(1-2): A8-A14.
    [45] Shoufeng Y,Peter Y Z, Whittinggham M S,et al.Hydrothermal synthesis of lithium iron phosphate cathodes[J]. Electrochem Commut, 2001, 3(9): 505-508.
    [46] Y Gao, J IR Dahn. Synthesis and characterization of Li1+xMn2-xO4 for lithium ion battery application[J]. Electrochem Soc, 1996, 143(1): 100-144.
    [47] H. M. Wu, J. P. Tu, Y. F. Yuan, et al. One-step synthesis LiMn2O4 cathode by a hydrothermal method[J]. J Power Sources, 2006, 161: 1260-1263.
    [48] C. Y. Wan, Y. N. Nuli, J. H. Zhuang, et al. Synthesis of spinel LiMn2O4 using direct solid state reaction[J]. Materials Letters, 2002, 56:357-363. [49 ]李景虹.先进电池材料[M].北京:化学工业出版社, 2004: 265-272.
    [50] Y. Y. Xia, N. Kumada, M. Yoshio. Enhancing the elevated tempertaure performance of Li/LiMn2O4 cells by reducing LiMn2O4 surface area[J]. J power Sources, 2000,90:135-138. [51 ]G. G. Amatucci, N. Pereira, T. Zheng, et al. Enhancement of the electrochemical properties of LiMn2O4 through chemical substitution[J]. J Power Sources 1999, 81-82: 39-43.
    [52] Xia Y, Yoshio M. Studies on Li-Mn-O spinel system(obtained from melt-impregnation) as a cathode for 4V lithium batteries(IV). High and low temperature performance of LiMn2O4[J]. J Power Sources, 1997, 66(1-2): 129-133.
    [53]陈彦彬,刘庆国.高温下LiMn2O4的容量衰减及对策[J].电池, 2001, 31(4): 198-201.
    [54] Y. Zhang, L. Z. Ouyang, C. Y. Chung, et al. Sputtered Al-doped lithium manganese oxide films for thecathode of lithium ion battery: The post-deposition annealing temperature effect[J]. J Allloys and Compounds, 2009, 480: 981-986.
    [55].W. S. Yang, G. Zhang, J. Y. Xie, et al. A combustion method to prepare spinel phase LiMn2O4 cathode materials for lithium-ion batteries[J]. J Power Sources, 1999, 81-82: 412-415.
    [56] D. shu, G. Kumar, K. B. Kim, et al. Surface modification of LiMn2O4 thin films at elevated temperature[J]. Solid State Ionics, 2003, 160: 227-223.
    [57] Guohe Hu, Xiaobing, Fang Chen, et al. Study of the electrochemical performance of spinel LiMn2O4 at high temperature based on the polymer modified electrode[J]. Electrochemistry Communications 2005, 7:383-388.
    [58] Aragane J, Matsui K, Andoh H, et al. Development of 10Wh Class Lithium Secondary Cells in the New Sunshine Program[J]. J Power Sources, 1997, 68, 13-18.
    [59]王敬欣.锂离子电池正极材料LiMn2O4的研究的研究进展[J].稀有金属, 2002, 26(6), 493-496.
    [60]康慨,戴受惠,万玉华.固相配位化学反应法合成LiMn2O4的研究[J].功能材料, 2000, 31(3): 283-285.
    [61]赵铭姝,翟玉春,田彦文.固相分段法制备锂离子电池正极材料LiMn2O4的实验[J].过程工程学报, 2001, 1(4): 402-407.
    [62] Xia Y J, Hideshma Y, Nagamo M, et al. Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4V lithium batteries[J]. J Power Sources, 1998, 74(1): 24-28.
    [63]叶世海,吕江英,高学平,等.球磨促进高温固相反应合成尖晶石LiMn2O4[J].电源技术, 2002, 26(3): 151-153.
    [64]吴宇平,万春荣,姜长印,等.用溶胶凝胶法制备锂离子蓄电池材料[J].电源技术, 2000, 24(2): 112-115.
    [65] Fey G, Ting Kuo, Subramanian V, et al. LiNi0.8Co0.2O2 Cathode Matetials Synthesized by the Maleic Acide Assisted Sol-gel Method for Lithium Batteries[J]. J Power Sources, 2002, 103: 265-272.
    [66]刘光明,李美铨,高虹,等.锂离子正极材料LiMn2O4的合成[J].研究与设计, 2002, 26(1): 9-10.
    [67] Campion C L, Li W T, Euler W B, et al. Suppression of Toxic Compounds Produced in the Decomposition of Lithium-ion Battery Electrolytes[J]. Solide State Lett, 2004, 7: 194-196.
    [68]吴宇平,戴小兵,马军旗,等.锂离子电池-应用与实践[M].北京:化学工业工业出版社, 2004, 185-186.
    [69] Kwang Tack Hwang, Woon Sikum, Hee Soolee, et al, Powder synthesis and eletrochemical properties of LiMn2O4 prepared by an emulsion-drying method J Power Sources, 1998, 74: 169-174.
    [70] Takada Toshimi, Hayakawa Hiroshi, Enoki Hirotosi, et al. Structure and electrochemical characterization of Li1+xMn2-xO4 for Li-ion battery applications[J]. J Electrochem Soc, 1996, 143(1): 100-114.
    [71]黄松涛,阚素荣,储茂友,等.锂改性尖晶石锰酸锂的循环伏安特性及其电化学性能的研究[J].稀有金属, 2006, 30(4): 448-452.
    [72] Hee Soo Moon, Jong Wan Park. Improvement of cyclability of LiMn2O4 thin films by transition-metal substitution[J]. J Power Sources , 2003, (119-121): 717-720.
    [73] Amine K, Tukamoto H, Yasuda H, et al. Preparation and electrochemical investigation of LiMn2-xMexO4(Me: Mi, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries[J]. J Power Sources, 1997,68: 604-609.
    [74] Thirunakapan R, Kim K T, Kang Y M, et al. Cr3+ modified LiMn2O4 spinel intercalation cathodes through oxalic acid assisted sol-gel method for lithium rechargeable batteries[J]. Materials Researche Bulletin, 2005, 40: 177-186.
    [75] Tlee Y S, Kumada N, Yoshio M T. Synthesis and characteization of lithium aluminum-doped spinel(LiAlxMn2-xO4) for lithium secondary battery[J]. J Power Sources, 2001, 96: 376-384.
    [76] Takahashi M, Yoshida T, Ichikawa A, et al. Effect of oxygen deficiency reduction in Mg-doped Mn-spinel on its cell storage performance at high temperature[J]. Electrochimica Acta, 2006, 51: 5508-5514.
    [77] L. H. Yu, X. P. Qiu, J. Y. Xi, et al. Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification four Li-ion battery[J]. Electrochimica Acta, 2006, 51: 6406-6411.
    [78] Robertson A D, Lu S H, Averill W F, et al. M3+ modified LiMn2O4 spinel inter calation cathodes[J]. Electochem Soc, 1997, 144(11): 3500-3505.
    [79]夏君磊,赵世玺. F掺杂影响LiMn2O4性能的机理研究[J].功能材料, 2004, 35(1): 74-76.
    [80] Han C , Hong Y, Hong H, et al.Electrochemical properties of iondine-containing lithium manganese oxide spinel[J]. J Power Sources, 2002, 111: 176-180.
    [81] Hong Y S, Han C H, Kim K, et al. Structural and electrochemical properties of the spinel Li(Mn2-xLix/4Co3x/4)O4[J]. Solid State Ionics, 2001, 139:75-81.
    [82] Shaju KM, Rao G, Chowdari B. Spinel phase, LiM1/6Mn11/6O4(M=Co, CoAl, CoCr, CrAl), as cathodes for lithium-ion batterier[J]. Solid State Ionics, 2002, 148:343-350.
    [83] Tsai Y W, Santhanam R, Hwang B J, et al. Structure stabilization of LiMn2O4 cathode material by bimetal dopants[J]. J Power Sources, 2003, 119-121: 701-705.
    [84]杜国栋,努丽燕娜. LiM0.5Mn1.5O4-xF高电压电极高温保存下的电化学行为[J].物理化学学报, 2008, 24(10): 165-170.
    [85]唐致远,卢星河,张娜,等.阴阳离子复合掺杂对尖晶石正极材料的影响[J].物理化学学报, 2005, 21(8): 934-938.
    [86] Z. X. Yang, W. S. Yang, D. G. Evans, et al. The effect of a Co-Al mixed metal oxide coating on the elevated temperature performance of a LiMn2O4 cathode material[J]. J Power Sources, 2009, 189: 1147-1153.
    [87]周振平,赵世皇,柳震,等.正极材料LixMn2O4容量在循环过程中的损失机理研究[J].材料导报, 2001, 15(5): 30-33.
    [88] Amatucci G G, Pasquier A D, Blyra, et al. The elevated temperature performance of the LiMn2O4/C system: failture and solutions[J]. Electrochemica Acta, 1999, 45: 255-271.
    [89] Amatucci G, Blyr A, Sigala C, et al. Surface treaatments of Li1+xMn2-xO4 Spinels for improved elevated temperature performance[J]. Solid State Ionics, 1997, 104:13-25.
    [90]康彩荣,沈丽娜,丁毅,等.锂离子电池正极材料锰酸锂的制备与改性研究[J].无机盐工业, 2009, 4(2): 10-13.
    [91]张仁刚,赵世玺,夏君磊,等.尖晶石LiMn2O4的表面改性研究[J].电化学, 2002, 8(3): 269-274.
    [92] Park. S. C, Kim. Y. M,Kang. Y. K,et al. Improvement of the rate capacility of LiMn2O4 by surface coating with LiCoO2[J]. J Power Sources, 2001, 103: 86-92.
    [93]陈敬波,胡国荣,禹筱元,等.锂离子蓄电池正极材料LiMn2O4包覆LiCoO2对LiMn2O4循环性能影响[J].电源技术, 003, 27(3): 84-286, 342.
    [94] Z. S. Zheng, Z. L. Tang, Z. T. Zhang, et al. Surface modification of Li1.03Mn1.97O4 spinels for improved capacity retention[J]. Solid State Ionics, 2002, 148: 317-321.
    [95]王志兴,邢志军,李新海,等.非均匀成核法表面包覆氧化铝的尖晶石LiMn2O4研究[J].物理化学学报, 2004, 20(8): 790-794.
    [96] Z. R. Chang, Z. J. Chen, F. Wu, et al. Synthesis and characterization of high-density non-spherical Li(Ni1/3Co1/3Mn1/3)O2 cathode material for lithium ion batteries by two–step drying method[J]. Electrochim. Acta, 2008, 53: 5927-5933.
    [97] M. Broussely, P.Biensan, B. Simon. Lithium insertion into host materials: the key to success for Liion batteries[J]. Electrochim. Acta, 1999, 45: 3-22.
    [98] A. Ogata, T. Shimizu, S. Komaba. Crystallization of LiMn2O4 observed with high temperature X-ray diffraction[J]. J Power Sources, 2007, 174: 756-760.
    [99]郑洪河,徐仲榆.影响LiMn2O4正极材料容量衰退的主要因素[J].电池, 2001, 31(30): 119-122.
    [100] Zhaorong Chang, Zhongjun Chen, Feng Wu, et al. Preparation of Li(Ni1/3Co1/3Mn1/3)O2 by spherical Ni1/3Mn1/3Co1/3OOH at a low temprature[J]. J Power Sources, 2008, 185:1408-1414.
    [101] Zhaorong Chang, Zhongjun Chen, Feng Wu, et al. Synthesis and characterization of high-density non-spherical Li(Ni1/3Co1/3Mn1/3)O2 cathode material for lithium ion batteries by two–step drying method[J]. Electrochim. Acta, 2008, 53:5927-5933.
    [102] Zhaorong Chang, Zhongjun Chen, Feng Wu, et al. A synthesis and properties of high tap-density cathode material for lithium ion battery by the eutectic molten-salt method[J]. Solid State Ionics,2 008, 179:2274-2277.
    [103] Zhaorong Chang,Dongmei .Dai, Hongwei Tang, et al. Effects of precursor treatment with reductant or oxidant on the structure and electeochemical properies of LiNi0.5Mn1.5O4[J]. Electrochimical Acta, 2010, 55: 5506-5510.
    [104] D. shu,G. Kumar, K. B. Kim, et al. Surface modification of LiMn2O4 thin films at elevated temperature[J]. Solid State Ionics, 2003, 160: 227-223.
    [105 ]H. M. Wu, J. P. Tu, Y. F. Yuan, et al. One-step synthesis LiMn2O4 cathode by a hydrothermal method[J]. J Power Sources, 2006, 161: 1260-1263.
    [106] C. Y. Wan, Y. N. Nuli, J. H. Zhuang, et al. Synthesis of spinel LiMn2O4 using direct solid state reaction[J]. Materials Letters, 2002, 56: 57-363.
    [107] Q. S. Liu, L. H. Yu, H. H. Wang. Preparation of LiMn2O4 with an enhanced performance by mixed liquid and mechanical activations[J]. J Alloys and Compounds, 2009, 486: 886-889.
    [108] T. S. D. Kumari, R. Kannan, T. P. Kumar. Synthesis of LiMn2O4 from a gelled ovalbumin matrix[J]. Ceramics International, 2009, 35: 1565-1568.
    [109] W Li, C C Jin. Morphology Effects on the Electrochemical Performance of LiNi1-xCoxO2[J]. J Electrochem Soc, 1997, 144: 2773-2779.
    [110] Tsutomu Ohzuku, Atsuhi Ueda, Masatosh Magyama, et al. Comparative Study of LiCoO2, LiNi0.5Co0.5O2 and LiNiO2 for 4 Volt Secondary Lithium Cells[J]. Elecirochimica Acta, 1993, 38: 159-1167.
    [111] Apabane J, Matsui K, Andoh H, et al. Development of 10Wh Class Lithium Secondary Cells in the New Sunshine Program[J]. J Power Sources, 1997, 68: 13-18.
    [112] Q. H. zhang, S. P. Li, S. Y. Sun, et al. LiMn2O4 spinel direct synthesis and lithium ion selective adsorption[J]. Chemical Engineering Science, 2010, 65: 169-173.
    [113] D. Ke, G. R. Hu, D. P. Zh. et al. Synthesis of spinel LiMn2O4 with manganese carbonate prepared by micro-emulsion method[J]. Electrochimical. Acta, 2010, 55: 1733-1739.
    [114] S. J. Bao, C. M. Li, H. L. Li. Morphology and electrochemistry of LiMn2O4 optimized by using different Mn-sources[J]. J Power Sources, 2007, 164: 885-889.
    [115]马子川,谢亚勃,张雪荣.二氧化锰分析方法的改进[J].河北师范大学学报(自然科学版), 2001, 25(1): 83-85.
    [116]陈飞宇,梅光贵,谭柱中.硫酸锰溶液制备电子级四氧化三锰的研究[J].中国锰业, 2003, 21(3): 14-16.
    [117] J. F. Lee, Y. W. Tsai, Raman Santhanam, et al. Local structrue trasformation of nano-sized Al-doped LiMn2O4 sintered at differert teperatures[J]. J Power Sourece, 2003, 119-121:721-726.
    [118]王志兴,陈健,李新海,等. Al掺杂对锰酸锂结构和性能的影响[J].电池, 2005, 35(2): 119-121.
    [119] R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, et al. Electrochemical behabiour of nano-sized spinel LiMn2O4 and LiAlxMn2-xO4(x=Al: 0.00-0.40) synthesized via fumaric acid-assisted sol-gel synthesis for use in lithium rechargeable batteries[J]. J Physics and Chemistry of Solids, 2008, 69: 2082-2090.
    [120] Tingfeng Yi, Xingguo Hu, Kun Gao. Synthesis and physicochemical properties of LiAl0.05Mn1.95O4 cathode material by the ultrasonic-assisted sol-gel method[J]. J Power Sources, 2006, 162(1): 636-643.
    [121]吕东生,李伟善,刘煦,等.一些金属阳离子的掺杂对尖晶石LiMn2O4的结构和电化学性质的影响[J].中国锰业, 2002, 20: 30-35.
    [122]万新华,梁江涛,连芳,等.混合正极材料AA型电池的高温和安全性能[J].电源技术, 2004,28(8): 466-469.
    [123]金明钢,孟冬,尤金跨.发展中的聚合物锂离子电池-电池生产工艺进展[J].电池, 2002, 32(4): 235-237.
    [124]解晶莹.方型锂离子电池的设计[D].北京:北京科技大学, 1999.
    [125]姚耀春.尖晶石LiMn2O4的制备及其电池制备技术与性能的研究[D].昆明:昆明理工大学, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700