用户名: 密码: 验证码:
基于光纤激光器自混合干涉的位移测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光自混合干涉基于外部光反馈效应,激光器输出的光被外部物体反射或散射后,其中一部分光又耦合回激光器的谐振腔,反馈光携带了外部物体的信息,与腔内光相混合后,调制激光器输出功率及输出频率,形成自混合干涉。由于自混合干涉具有结构简单、易于准直及灵敏度高等优点,可用于速度、位移、距离及振动等物理量的精密测量,从而形成了一门新的技术。
     首先研究了光纤激光器自混合干涉理论,运用了四镜腔模型阐述了线形腔光纤激光器自混合干涉效应的基本原理,获得了光反馈条件下激光器输出功率及输出频率的数学表达式,对不同反馈水平下的自混合干涉信号进行了理论分析与数值模拟,探讨了实验参数对自混合干涉信号输出波形的影响。研究了环形腔光纤激光器自混合干涉的基本理论,设计了基于光纤激光器的自混合干涉测量系统,实验验证了理论分析的结果。
     应用光纤激光器的自混合干涉效应对微位移的测量方法进行了研究。为了提高自混合干涉的微位移测量精度,将正弦相位调制方法引入光纤激光器自混合干涉测量技术中。在光纤激光器外腔中使用电光晶体相位调制器或光纤压电相位调制器调制自混合干涉信号。研究了两种基于正弦相位调制自混合干涉信号的高精度相位解调方法:频域谐波分析技术及时域四象限积分技术。文中对两种解调方法分别给出了理论分析的结果,并对测量过程中主要的误差来源及其对测量精度的影响进行了分析。分别搭建了基于线形腔光纤激光器和环形腔光纤激光器的实验系统,对外反射靶面的微米级动态位移进行了重构,微位移重构的最大误差分别为V20和λ/15。59868
     为提高位移测量范围,开展了光纤激光器自混合干涉合成波长法的研究,从理论上探讨了自混合干涉合成波长法进行位移测量的方法,并进行了原理性实验。
The laser self-mixing interference (SMI) is based on the external optical feedback effect. When a portion of light emitted from a laser source is reflected or scattered back into the laser cavity by an external target, the feedback light which carries information of the external target will mix with the light inside the cavity, causing a modulation of both the optical output power and lasing frequency. The self-mixing interferometric system has a lot of advantages such as inherent compactness, easy to collimate and high sensitivity. The SMI is able to achieve precision measurement of many physical quantities, such as velocity, displacement, distance and vibration, and it becomes a novel kind of powerful metrological tool.
     The basic theory of SMI based on the fiber laser has been studied. The principle of the linear cavity fiber laserf SMI effect has been demonstrated through the four mirror cavity model. The optical output power and frequency has been deduced and the behavior of a laser under different optical feedback conditions have been analyzed and simulated as well. The influence of the experimental parameters on the shape of the SMI signal has been discussed in detail. Furthermore, the theory of SMI in the fiber ring laser has been studied. And the measurement system based on the SMI in the fiber lasers have been developed to validate the theoretical analysis.
     The application of the fiber laser SMI in micro-displacement measurment is presented. In order to improve the displacement measurement accuracy of the interferometer, sinusoidal phase modulation method is introduced into the SMI system. The SMI signal is modulated by an electro-optic modulator or a fiber stretcher modulator in the external cavity. Two kinds of demodulation methods have been proposed. And the measurement principle based the fast Fourier transforms analysis and four-bucket integration technique has been demonstrated respectively. Error sources during the measurement and its influence on the measurement accuracy has been discussed and simulated. Experimentally, the fiber laser SMI system with phase modulation has been set up to reconstruct micro-displacement of the external target. The experimental results show that the displacement of target has been retrieved with high accuracy.
     In order to enlarge the measurement range of the interferometer, the synthetic-wavelength method and self-mixing interference technique has been combined for large-scale displacement measurement. The measurement principle has been demonstrated and the experiments have been carried out.
引文
1. Giuliani, G., et al., Laser diode self-mixing technique for sensing applications, JOURNAL OF OPTICS A:PURE AND APPLIED OPTICS,2002.4(6):p. S283.
    2. Wang, W.M., et al., Self-mixing interference in a diode laser:experimental observations and theoretical analysis. Appl. Opt.,1993.32(9):p.1551-1558.
    3. King, P.G.R. and G.J. Steward, Metrology with an optical maser. New Sci.,1963.17:p.180.
    4. Peek, T.H., P.T. Bolwijn, and C.T.J. Alkemade, Axial Mode Number of Gas Lasers from Moving-Mirror Experiments. American Journal of Physics,1967.35(9):p.820-831.
    5. Rudd, M.J., A laser Doppler velocimeter employing the laser as a mixer-oscillator. Journal of Physics E:Scientific Instruments,1968.1(7):p.723.
    6. Lang, R. and K. Kobayashi, External optical feedback effects on semiconductor injection laser properties. Quantum Electronics, IEEE Journal of,1980.16(3):p.347-355.
    7. Mark, J., E. BA.dtker, and B. Tromborg, Measurement of Rayleigh backscatter-induced linewidth reduction. Electronics Letters,1985.21(22):p.1008-1009.
    8. Tkach, R.W. and A.R. Chraplyvy, Regimes of feedback effects in l.Sum distributed feedback lasers. Journal of Lightwave Technology,1986.4(11):p.1655-1661.
    9. Miles, R.O., et al., Feedback-induced line broadening in cw channel-substrate planar laser diodes. Applied Physics Letters,1980.37(11):p.990-992.
    10. Lenstra, D., B. Verbeek, and A. Den Boef, Coherence collapse in single-mode semiconductor lasers due to optical feedback. JEEE Journal of Quantum Electronics,1985.21(6):p.674-679.
    11. Cohen, J.S. and D. Lenstra, Spectral properties of the coherence collapsed state of a semiconductor laser with delayed optical feedback. IEEE Journal of Quantum Electronics, 1989.25(6):p.1143-1151.
    12. Shimizu, E.T., Directional discrimination in the self-mixing type laser Doppler velocimeter. Appl. Opt.,1987.26(21):p.4541-4544.
    13. Jentink, H.W., et al., Small laser Doppler velocimeter based on the self-mixing effect in a diode laser. Appl. Opt.,1988.27(2):p.379-385.
    14. de Groot, P.J., G.M. Gallatin, and S.H. Macomber, Ranging and velocimetry signal generation in a backscatter-modulatedlaser diode. Appl. Opt.,1988.27(21):p.4475-4480.
    15. De Groot, P.J., Range-dependent Optical Feedback Effects on the Multimode Spectrum of Laser Diodes. Journal of Modern Optics,1990.37(7):p.1199-1214.
    16. Wang, W.M., et al., Fiber-optic Doppler velocimeter that incorporates active optical feedback from a diode laser. Opt. Lett.,1992.17(11):p.819-821.
    17. Abdulrhmann, S.G., et al., An improved analysis of semiconductor laser dynamics under strong optical feedback. Selected Topics in Quantum Electronics, IEEE Journal of,2003.9(5): p.1265-1274.
    18. Liu, G., et al., A 450 MHz frequency difference dual-frequency laser with optical feedback. Optics Communications,2004.231(1-6):p.349-356.
    19. Fei, L., et al., Polarization control in a He-Ne laser using birefringence feedback. Opt. Express,2005.13(8):p.3117-3122.
    20. Tan, Y. and S. Zhang, Self-mixing interference effects of microchip Nd:YAG laser with a wave plate in the external cavity. Appl. Opt.,2007.46(24):p.6064-6068.
    21. Cui, L., Orthogonal Polarized Laser Feedback Theory Based on Cavity Tuning and Frequency Stabilized Displacement Measuring System, 精密仪器与机械学系.2008, Tsinghua University:Beijing, p. 111,
    22. Chen, W., S, Zhang, and X. Long, Locking phenomenon of polarization flipping in He-Ne laser with a phase anisotropy feedback cavity. Appl. Opt.,2012.51(7):p.888-893.
    23. Liu, G., et al., Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser. Optics Communications,2003.221(4-6):p. 387-393.
    24. Liu, G., et al., Optical feedback signals involving the misalignment information. Optics and Lasers in Engineering,2006.44(6):p.567-576.
    25. Liu, G., et al., Modes competition in a dual modes HeNe laser with optical feedback. Optics & Laser Technology,2007.39(3):p.593-597.
    26. Chen, W., S. Zhang, and X. Long, Angle measurement with laser feedback instrument. Opt. Express,2013.21(7):p.8044-8050.
    27. Chen, W., et al., Polarization flipping and hysteresis phenomenon in laser with optical feedback Opt. Express,2013.21(1):p.1240-1246.
    28. Yu, Y., H. Ye, and J. Yao, Analysis for the self-mixing interference effects in a laser diode at high optical feedback levels. Journal of Optics A:Pure and Applied Optics,2003.5(2):p.117.
    29. 禹延光,叶会英,姚建铨,激光自混合干涉位移测量系统的稳态解.光学学报,2003.23(1):p.80-84.
    30. Liang Lu, M., IEEE, Zhigang Cao, Jijun Dai, Feng Xu, and Benli Yu, Self-Mixing Signal in Er3 +-Yb3+ CodopedDistributed Bragg Reflector Fiber Laser forRemote Sensing Applications up to 20 Km IEEE PHOTONICS TECHNOLOGY LETTERS,2012.24.
    31. Wang, H., et al., Optimized design of laser range finding system using the self-mixing effect in a single-mode VCSEL Chin. Opt. Lett.,2006.4(2):p.87-90.
    32. Lu, L., et al., Self-mixing interference in an all-flberized configuration Er3+-Yb3+ codoped distributed Bragg reflector laser for vibration measurement. Current Applied Physics,2012. 12(3):p.659-662.
    33. 吕亮,面发彩半导体激光器自混合振动测量实验研究.光电子激光,2011.22(4):p.4.
    34. Guo, D. and M. Wang, Self-mixing interferometer based on temporal-carrier phase-shifting technique for micro-displacement reconstruction. Optics Communications,2006.263(1):p. 91-97.
    35. Dai, X., M. Wang, and C. Zhou, Multiplexing Self-Mixing Interference in Fiber Ring Lasers. Photonics Technology Letters, IEEE,2010.22(21):p.1619-1621.
    36. Zhou, J. and M. Wang, Effects of self-mixing interference on gain-coupled distributed-feedback lasers. Opt. Express,2005.13(6):p.1848-1854.
    37. Zhou, J., M. Wang, and D. Han, Experiment observation of self-mixing interference in distributed feedback laser. Opt. Express,2006.14(12):p.5301-5306.
    38. Zhao, Y, et al., Self-Mixing Interference in Fiber Ring Laser With Parallel Dual-Channel. Photonics Technology Letters, IEEE,2009.21(13):p.863-865.
    39. Guo, D., M. Wang, and S. Tan, Self-mixing interferometer based on sinusoidal phase modulating technique. Opt. Express,2005.13(5):p.1537-1543.
    40. Xia, W., et al., Development of a sinusoidal phase-shifting self-mixing interferometer for real-time displacement measurement with nanometer accuracy. Measurement Science and Technology,2013.24(5):p.055011.
    41. Shinohara, S., et al., Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode. Appl. Opt.,1986.25(9):p.1417-1419.
    42. Donati, S., Laser interferometry by induced modulation of cavity field. Journal of Applied Physics,1978.49(2):p.495-497.
    43. Donati, S., G. Giuliani, and S. Merlo, Laser diode feedback interferometer for measurement of displacements without ambiguity. IEEE Journal of Quantum Electronics,1995.31(1):p. 113-119.
    44. Donati, S., L. Falzoni, and S. Merlo, A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements. Instrumentation and Measurement, IEEE Transactions on,1996.45(6):p.942-947.
    45. Bes, C, G. Plantier, and T. Bosch, Displacement measurements using a self-mixing laser diode under moderate feedback. Instrumentation and Measurement, IEEE Transactions on,2006. 55(4):p.1101-1105.
    46. Gouaux, F., N. Servagent, and T. Bosch, Absolute Distance Measurement with an Optical Feedback Interferometer. Appl. Opt.,1998.37(28):p.6684-6689.
    47. Giuliani, G. and M. Norgia, Laser diode linewidth measurement by means of self-mixing interferometry. Photonics Technology Letters, IEEE,2000.12(8):p.1028-1030.
    48. Merlo, S. and S. Donati, Reconstruction of displacement waveforms with a single-channel laser-diode feedback interferometer. Quantum Electronics, IEEE Journal of,1997.33(4):p. 527-531.
    49. Servagent, N., F. Gouaux, and T. Bosch, Measurements of displacement using the self-mixing interference in a laser diode. Journal of Optics,1998.29(3):p.168.
    50.郭冬梅,相位调制型激光自混合干涉测量微纳米技术的研究.博士论文,2007.
    51. Beheim, G. and K. Fritsch, Range finding using frequency-modulated laser diode. Appl. Opt., 1986.25(9):p.1439-1442.
    52. Guido, G., et al., Laser diode self-mixing technique for sensing applications. Journal of Optics A:Pure and Applied Optics,2002.4(6):p. S283.
    53. Han, D.F., M. Wang, and J.P. Zhou, Fractal analysis of self-mixing speckle signal in velocity sensing. Optics Express,2008.16(5):p.3204-3211.
    54. Plantier, G., et al., Real-time parametric estimation of velocity using optical feedback interferometry. Instrumentation and Measurement, IEEE Transactions on,2001.50(4):p. 915-919.
    55. Koelink, M.H., et al., Laser Doppler Velocimeter Based On The Self-Mixing Effect In A Fiber-Coupled Semiconductor Laser:Theory. Appl. Opt.,1992.31(18):p.3401-3408.
    56. Shibata, T., et al., Laser speckle velocimeter using self-mixing laser diode. Instrumentation and Measurement, IEEE Transactions on,1996.45(2):p.499-503.
    57. Daofu, H., W. Ming, and Z. Junping, Self-Mixing Speckle in an Erbium-Doped Fiber Ring Laser and Its Application to Velocity Sensing. Photonics Technology Letters, IEEE,2007. 19(18):p.1398-1400.
    58. Kato, J., et al., Non-contact optical probing sensor — applying optical feedback effects in laser diodes. Measurement,1991.9(4):p.146-152.
    59. Guo, D. and M. Wang, Self-mixing interferometry based on a double-modulation technique for absolute distance measurement. Appl. Opt.,2007.46(9):p.1486-1491.
    60. Giuliani, G, et al., Angle measurement by injection detection in a laser diode. Optical Engineering,2001.40(1):p.95-99.
    61. Raoul, X., T.M. Bosch, and N. Servagent. Double laser diode speed sensor for contactless measures of moving targets.2002.
    62. Lu, C., et al., Imaging and profiling surface microstructures with noninterferometric confocal laser feedback. Applied Physics Letters,1995.66(16):p.2022-2024.
    63. Bosch, T., et al., Three-dimensional object construction using a self-mixing type scanning laser range finder. Instrumentation and Measurement, IEEE Transactions on,1998.47(5):p. 1326-1329.
    64. O"zdemir, S.a.K., et al., Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode:in vitro and in vivo experiments. Optical Engineering,2000.39(9):p. 2574-2580.
    65. Norgia, M., A. Pesatori, and L. Rovati, Self-Mixing Laser Doppler Spectra of Extracorporeal Blood Flow:A Theoretical and Experimental Study. Sensors Journal, IEEE,2012.12(3):p. 552-557.
    66. Meigas, K., et al. Simple coherence method for blood flow detection.2000.
    67. Meigas, K., et al., Pulse profile registration using self-mixing in a diode laser. Proc. IEEE/EMBS, Engineering in Medicine and Biology Society,1998.4:p.1875-1878.
    68. Serov, A.N., et al. Integrated probes containing a VCSEL and a multidetector chip for laser Doppler tissue perfusion monitoring.2001.
    69. Ozdemir, S.K., et al. , Self-mixing laser speckle velocimeter for blood flow measurement. Instrumentation and Measurement, IEEE Transactions on,2000.49(5):p.1029-1035.
    70. Rovati, L. and F. Docchio. Design and performance of a low-coherence sensor for industrial applications based on a self-mixing superluminescent diode.1999.
    71. Sekine, A., et al. Mask blank particle inspection in vacuum environments.2002.
    72. Laroche, M., et al., Doppler velocimetry using self-mixing effect in a short Er-Yb-doped phosphate glass fiber laser. Applied Physics B,2005.80(4-5):p.603-607.
    73. Mourat, G.g., N.I. Servagent, and T. Bosch, Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode. Optical Engineering,2000.39(3): p.738-743.
    74. Vogel, F. and B. Toulouse, A low-cost medium-resolution rangefinder based on the self-mixing effect in a VCSEL. Instrumentation and Measurement, IEEE Transactions on,2005.54(1):p. 428-431.
    75. 赵铭,分布布拉格反射单纵模光纤激光器研究.博士论文,2008.
    76. 许琰,可调谐窄线宽光纤激光器研究.硕士论文,2010.
    77. 楼祺洪,高功率光纤激光器及其应用.中国科学技术大学出版社,2010.
    78. Olsson, A. and C. Tang, Coherent optical interference effects in external-cavity semiconductor lasers. IEEE Journal of Quantum Electronics,1981.17(8):p.1320-1323.
    79. Mork, J., B. Tromborg, and J. Mark, Chaos in semiconductor lasers with optical feedback: theory and experiment. IEEE Journal of Quantum Electronics,1992.28(1):p.93-108.
    80. 禹延光,激光自混合干涉理论及其位移测量方法的研究.2000,哈尔滨工业大学.
    81. Wang, W.M., et al., Self-mixing interference inside a single-mode diode laser for optical sensing applications. Journal of Lightwave Technology,1994.12(9):p.1577-1587.
    82. Ovryn, B. and J.H. Andrews, Measurement of Changes in Optical Path Length and Reflectivity with Phase-Shifting Laser Feedback Interferometry. Appl. Opt.,1999.38(10):p. 1959-1967.
    83. Ovryn, B. and J.H. Andrews, Phase-shifted laser feedback interferometry. Opt. Lett.,1998. 23(14):p.1078-1080.
    84. Plantier, G., C. Bes, and T. Bosch, Behavioral Model of a Self-Mixing Laser Diode Sensor. IEEE Journal of Quantum Electronics,2005.41(9):p.1157-1167.
    85. Barnard, C, et al., Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE Journal of Quantum Electronics,1994.30(8):p.1817-1830.
    86. Dragic, P.D., Analytical model for injection-seeded erbium-doped fiber ring lasers. Photonics Technology Letters, IEEE,2005.17(8):p.1629-1631.
    87. 戴霞娟,光纤激光器自混合干涉理论及传感技术研究.博士论文,2010.
    88. Dai, X., et al., Self-mixing interference in fiber ring laser and its application for vibration measurement. Opt. Express,2009.17(19):p.16543-16548.
    89. Shinohara, S., et al., Compact and high-precision range finder with wide dynamic range and its application. Instrumentation and Measurement, IEEE Transactions on,1992.41(1):p. 40-44.
    90. Guido Giuliani, M.N., Silvano Donati and Thierry Bosch, Laser d/ode self-mixing t echnique for sensing applications. JOURNAL OF OPTICS A:PURE AND APPLIED OPTICS,2002. 4.
    91. Scalise, L., et al., Self-mixing laser diode velocimelry:application to vibration and velocity measurement. Instrumentation and Measurement, IEEE Transactions on,2004.53(1):p. 223-232.
    92. Han, D.F., M. Wang, and J.P. Zhou, Self-mixing speckle in an erbium-doped fiber ring laser and its application to velocity sensing, leee Photonics Technology Letters,2007.19(17-20):p. 1398-1400.
    93. Liang, L., et al., Self-Mixing Signal in Er3 +-Yb3+Codoped Distributed Bragg Reflector Fiber Laser for Remote Sensing Applications up to 20 Km. Photonics Technology Letters, IEEE,2012.24(5):p.392-394.
    94. Dai, X.J., et al., Self-mixing interference in fiber ring laser and its application for vibration measurement. Optics Express,2009.17(19):p.16543-16548.
    95. Guo, D., M. Wang, and S. Tan, Self-mixing interferometer based on sinusoidal phase modulating technique. Optics Express,2005.13(5):p.1537-1543.
    96. Sasaki, O. and H. Okazaki, Sinusoidal phase modulating interferometry for surface profile measurement. Appl. Opt.,1986.25(18):p.3137-3140.
    97. Wang, M., Fourier transform method for self-mixing interference signal analysis. Optics & Laser Technology,2001.33(6):p.409-416.
    98. Sasaki,0., H. Okazaki, and M. Sakai, Sinusoidal phase modulating interferometer using the integrating-bucket method. Appl. Opt.,1987.26(6):p,1089-1093.
    99. Guo, D. and M. Wang, Self-mixing interferometry based on sinusoidal phase modulation and integrating-bucket method. Optics Communications,2010.283(10):p.2186-2192.
    100. Laroche, M., et al., Serrodyne optical frequency shifting for heterodyne self-mixing in a distributed-feedback fiber laser. Opt. Lett.,2008.33(23):p.2746-2748.
    101. Chen, B., et al., Development of a laser synthetic wavelength interferometer for large displacement measurement with nanometer accuracy. Opt. Express,2010.18(3):p. 3000-3010.
    102. Yan, L., et al., Signal processing method of a laser synthetic wavelength interferometer. Measurement Science and Technology,2010.21(1):p.015106.
    103. Yan, L., et al., A novel laser wavelength meter based on the measurement of synthetic wavelength. Review of Scientific Instruments,2010.81(11):p.115104-115104-6.
    104. Falaggis, K., D.P. Towers, and C.E. Towers, Multiwavelength interferometry:extended range metrology. Opt. Lett.,2009.34(7):p.950-952.
    105. Towers, C.E., D.P. Towers, and J.D.C. Jones, Optimum frequency selection in multifrequency interferometry. Opt. Lett.,2003.28(11):p.887-889.
    106. Smith, L.M. and C.C. Dobson, Absolute displacement measurements using modulation of the spectrum of white light in a Michelson interferometer. Appl. Opt.,1989.28(16):p.3339-3342.
    107. Tucker, M.R. and E.R. Christenson. Absolute interferometer for manufacturing applications. 1991.
    108. de Groot, P., Three-color laser-diode interferometer. Appl. Opt.,1991.30(25):p.3612-3616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700