用户名: 密码: 验证码:
滇中森林可燃物燃烧性及林火行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滇中地处低纬度高原,地形高差较大,地貌复杂多样,立体气候明显,是云南和全国森林火灾的多发区与重灾区。特殊的气候、地形地势、森林类型和生产生活用火的多样性和复杂性,决定了滇中地区林火行为的复杂性和森林防火任务的艰巨性。研究滇中林区森林可燃物燃烧特性及林火行为特点,可以为正确认识滇中森林火灾发生规律及重点火险区治理提供科学依据。论文的主要研究内容、方法及结论有:
     ①滇中地区主要森林木本植物活叶片的燃烧性排序与分类。为比较不同森林植物活叶的燃烧性,在防火戒严期内对滇中地区11种主要森林木本植物的活叶片进行了高氧气氛下的燃烧试验,测定和计算了各种植物活叶片的含水率、单位面积质量、燃烧线速率、燃烧面积速率、燃烧质量损失速率、叶脉损毁程度、面积损毁程度、质量损毁程度等共计14个具体因子,运用因子分析方法对11种植物的燃烧性进行了排序,即炮仗花杜鹃>云南樟>云南含笑>厚皮香>大白花杜鹃>光叶石栎>小白花杜鹃>水红木>元江栲>云南野山茶>野八角。分析表明,11种活叶片的燃烧性可分为4类,其中极易燃类1种,易燃类4种,可燃类3种,难燃类3种。
     ②滇中地区主要森林木本植物中小径级活枝的燃烧性排序与分类。为综合分析和比较植物活枝的燃烧性,在森林防火紧要期内,对昆明地区15种常见木本植物中小径级的活枝进行了热辐射引燃试验,对小径级的活枝进行了氧指数试验。在测定样品直径、含水率、引燃时间、有焰燃烧时间、试验过程中烟气温度和质量损失变化过程等基础上,提出并计算了能够表征活枝燃烧性能的综合燃烧特性参数S。根据该参数对15种植物中小径级活枝的燃烧性能进行了排序,即:云南松<野八角<华山松<滇青冈<地盘松<云南樟<厚皮香<大白花杜鹃<炮状花杜鹃<云南含笑<小白花杜鹃<南烛<光叶石栎<元江栲<云南野山茶。氧指数试验结果表明,15种植物的小径级活枝均具有较强的阻燃性,根据氧指数及试验现象将15种植物的小径级活枝分为3类,其中难燃类4种(大白花杜鹃、野八角、厚皮香、南烛)、可燃类7种(云南含笑、云南松、地盘松、华山松、滇青冈、云南樟、云南野山茶)、较易燃类4种(小白花杜鹃、炮状花杜鹃、光叶石栎、元江栲)。直径、含水率、油脂含量等理化性质是造成两种试验条件下燃烧性差异的主要原因。
     ③滇中地区3种主要针叶树种松针燃烧的烟密度等级及其影响因素。为了解针叶燃烧的烟密度等级及其影响因素,进行了老叶、新叶和凋落叶烟密度试验。分析表明,对于云南松、地盘松、华山松活叶和凋落叶,随着质量的增加,燃烧的烟密度等级增加,但并不与质量呈正比。在干物质质量相近的情况下,凋落针叶燃烧的烟密度等级随含水率的增加而增加。
     ④基于FDS的滇中森林火行为模拟研究。构建了基于FDS的森林可燃物模型,对滇中森林火行为进行了研究,包括特定可燃物和环境条件下森林燃烧的初始蔓延速度,火环境对燃烧速率、热释放速率的影响等。分析表明,在火环境条件相近的情况下,用FDS软件模拟推算的森林地表火蔓延速率与通过燃烧试验测定的华山松林、云南松林细小可燃物层燃烧初始蔓延速度相近,用FDS进行森林地表火模拟是可行的。
Central Yunnan is a region with frequent and strong forest fires, both within the provinceand within China. The area is located on a low latitude plateau, with a large elevationdifference, complex and diverse topography, and clear three-dimensional climate. The uniquecharacteristics of climate, topography, forest type, and diverse fire sources produce acomplexity of forest fire behaviors and the difficulty of fire prevention. Research oncombustibility of forest fuel and fire behaviors can provide a basis for an understanding of theforest fire occurrence pattern and comprehensive fire management in the area. The mainresearch content, methods and conclusions in this paper are as follows:
     ①Study on combustibility using ordering and sorting of living leaves from commonnative woody species. To compare the combustibility difference of plant species, combustionexperiments of live leaves from11common native woody plant species were conducted withan oxygen index measuring instrument under high oxygen concentration during the peak forestfire season. Moisture content, mass per unit area, burning rate, and damage extent of the liveleaves were measured and calculated. The combustibility orders based on factor analysis fromstrong to weak were: Rhododendron spinuliferum> Cinnamomum glanduliferum> Micheliayunnanensis> Ternstroemia gymnanthera> Rhododendron decorum> Lithocarpus mairei>Rhododendron siderophyllum> Viburnum cylindricum> Castanopsis orthacantha> Camelliapitardii> Illicium simonsii. The results showed that the live leaves of11species could bedivided into four categories:1was very inflammable,4were inflammable,3were combustible,and3were difficultly inflammable.
     ②Study oncombustibility ordering and sorting of live branches of main forest woodyspecies. To understand the combustion characteristics of15common native woody plantspecies, a thermal radiation ignition experiment with small and medium size branches and anoxygen index experiment with small size branches were conducted during peak forest fire season. Based on the sample’s diameter, moisture content, time to ignition, quenching time offlaming combustion, smoking temperature, and weight loss, an integrated combustionparameter (S) reflecting the combustion characteristics was proposed. According to thecalculated S, the combustion order of the test tree species was Pinus yunnanensis     ③Study on the smoke density rating of3main coniferous species. In order to analyzeand compare the smoke density rating of conifers in burning, experiments using old and newconifers, litter from P. yunnanensis, P. armandii, P. yunnanensis Franch.var. pygmaea Hsuehwere conducted. The results showed that the smoke density rating of these3species increasedwith mass, but were not proportional. The smoke density rating of the litter increased withmoisture content, as with the case of a similar mass of dry matter.
     ④Simulation study on forest fire behavior based on Fire Dynamics Simulator (FDS). Thepaper modeled forest fuel with FDS, and studied the forest fire behaviors, including the initialspread rate of forest burning under certain conditions of fuel and environment, the affect ofenvironment factors on forest burning and heat release rate. The result showed that the forestsurface fire spread rate calculated with FDS was similar to the initial spread rate of litter of P.yunnanensis and P. armandii measured by the burning experiment, and thus FDS modelpredictions are likely to provide a close approximation to actual conditions, at least in this regard.
引文
[1]李世友,马长乐,罗文彪,等.昆明地区35种森林木本植物的燃烧性排序与分类[J].生态学杂志,2008,27(6):867~873.
    [2]李世友,王少名,年有春,等.落叶灌木南烛在防火戒严期的燃烧性动态[J].江西农业大学学报,2008,30(5):845~849.
    [3]李世友,马瑞杰,罗文彪,等.4种杨梅的燃烧性及应用[J].华中农业大学学报,2008,27(6):792~796.
    [4]李世友,陈文龙,王鹏,等.华山松朽木阴燃特性的初步研究[J].林业调查规划,2009,34(1):63~65.
    [5]李世友,马爱丽,王学飞,等.3种森林凋落物的阴燃特性研究[J].中南林业科技大学学报,2009,29(1):60~63.
    [6]李世友,马爱丽,王少名,等.14种常绿木本植物活枝叶在防火期的易燃性比较[J].生态学杂志,2009,28(4):601~606.
    [7]李世友,管晓媛,昌尼娜,等.旱冬瓜不同直径活枝燃烧性的比较[J].中南林业科技大学学报,2011,31(12):61~64.
    [8]李世友,昌尼娜,管晓媛,等.昆明地区15种常见木本植物活枝的燃烧性[J].生态学杂志,2012,31(2):276~281.
    [9] Cole W J, Dennis M K H, Fletcher T H, et al. The effects of wind on the flame characteristics ofindividual leaves[J]. International Journal of Wildland Fire,2011,20(5):657~667.
    [10] Pickett B M, Isackson C, Wunder R, et al. Flame interactions and burning characteristics of two liveleaf samples[J]. International journal of wildland fire,2009,18(7):865~874.
    [11] Sun L, Zhou X, Mahalingam S, et al. Comparison of burning characteristics of live and dead chaparralfuels[J]. Combustion and Flame,2006,144(1):349~359.
    [12] Dibble A C, White R H, Lebow P K. Combustion characteristics of north~eastern USA vegetation testedin the cone calorimeter: invasive versus non~invasive plants[J]. International Journal of Wildland Fire,2007,16:426~443.
    [13] Engstrom J D, Butler J K, Smith S G, et al. Ignition behavior of live California chaparral leaves[J].Combustion Science and Technology,2004,176(9):1577~1591.
    [14] Burrows N D. Flame residence times and rates of weight loss of eucalypt forest fuel particles[J].International Journal of Wildland Fire,2001,10(2):137~143.
    [15]张家来,曾祥福,刘学全,等.湖北森林防火树种选择的研究[J].华中农业大学学报,2000,19(1):84~90.
    [16]肖金香,胡松竹,袁平成,等.庐山旅游区森林防火技术体系研究[J].中国生态农业学报,2002,10(1):79~81.
    [17]李世友,王秋华,李本飞,等.滇中10种木本植物鲜叶和鲜枝易燃性比较[J].西南林学院学报,2006,26(1):56~58.
    [18]李世友,王秋华,张尚书,等.滇东北中高海拔地区防火树种筛选[J],西南林学院学报,2006,26(3):55~58.
    [19] Dimitrakopoulos A P, Panov P I. Pyric properties of some dominant Mediterranean vegetation species[J].International Journal of Wildland Fire,2001,10(1):23~27.
    [20] Hogenbirk J C, Sarrazin~Delay C L. Using fuel characteristics to estimate plant ignitability for firehazard reduction[J]. Water, air, and soil pollution,1995,82(1~2):161~170.
    [21]陈存及,何宗明,陈东华,等.37种针阔树种抗火性能及其综合评价的研究[J].林业科学,1995,31(2):135~143.
    [23]高国平,迟功德,周绍林,等.辽宁省主要造林树种抗火性能测定及其抗火树种的筛选[J].沈阳农业大学学报,1995,26(2):177~182.
    [22]徐六一,罗宁,刘桂华,等.安徽省防火树种的选择及评价研究[J].安徽农业大学学报,2005,32(3):349~353.
    [24] Fletcher T H, Pickett B M, Smith S G, et al. Effects of moisture on ignition behavior of moist Californiachaparral and Utah leaves[J]. Combustion Science and Technology,2007,179(6):1183~1203.
    [25]葛巍巍,张宏宇,唐朝纲,等.昆明地区16种阔叶树种的热重分析[J].林产化学与工业,2010,30(6):77~81.
    [26]张宏宇,葛巍巍,唐朝纲,等.昆明地区常见针叶树种叶的热解特性和动力学研究[J].消防科学与技术,2010,29(11):943~945.
    [27] Leroy V, Cancellieri D, Leoni E, et al. Kinetic study of forest fuels by TGA: model~free kineticapproach for the prediction of phenomena[J]. Thermochimica Acta,2010,497(1):1~6.
    [28] Villanueva M, Proupín J, Rodríguez~A ón J A, et al. Energetic characterization of forest biomass bycalorimetry and thermal analysis[J]. Journal of thermal analysis and calorimetry,2011,104(1):61~67.
    [29] Elder T, Kush J S, Hermann S M. Thermogravimetric analysis of forest understory grasses[J].Thermochimica Acta,2011,512(1):170~177.
    [30] Cancellieri D, Leroy~Cancellieri V, Leoni E, et al. Kinetic investigation on the smouldering combustionof boreal peat[J]. Fuel,2012,93:479~485.
    [31] Liu M H, Yi L T, Yu S Q, et al. Combustibility of fresh leaves of26forest species in China[J]. Journalof Tropical Forest Science,2013,25(4):528~536.
    [32] Madrigal J, Guijarro M, Hernando C, et al. Effective heat of combustion for flaming combustion ofMediterranean forest fuels[J]. Fire technology,2011,47(2):461~474.
    [33] Pickett B M, Isackson C, Wunder R, et al. Flame interactions and burning characteristics of two live leafsamples[J]. International journal of wildland fire,2009,18(7):865~874.
    [34] Bartoli P, Simeoni A, Biteau H, et al. Determination of the main parameters influencing forest fuelcombustion dynamics[J]. Fire Safety Journal,2011,46(1):27~33.
    [35] Cole W J, Dennis M K H, Fletcher T H, et al. The effects of wind on the flame characteristics ofindividual leaves[J]. International Journal of Wildland Fire,2011,20(5):657~667.
    [36] Dimitrakopoulos A P, Papaioannou K K. Flammability assessment of Mediterranean forest fuels[J]. FireTechnology,2001,37(2):143~152.
    [37] Scarff F R, Gray B F, Westoby M. Exploring phosphate effects on leaf flammability using a physicalchemistry model[J]. International Journal of Wildland Fire,2012,21(8):1042~1051.
    [38] Edgerley P G, Pettett K. The effect of pyrolysis and combustion temperatures on smoke density[J]. Fireand Materials,1978,2(1):11~17.
    [39]陈伯辉.典型内装修材料烟密度的实验研究[J].福建工程学院学报,2012,9(6):531~534.
    [40]张胜,范朝晖.用NBS烟箱研究金属化合物在软PVC中的消烟作用[J].北京理工大学学报,1997,17(2):235~239.
    [41]黄年华,王建祺.磷酸三苯酯/锡酸锌对环氧树脂酸酐固化物的阻燃与抑烟性能研究[J].北京理工大学学报,2005,25(2):176~179.
    [42]生瑜,朱德钦,陈建定.低烟密度,高膨胀率阻燃封堵材料的性质研究[J].化学建材,2003,19(4):22~23.
    [43]杜兰萍,马一太,刘圣春.标准房间火灾轰燃特性的实验研究[J].热科学与技术,2006,5(1):69~74.
    [44]李盛兴,包永忠,黄志明,等.纳米水滑石对PVC热稳定性和烟密度的影响[J].塑料助剂,2007(2):18~21.
    [45]黄一兰,杨春丽,黄显东.影响电缆燃烧烟密度曲线因素的探讨[J].煤矿安全,2004,35(7):36~38.
    [46]周保华,范洪欣,蔡发,等.影响电缆或光缆燃烧烟密度测定结果的因素[J].检验检疫科学,2006,16(2):45~47.
    [47]谷天硕,陈志林,曾灵.抑烟性阻燃中密度纤维板[J].消防科学与技术,2010,29(6):516~518.
    [48]陈志林,纪磊.木材阻燃剂的研究——氧指数与烟密度试验[J].中国阻燃,2012(5):5~6.
    [49]王清文,李淑君,崔永志,等.新型木材阻燃剂FRW的阻燃性能[J].东北林业大学学报,1999,27(6):31~33.
    [50] Rajulu K C V, Nandanwar A, Kiran M C. Evaluation of Smoke Density on Combustion of Wood BasedPanel Products[J]. International Journal of Materials and Chemistry,2012,2(5):225~228.
    [51]李明月,张天骄.聚醚醚酮织物的阻燃性能[J].纺织学报,2010,31(1):91~95.
    [52]卢灿辉.低烟密度防结露膨胀型防火涂料的研制[J].化学建材,1998,14(4):19~21.
    [53]石晓.酚醛泡沫塑料的共混改性研究[J].材料开发与应用,2000,15(6):11~13.
    [54]袁春明,文定元.林火行为研究概况[J].世界林业研究,2000,13(6):27~31.
    [55]小林忠一,李铁龙.山林火灾延烧速度的实验研究[J].陕西林业科技,1992(1):76~77.
    [56]冯岩.如何预测森林局部火灾的蔓延速度及强度[J].国外林业,1995,25(1):81~84.
    [57]毛贤敏,徐文兴.林火蔓延速度计算方法的研究[J].气象与环境学报,1991,1:9~13.
    [58]蒋礼,阳柳.森林火灾火场周长分形模型的研究[J].中南林学院学报,1995,15(2):170~173.
    [59]万福钧,毕世杰.用卵圆方程计算理想情况下火场的周边和面积[J].测绘信息与工程,武测科技,1996,(3):22~23
    [60]黄华国,张晓丽,王蕾.基于三维曲面元胞自动机模型的林火蔓延模拟[J].北京林业大学学报,2005,27(3):94~97.
    [61]王海军,张文婷,陈莹莹,等.利用元胞自动机作用域构建林火蔓延模型[J].武汉大学学报(信息科学版),2011,36(5):575~578.
    [62]张菲菲.基于地理元胞自动机的林火蔓延模型与模拟研究[D].汕头:汕头大学,2011.
    [63]苗双喜,黄杨,张波,等.基于Rothermel模型的森林火灾模拟算法的改进[J].地理信息世界,2013,10(6):14~21.
    [64]李建微,陈崇成,於其之,等.虚拟森林景观中林火蔓延模型及三维可视化表达[J].应用生态学报,2005,16(5):838~842.
    [65]秦向东,路长,林其钊.计算机图形技术在林火蔓延模拟计算中的应用[J].计算机辅助设计与图形学学报,2005,17(12):1671~1676.
    [66]郭国忠,金一丞,彭国均,等.森林火灾蔓延的三维实时仿真[J].中国图像图形学报,2003,8:743~747.
    [67] Perminov V. Mathematical Modeling of Crown Forest Fire Spread[J]. Open Journal of Forestry,2012,2(1):17~22.
    [68]胡林,冯仲科,聂玉藻,等.北京市房山区林火强度与环境因子间的关系[J].西北农林科技大学学报(自然科学版),2006,34(5):131~134.
    [69]王贤祥,刘宪德.森林火蔓延方式与火强度及自然风场的关系[J].火灾科学,1996,5(1):35~39.
    [70]尹承炜.用控制论确定林火强度[J].吉林林学院学报,1997,13(2):108~112.
    [71] Goto Y, Tamai K, Miyama T, et al. Forest fire intensity in Japan: estimation of Byram’s fireline intensityusing Rothermel’s fire spread model[J]. Journal of the Japanese Forest Society,2005,87(3):193~201.
    [72] Barboni T, Morandini F, Rossi L, et al. Relationship Between Flame Length and Fireline IntensityObtained by Calorimetry at Laboratory Scale[J]. Combustion Science and Technology,2012,184(2):186~204.
    [73] Barboni T, Morandini F, Rossi L, et al. Relationship between fireline intensity obtained by calorimetryand flame length[J]. Combustion and Fire Dynamics,,2010:427~439.
    [74]王晓莉,王文娟,常禹,等.基于NBR指数分析大兴安岭呼中森林过火区的林火烈度[J].应用生态学报,2013,24(4):967~974.
    [75]常禹,陈宏伟,胡远满,等.林火烈度评价及其空间异质性研究进展[J].自然灾害学报,2012,21(2):28~34.
    [76]王正非,陈大我,刘自强.论生态平衡和林火烈度[J].植物生态学报,1986,10(1):68~75.
    [77] Odion D C, Frost E J, Strittholt J R, et al. Patterns of fire severity and forest conditions in the westernKlamath Mountains, California[J]. Conservation Biology,2004,18(4):927~936.
    [78] Wu Z, He H S, Liang Y, et al. Determining relative contributions of vegetation and topography to burnseverity from LANDSAT imagery[J]. Environmental management,2013,52(4):821~836.
    [79] Narayanaraj G, Wimberly M C. Influences of forest roads and their edge effects on the spatial pattern ofburn severity[J]. International Journal of Applied Earth Observation and Geoinformation,2013,23:62~70.
    [80] Holden Z A, Morgan P, Evans J S. A predictive model of burn severity based on20~yearsatellite~inferred burn severity data in a large southwestern US wilderness area[J]. Forest Ecology andManagement,2009,258(11):2399~2406.
    [81] Halofsky J E, Hibbs D E. Relationships among indices of fire severity in riparian zones[J]. Internationaljournal of wildland fire,2009,18(5):584~593.
    [82]林其钊,朱霁平,张慧波.森林大火中飞火行为的研究[J].自然灾害学报,1998,7(3):32~38.
    [83]林其钊.林火飞过程的模拟计算[J].计算力学学报,1999,16(3):302~306.
    [84]王秋华,舒立福,俞新水.云南松林飞火形成机制的研究[J].安徽农业科学,2011,39(4):2110~2112.
    [85]王秋华,舒立福,李世友.云南松林燃烧过程中飞火的研究[J].中国安全生产科学技术,2011,7(1):48~53.
    [86] Albini F A, Alexander M E, Cruz M G. A mathematical model for predicting the maximum potentialspotting distance from a crown fire[J]. International Journal of Wildland Fire,2012,21(5):609~627.
    [87] Weir J R. Probability Of Spot Fires During Prescribed Burns[J]. Fire ManagementToday,2004,64(2):24~26.
    [88]金晓钟,程邦瑜.森林火灾过程中的火旋风特征[J].自然灾害学报,1997,6(2):34~41.
    [89]秦俊,廖光煊,万玉田,等.火旋风的模拟实验研究[J].火灾科学,2002,11(2):79~83.
    [90]关胜晓,范维澄,王清安,等.森林火灾旋涡机理初探[J].火灾科学,1994,3(1):57~63.
    [91]钟钊新,周建军.火焰旋涡形成机制和运动形态分析[J].火灾科学,1997,6(2):53~59.
    [92]钟钊新,周建军.着火物在火焰旋涡流场中运动规律研究[J].中国科学技术大学学报,1998,28(1):79~83.
    [93]关胜晓,周建军,余彪,等.圆柱钝体绕流火焰旋涡特性研究[J].火灾科学,1995,4(3):82~88.
    [94] Lei J, Liu N, Zhang L, et al. Experimental research on combustion dynamics of medium~scale firewhirl[J]. Proceedings of the Combustion Institute,2011,33(2):2407~2415.
    [95]王淑妨,董广生,阎善义.林火温度与高强度火温升效应的研究[J].林业科技,1993,18(3):32~35.
    [96] Wotton B M, Gould J S, McCaw W L, et al. Flame temperature and residence time of fires in dryeucalypt forest[J]. International Journal of Wildland Fire,2012,21(3):270~281.
    [97]邵占杰,林其钊,路长.基于燃料床的小坡度地表火蔓延模型研究[J].燃烧科学与技术,2003,9(3):219~223.
    [98]朱敏,冯仲科,胡林.对两个森林地表火蔓延改进模型的研究[J].北京林业大学学报,2005,27(增2):138~141.
    [99]袁宏永,范维澄,王清安,等.面向目标的森林地表火蔓延估计模型与方法[J].自然科学进展,1996,6(3):361~365.
    [100] Miller C, Urban D L. A model of surface fire, climate and forest pattern in the Sierra Nevada,California[J]. Ecological Modelling,1999,114(2):113~135.
    [101]王海晖.森林地表火行为估算的数学模型[J].火灾科学,1994,3(1):33~41
    [102]朱霁平,王海晖,范维澄.森林地表火火行为预测预报系统[J].工程热物理学报,1997,18(2):256~260.
    [103]朱霁平,刘小平.变坡度情况下森林地表上坡火行为若干特征的实验研究[J].火灾科学,1999,8(2):63~71.
    [104] Grishin A M, Shipulina O V. Mathematical model for spread of crown fires in homogeneous forestsand along openings[J]. Combustion, Explosion and Shock Waves,2002,38(6):622~632.
    [105] Cruz M G, Alexander M E, Wakimoto R H. Development and testing of models for predicting crownfire rate of spread in conifer forest stands[J]. Canadian Journal of Forest Research,2005,35(7):1626~1639.
    [106] Dupuy J L, Morvan D. Numerical study of a crown fire spreading toward a fuel break using amultiphase physical model[J]. International Journal of Wildland Fire,2005,14(2):141~151.
    [107] Wagner C E V. Prediction of crown fire behavior in two stands of jack pine[J]. Canadian Journal ofForest Research,1993,23(3):442~449.
    [108] Dahale A R, Dover S, Shotorban B, et al. Effects of Crown Fuel Bulk Density Distribution andThermophoresis of Soot Particles on Wildland Fires[C]//ASME2011International MechanicalEngineering Congress and Exposition. American Society of Mechanical Engineers,2011:1531~1540.
    [109] Taylor S W, Wotton B M, Alexander M E, et al. Variation in wind and crown fire behaviour in anorthern jack pine black spruce forest[J]. Canadian Journal of Forest Research,2004,34(8):1561~1576.
    [110] Butler B W, Finney M A, Andrews P L, et al. A radiation~driven model for crown fire spread[J].Canadian Journal of Forest Research,2004,34(8):1588~1599.
    [111] Cruz M G, Alexander M E, Wakimoto R H. Modeling the likelihood of crown fire occurrence inconifer forest stands[J]. Forest Science,2004,50(5):640~658.
    [112]吴清松,童盛,周建军,等.树冠火蔓延模型和数值分析[J].火灾科学,1996,5(2):29~34.
    [113]翁韬,魏涛,蔡昕,等.城市森林交界域树冠火多树辐射理论与模拟实验研究[J].自然科学进展,2007,17(8):1098~1104.
    [114] Tachajapong W, Lozano J, Mahalingam S, et al. An Investigation of Crown Fuel Bulk Density Effectson the Dynamics of Crown Fire Initiation in Shrublands[J]. Combustion science and technology,2008,180(4):593~615.
    [115]王立夫.红花尔基“4.16”特大森林火灾树冠火的形成原因[J].林业科技,1995,20(6):32~33.
    [116]张思玉,兰海涛.针叶幼林树冠火发生的内在机制[J].东北林业大学学报,1998,26(5):77~80.
    [117]王志成.夏季森林地下火分类及火行为特点[J].林业科技,2004,29(4):26~28.
    [118]舒立福,王明玉,田晓瑞,等.大兴安岭林区地下火形成火环境研究[J].自然灾害学报,2004,12(4):62~67.
    [119]李忠琦,张淑云,李华,等.黑龙江省呼中林区地下火发生的气象条件分析[J].森林防火,2004,(1):25~26.
    [120] Reardon J, Hungerford R, Ryan K. Factors affecting sustained smouldering in organic soils frompocosin and pond pine woodland wetlands[J]. International Journal of Wildland Fire,2007,16(1):107~118.
    [121]于立峰.森林地下火蔓延方式及火行为特点研究[J].林业勘查设计,2012,(2):111~112.
    [122]李晓储.地下火燃烧蔓延的预测预报[J].国外林业,1989(3):34~35.
    [123] Rein G, Cleaver N, Ashton C, et al. The severity of smouldering peat fires and damage to the forestsoil[J]. Catena,2008,74(3):304~309.
    [124] Ryan K C. Dynamic interactions between forest structure and fire behavior in boreal ecosystems[J].Silva Fennica,2002,36(1):13~39.
    [125]张景群,王得祥,余兴弟.可燃物含水率与林火行为的关系[J].森林防火,1992,(3):9~11.
    [126] Kreye J K, Kobziar L N, Zipperer W C. Effects of fuel load and moisture content on fire behaviour andheating in masticated litter~dominated fuels[J]. International Journal of Wildland Fire,2013,22(4):440~445.
    [127] Alexander M E, Cruz M G. Assessing the effect of foliar moisture on the spread rate of crown fires[J].International journal of wildland fire,2013,22(4):415~427.
    [128]张景群,王春雷,王得祥.树冠火与林分层间易燃可燃物分布关系研究[J].森林防火,1995,4:5~9.
    [129] Agee J K. The influence of forest structure on fire behavior[C]//Proceedings of the17th Annual ForestVegetation Management Conference.1996:16~18.
    [130] Tanskanen H, Ven l inen A, Puttonen P, et al. Impact of stand structure on surface fire ignitionpotential in Picea abies and Pinus sylvestris forests in southern Finland[J]. Canadian Journal of ForestResearch,2005,35(2):410~420.
    [131] Stephens S L, Moghaddas J J. Experimental fuel treatment impacts on forest structure, potential firebehavior, and predicted tree mortality in a California mixed conifer forest[J]. Forest Ecology andManagement,2005,215(1):21~36.
    [132] Pollet J, Omi P N. Effect of thinning and prescribed burning on crown fire severity in ponderosa pineforests[J]. International Journal of Wildland Fire,2002,11(1):1~10.
    [133] Schmidt D A, Taylor A H, Skinner C N. The influence of fuels treatment and landscape arrangementon simulated fire behavior, Southern Cascade range, California[J].Forest Ecology and Management,2008,255(8):3170~3184.
    [134] De Luis M, Baeza M J, Raventós J, et al. Fuel characteristics and fire behaviour in matureMediterranean gorse shrublands[J]. International Journal of Wildland Fire,2004,13(1):79~87.
    [135]魏云敏,鞠琳.森林可燃物载量研究综述[J].森林防火,2006(4):18~21.
    [136] Arseneault D. Impact of fire behavior on postfire forest development in a homogeneous boreallandscape[J]. Canadian Journal of Forest Research,2001,31(8):1367~1374.
    [137] Raymond C L, Peterson D L. Fuel treatments alter the effects of wildfire in a mixed~evergreen forest,Oregon, USA[J]. Canadian Journal of Forest Research,2005,35(12):2981~2995.
    [138]姚树人.火场形势预测的研究[J].森林防火,2007(2):37~38.
    [139]金森,褚腾飞,邸雪颖,等.平地无风条件下红松针叶床层林火蔓延的影响因子分析及模拟[J].东北林业大学学报,2012,40(3):51~57.
    [140]刘礴霏.平地无风条件下红松针叶床层的火行为研究[D].哈尔滨:东北林业大学,2011.
    [141]金森,刘礴霏,邸雪颖,等.平地无风条件下蒙古栎阔叶床层的火行为Ⅰ.蔓延速率影响因子与预测模型[J].应用生态学报,2012,23(1):51~59.
    [142]张吉利,刘礴霏,邸雪颖,等.平地无风条件下蒙古栎阔叶床层的火行为Ⅱ.火焰长度和驻留时间影响因子分析与预测模型[J].应用生态学报,2012,23(11):3149~3156.
    [143]张吉利,刘礴霏,邸雪颖,等.平地无风条件下蒙古栎阔叶床层的火行为Ⅲ.火线强度、可燃物消耗和燃烧效率分析及预测模型[J].应用生态学报,2013,24(12):3381~3390.
    [144]褚腾飞.平地无风条件下蒙古栎阔叶床层的火行为研究[D].哈尔滨:东北林业大学,2011.
    [145]张吉利,刘礴霏,褚腾飞,等.广义Rothermel模型预测平地无风条件下红松~蒙古栎林地表混合可燃物的火行为[J].应用生态学报,2012,23(6):1495~1502.
    [146]杜建华.黑龙江大兴安岭森林可燃物基础信息库及偃松林火行为研究[D].北京:中国林业科学研究院,2004.
    [147]柴瑞海,赵雨森,杜秀文.大兴安岭林区草甸火顺风蔓延模型的研究[J].东北林业大学学报,1988,16(4):90~93.
    [148]袁春明.我国南方几种松杉可燃物类型火行为特点浅析[J].森林防火,1996(4):16~17.
    [149]邓湘雯,吕勇,潘晓杰,等.南方杉木人工林火行为预测专家系统的研究[J].中南林业调查规划,2002,21(3):50~52.
    [150]梁峻,周礼洋,叶枝茂.云南松林内可燃物与计划烧除火行为的相关分析[J].福建林业科技,2009,36(1):49~53
    [151]章文杰,王秋华,肖慧娟,等.思茅松林的可燃物与火行为研究[J].林业调查规划,2011,36(3):65~68.
    [152]钟茂华,范维澄,王清安.林火蔓延突变形态的模拟实验研究[J].自然科学进展,2000,10(4):350~353.
    [153]舒立福,寇晓军.森林特殊火行为格局的卫星遥感研究[J].火灾科学,2001,10(3):140~143,148.
    [154] Kobzir Leda N, McBride Joe.R. Wildfire burn patterns and riparian vegetation response along twonorthern Sierra Nevada streams[J]. Forest ecology and management,2006,222:254~265.
    [155] Crosby J S. Vertical wind currents and fire behavior[J]. Fire management Today,2004,64(1):24~26.
    [156] Bessie W C, Johnson E A. The relative importance of fuels and weather on fire behavior in subalpineforests[J]. Ecology,1995,76(3):747~762.
    [157]李世友,李靖,马长乐,等.冰雪灾害对盐津县森林防火的中长期影响及对策[J].林业资源管理,2008(6):31~34.
    [158]王秋华,舒立福,戴兴安,等.冰雪灾害对南方森林可燃物及火行为的影响[J].林业科学,2008,44(11):171~176.
    [159]张思玉.2008年中国南方冰雪灾害对夏季森林火灾的影响[J].防灾科技学院学报,2008,10(2):11~14.
    [160]王明玉,舒立福,王秋华,等.中国南方冰雪灾害对森林火灾火发生短期影响分析~以湖南为例[J].林业科学,2008,44(11):64~68.
    [161]杜永胜,舒立福.南方冰雪灾害对森林防火的影响[J].森林防火,2008(1):12~14.
    [162]王明玉,舒立福,赵凤君,等.中国南方冰雪灾害对森林可燃物影响的数量化分析~以湖南为例[J].林业科学,2008,44(11):69~74.
    [163] Weise D R, Biging G S. A qualitative comparison of fire spread models incorporating wind and slopeeffects[J]. Forest Science,1997,43(2):170~180.
    [164]毛贤敏.风和地形对林火蔓延速度的作用[J].应用气象学报,1993,4(1):100~104.
    [165]金森,王晓红,于宏洲.林火行为预测和森林火险预报中气象场的插值方法[J]..中南林业科技大学学报,2012,32(6):1~7
    [166]赵亮,刘鹏举,周宇飞,等.复杂地形下风场插值与林火蔓延模拟应用研究[J].北京林业大学学报,2010,32(4):12~16.
    [167] Tachajapong W, Lozano J, Mahalingam S, et al. Experimental and numerical modeling of shrub crownfire initiation[J]. Combustion science and technology,2009,181(4):618~640.
    [168]田晓瑞,王明玉,殷丽,等.大兴安岭南部春季火行为特征及可燃物消耗[J].林业科学,2009,45(3):90~95.
    [169]杨光,邸雪颖,舒立福.近40a大兴安岭漠河县林火行为指标变化特征[J].东北林业大学学报,2013,40(12):76~80.
    [170]吴志伟,贺红士,梁宇,等.基于FARSITE模型的丰林自然保护区潜在林火行为空间分布特征[J].生态学报,2012,32(19):6176~6186.
    [171]金文斌.长白山森林地被可燃物载量及林火行为研究[D].北京:北京林业大学,2010.
    [172]张敏,刘东明.长白山林区落叶松林可燃物模型及火行为状况[J].自然灾害学报,2007,16(2):127~132.
    [173]孙武,牛树奎.北京地区主要针叶林型林火行为[J].东北林业大学学报,2012,40(2):54~60.
    [174]王明玉,舒立福,赵凤君,等.北京西山可燃物特点及潜在火行为[J].林业科学,2010,46(1):84~90.
    [175]牛树奎.北京山区主要森林类型火行为与可燃物空间连续性研究[D].北京:北京林业大学,2012.
    [176]王明玉,周荣伍,赵凤君,等.北京西山森林潜在火行为及防火林带有效宽度分布研究[J].火灾科学,2008,17(4):209~215.
    [177]康永祥,张景群,李登武.秦岭中段北坡主要植被类型潜在火行为划分[J].东北林业大学学报,1999,17(5):20~24.
    [178]张景群,康永祥,吴宽让,等.秦岭森林潜在火行为数量分类及划分指标研究[J].林业科学,2001,37(1):101~106.
    [179]张家来,曾祥福,胡仁华,等.湖北主要森林可燃物类型及潜在火行为研究[J].华中农业大学学报,2002,21(6):550~554.
    [180]孙武.江西大岗山地区森林可燃物载量与潜在火行为研究[D].北京:北京林业大学,2013.
    [181]孙武,牛树奎,赵蓓,等.大岗山地区主要林型可燃物调查与林火行为[J].江西农业大学学报,2012,34(6):1171~1179.
    [182]周建军,黄平,张昱春.有关林火行为的一些实验研究[J].火灾科学,1998,7(2):1~7.
    [183] Fernandes P A M, Loureiro C A, Botelho H S. Fire behaviour and severity in a maritime pine standunder differing fuel conditions[J]. Annals of Forest Science,2004,61(6):537~544.
    [184] Dupuy J L. Slope and fuel load effects on fire behavior: laboratory experiments in pine needles fuelbeds[J]. International Journal of Wildland Fire,1995,5(3):153~164.
    [185] Boboulos M, Purvis M R I. Fire Behavior of Mediterranean Pine Forest Litter Assessed in aSpecifically Designed Experimental Rig[J]. Experimental Techniques,2012,36(4):57~66.
    [186] Kim D H, Kim J H, Kim E S. The Study on Experimental Method of Smoldering Ground Fire inForest Fire[J]. Journal of Korean Institute of Fire Science and Engineering,2010,24(6):1~6.
    [187]崔文彬,乔启宇.地表火燃烧参数及其火头前影响区的实验研究[J].北京林业大学学报,1998,20(5):22~27.
    [188]崔文彬,乔启宇,李慧清,等.地表火火头前方气流温度场和速度场的研究方法和实验设[J]计.北京林业大学学报,2002,24(6):200~203.
    [189]路长,朱霁平.峡谷地形中森林地表火蔓延实验研究[J].火灾科学,2003,12(1):19~22.
    [190]林其钊.林火蔓延初期的增长模型与室内模拟实验研究[J].燃烧科学与技术,2000,6(3):218~221.
    [191]秦俊,廖光煊,王喜世,等.细水雾抑制火旋风的实验研究[J].自然灾害学报,2002,11(4):60~65.
    [192]秦向东.基于计算机图形技术的森林火灾模拟蔓延模型[J].林业科学,2006,42(07):73~77.
    [193]王海晖,景文峰,王清安.森林地表火蔓延的计算机模拟[J].中国科学技术大学学报,1994,24(3):305~311.
    [194]杜飞,侯尊泽,刘家琦.森林地表火蔓延模拟方法及其计算机实现[J].火灾科学,2001,10(4):204~208.
    [195]李建微,陈崇成,於其之,等.虚拟森林景观中林火蔓延模型及三维可视化表达[J].应用生态学报,2005,16(5):838~842.
    [196]陈磊,翁韬,朱霁平,等.山地火蔓延过程的三维模拟[J].火灾科学,2006,15(2):70~76.
    [197] Hadjisophocleous G, Jia Q. Comparison of FDS prediction of smoke movement in a10~storeybuilding with experimental data[J]. Fire technology,2009,45(2):163~177.
    [198] Chi J H. Reconstruction of an inn fire scene using the Fire Dynamics Simulator (FDS) program[J].Journal of forensic sciences,2013,58(s1): S227~S234.
    [199]乐增,金润国,毛龙.基于FDS的高校宿舍火灾数值模拟[J].安全与环境工程,2009,16(5):85~88.
    [200]刘建民,岳合生.高层建筑火灾烟气蔓延的FDS模拟[J].消防技术与产品信息,2008,1:21~21.
    [201]杨平,陈飞,王海阔.基于FDS的地下商业街排烟量计算方法研究[J].中原工学院学报,2013,24(3):51~54.
    [202]吴卫斌.FDS模型在大型会展中心火灾疏散中的应用[J].重庆科技学院学报(自然科学版),2013,15(5)128~130.
    [203]周星.大型教学楼火灾性能指标的数值分析[J].西安科技大学学报,2013,33(4):404~410.
    [204]张丽娟,张立业.某大型广场商业区域消防设计性能化评估[J].武警学院学报,2012,28(6):45~47.
    [205]王君,徐海斌,徐志胜.大空间火灾缩尺模型FDS模拟[J].消防科学与技术,2010,29(5):390~393.
    [206] Xiao Y, Ma J. Fire simulation test and analysis of laminated bamboo frame building[J]. Constructionand building materials,2012,34:257~266.
    [207]杨春泽.基于FDS风速条件下木结构建筑火灾数值模拟[J].建筑安全,2013(7):17~21.
    [208] Valasek L. The use of PyroSim graphical user interface for FDS simulation of a cinemafire[J].International Journal of mathematics and computer in simulation[J],2013,7(3):258~266.
    [209] Halada L, Weisenpacher P, Glasa J. Computer modelling of automobile fires[J]. Chapter,2012,9:203~228.
    [210] Weisenpacher P, Halada L, Glasa J. Computer simulation of fire in a tunnel using parallel version ofFDS[C]//Proc. of the7th Mediterranean Combustion Symp., Assoc. Sezione Italiana del Comb. Inst.2011.
    [211] Weisenpacher P, Halada L, Glasa J, et al. Parallel model of FDS used for a tunnel firesimulation[C]//Proc. of the Int. Conf. ParNum.2011,11:96~105.
    [212] Lee S R, Ryou H S. A numerical study on smoke movement in longitudinal ventilation tunnel fires fordifferent aspect ratio[J]. Building and Environment,2006,41(6):719~725.
    [213] Kim E, Woycheese J P, Dembsey N A. Fire dynamics simulator (version4.0) simulation for tunnel firescenarios with forced, transient, longitudinal ventilation flows[J]. Fire technology,2008,44(2):137~166.
    [214]梁平,韦良义,龙新峰.基于FDS的隧道火灾中烟道作用的数值模拟[J].交通科学与工程,2010,26(1):53~58.
    [215]安永林,彭立敏,杨伟超.基于FDS仿真火灾温度下隧道衬砌安全评估[J].灾害学,2008,23(2):96~100.
    [216]徐志胜,赵红莉,李洪,等.水平隧道火灾临界风速的理论模型[J].中南大学学报(自然科学版),2013,44(3):1138~1143.
    [217]辛颖.原木楞堆热解动力学与燃烧实验研究[D].哈尔滨:东北林业大学,2012.
    [218]辛颖,薛伟.原木楞堆火灾烟温变化数值模拟研究[J].消防科学与技术,2011,30(3):183~186.
    [219]贮木场楞堆燃烧的数值模拟[D].哈尔滨:东北林业大学,2007.
    [220]薛伟,张光俊.贮木场楞堆火灾场景模拟设计[J].林业机械与木工设备,2006,33(8):33~35.
    [221]薛伟,张光俊.FDS火灾模拟与应用[J].吉林林业科技,2007,35(6):18~20.
    [222]卞伟,薛伟.森工贮木场楞堆火灾模拟模型分析与评价[J].林业机械与木工设备,2006,34(4):36~38.
    [223]周彪,徐幼平,张腾.FDS在电缆隧道火灾中的应用[J].河南理工大学学报(自然科学版),2008,27(2):148~152.
    [224]周彪,徐幼平,张腾.工业电缆隧道火灾探究[J].隧道建设,2008,28(3):281~284.
    [225]周彪,徐幼平,张腾,等.电缆隧道火灾数值仿真及分析[J].中国安全科学学报,2008,18(4):66~69.
    [226]李苗,刘敏,唐葆华,等.电缆隧道火灾分析及计算机模拟[J].消防科学与技术,2007,26(6):603~607.
    [227] Renane R, Chetehouna K, Séro~Guillaume O, et al. Numerical simulations of laminar burningvelocities of a major volatile organic compound involved in accelerating forest fires[J]. AppliedThermal Engineering,2013,51(1):670~676.
    [228]关祥毅,刘少刚.樟子松树冠火燃烧场数学模型的研究[J].中国科技论文在线(http://www.paper.edu.cn),2013.
    [229] Shang C, Wang K Y, Huang H Y, et al. A Study of Forest Trees Fire Modeling[J]. Applied Mechanicsand Materials,2014,444:1559~1563.
    [230]尚超,王克印,黄海英,等.基于PyroSIM的火灾树木建模研究[J].消防科学与技术,2013,32(9):1030~1033.
    [231]程万洲,张海珊,吴超鹏,等.树冠火对输油站热辐射影响的数值模拟研究[J].中国安全生产科学技术,2012,8(10):54~57.
    [232]辛喆,王顺喜,云峰,等.基于火灾模拟软件(FDS)的草原火灾蔓延规律数值分析[J].农业工程学报,2013,29(11):156~163.
    [233] Parsons R A, Mell W, McCauley P. Modeling the spatial distribution of forest crown biomass andeffects on fire behavior with FUEL3D and WFDS[C]//Proceedings of the6th International Conferenceon Forest Fire Research, Coimbra, Portugal.2010:15~18.
    [234] Hoffman C, Morgan P, Mell W, et al. Numerical simulation of crown fire hazard immediately afterbark beetle~caused mortality in lodgepole pine forests[J]. Forest Science,2012,58(2):178~188.
    [235] Morvan D, Hoffman C, Rego F, et al. Numerical simulation of the interaction between two fire frontsin grassland and shrubland[J]. Fire Safety Journal,2011,46(8):469~479.
    [236] Overholt K J, Cabrera J, Kurzawski A, et al. Characterization of fuel properties and fire spread ratesfor little bluestem grass[J]. Fire Technology,2014,50(1):9~38.
    [237] Ciambelli P, Malangone L, Russo P, et al. Preliminary Study of Wildland Fires[J]. Processes andtechnologies for a sustainable energy,27~30.
    [238] Menage D, Chetehouna K, Mell W. Numerical simulations of fire spread in a Pinus pinaster needlesfuel bed[C]//Journal of Physics: Conference Series. IOP Publishing,2012,395(1):012011.
    [239]刘爱荣,吴德友,旱冬瓜(Alnus nepalensis)天然林阻火功能的初步研究[J].森林防火,1996(1):11~12.
    [240]李世友,罗文彪,舒清态,等.昆明地区25种木本植物的燃烧性及防火树种筛选[J].浙江林学院学报,2009,26(3):351~357.
    [241]王革,柯玉鹏.昆明地区防火林带设计树种选择[J].林业调查规划,2006,31(1):109~112.
    [242]张映堂,段旭,李俊峰.滇中地区林火气候区划[J].西南林学院学报,1994,14(3):172~176.
    [243]张映堂,霍义强.滇中地区森林火险等级预报方法的研究[J].林业科学,1995,31(3):239~246.
    [244]王叁,牛树奎,李德,等.云南松林可燃物的垂直分布及影响因子[J].应用生态学报,2013,24(2):331~337.
    [245]李世友,张凯,刘会龙,等.一种快速测定云南松和华山松林下细小可燃物负荷量的方法[J].福建林业科技,2009,36(3):110~113.
    [246]郑永波,李智,廖周瑜,等.西南林区4种易燃可燃物的质量估测方法[J].林业资源管理,2013(1):98~101.
    [247]李世友,马长乐,范珍珍,等.7种草本植物燃烧性及应用的初步研究[J].浙江林业科技,2008,28(5):25~28.
    [248]李世友,马爱丽,王少名,等.14种常绿木本植物活枝叶在防火期的易燃性比较[J].生态学杂志,2009,28(4):601~606.
    [249]李世友,杨孝淋,李生红,等.树皮的阻燃性[J].林业科学,2009,45(3):85~89.
    [250]李世友,张凯,杨清,等.华山松林细小可燃物层燃烧初始蔓延速度的初步研究[J].福建林业科技,2009,36(1):58~61.
    [251]李世友,马爱丽,刘会龙,等.云南松林细小可燃物层燃烧初始蔓延速度的初步研究[J].浙江林业科技,2009,29(1):54~57.
    [252]李世友,杨清,张凯,等.从预防树冠火角度确定云南松的最低安全修枝高度[J].江西农业大学学报,2009,31(1):99~103.
    [253]李世友,刘会龙,张凯,等.预防华山松树冠火的最低修枝高度[J].华中农业大学学报,2009,28(3):361~364.
    [254]王秋华,肖慧娟,李世友,等.基于BehavePlus的昆明西山国家森林公园潜在火行为研究[J].浙江林业科技,2013,33(4):43~48.
    [255]姚树人,文定元.森林消防管理学[M].北京:中国林业出版社,2002.
    [256]马丽华,李兆山.大兴安岭6种活森林可燃物含水率的测试与研究[J].吉林林学院学报,1998,14(1):21~23.
    [257]李世友,马爱丽,朱丽,等.华山松树干耐火性初步研究.西北林学院学报[J],2009,24(2):105~108.
    [258]李世友,胡小龙,马爱丽,等.中等径级藏柏树干的耐火性研究[J].福建林学院学报,2009,29(1):65~68.
    [259]崔飞,罗静,蔡喜来,等.阻燃PVC电工套管氧指数测定中的影响因素分析[J].中国安全生产科学技术,2009,5(2):56~60.
    [260]李晓平,吴章康,王珺.思茅松阻燃胶合板的制备和性能[J].浙江农林大学学报,2013,30(5):724~728
    [261]吴玉章,华毓坤.木材结构特性对氧指数的影响[J].木材工业,1999,13(6):10~12.
    [262]章梦洁,伍仲,方园.涤棉混纺织物阻燃性能的实验分析[J].浙江理工大学学报,2013,30(1):36~39.
    [263]陶爱玲.芳纶1414与棉混纺织物的阻燃性研究[J].天津工业大学学报,2012,31(1):25~27.
    [264]秦松涛,徐先林,任元林.阻燃粘胶纤维/羊毛混纺织物的制备及性能研究[J].天津工业大学学报,2011,30(1):26~28
    [265]尤飞,胡源,宋磊.西藏古建筑中装饰织物的燃烧特性研究[J].中国科学技术大学学报,2007,37(3):284~289.
    [266]王永祝,陈现景,于广和.窗帘幕布类产品阻燃性能质量探析[J].武警学院学报,2011,27(8):16~17.
    [267]李世友,李小宁,罗文彪,等.20种园林绿化树种活枝叶的燃烧性研究.安徽农业大学学报,2008,35(4):490~493.
    [268]李世友,张桥蓉,马爱丽,等.6种针叶树活枝叶在森林防火戒严期的燃烧性比较.安徽农业大学学报,2009,36(2):178~183.
    [269]李世友,陈宏刚,罗文彪,等.昆明地区主要造林树种鲜枝叶的燃烧性研究.西北林学院学报,2008,23(5):148~151.
    [270]闵凡飞,张明旭,范肖南,等.选煤厂煤泥浆燃烧特性的研究.煤炭学报,2004,29(2):216~221.
    [271]聂其红,孙绍增,李争起,等.褐煤混煤燃烧特性的热重分析法研究.燃烧科学与技术,2001,7(1):72~76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700