用户名: 密码: 验证码:
基于知识发现技术的林火研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
林火是森林演替的重要驱动力,森林火灾作为失去人为控制的异常森林燃烧现象,是一种燃烧机理十分复杂和危害森林比较严重的自然灾害。如何趋利避害,控制林火使其向有利的方向发展,需要对林火的机理有深入的研究。本文引入知识发现的理论、技术及方法,旨在利用知识发现技术的非平凡过程,提高林火研究的自动化水平,得到林火发生的新知识和新模型,为林火的研究提供新的理论、方法和技术。本研究以北京市房山区为研究试验区域,应用知识发现理论和方法,以R软件为工具,研究了房山区林火发生蔓延与环境因子间的关系,并对树种可燃性、林火气象、林火动态分布等进行了研究分析。
     本文研究的主要内容包括
     1林火数据的精准采集问题
     应用手持GPS,森林罗盘和了望塔定位技术,结合GIS技术,解决了林火精准采集的问题,提高了林火数据的精度,结合林业局现状,解决了林火数据采集的难题。
     2林火数据的预处理问题
     应用知识发现的数据预处理技术,定性定量地分析了数据偏离值产生的原因,去除了林火中的噪声数据,确定了林火数据中缺失值的处理问题。
     3研究了知识发现三大关键技术在林火研究中的应用问题应用知识发现三大关键技术研究了林火发生气象因子与林火发生及蔓延的问题,得到了新的林火知识,提出了林火气象的复杂性问题,并提出了以知识发现技术处理林火气象数据的关键技术问题。
     4研究了林火时序数据和空间数据的处理问题。研究了林火时序数据的分析方法,解决了基于时序数据的处理方法,提出了森林防火期的自动计算及林火发生重灾区的自动分析方法。
     本研究的主要成果
     1不同的气象条件的组合对于林火的发生有着相关的影响。林火的气象条件与林火的关系是非常复杂的,不同的气象因子的组合,可能对林火的发生带来相同的影响,而不是传统意义上的可以用单一公式可以表达的关系。这可能就是林火发生难以通过气象因子进行准确预测的重要原因,研究发现制约林火发生的重要因子是降水,影响林火发生数量的因子是湿度,风速与温度对林火发生的影
Forest fire is an important drive to the succession of the forest, and the forest fire is a burning that is out of control, and it is a natural disaster which mechanism is complex and does great harm to. How to get its benefit and to avoid its harm and to control the fire and make it tend to the fire favorite to the benefit, it needs the deep master to the forest fire’s mechanism. In this research, the theory, technology and the methods of the knowledge discover is introduced into, and implying the unordinary procedure to improve the automation level of the forest fire research, and gets new knowledge and builds new model, as a result, to provide new theory, technique and methods.
     The Fangshan district as the research area, the R as the analysis tool, the relation between the ignition and the spread of forest fire and the environment in this area was analyzed.
     The main contains of this research include many respects, as follows:
     1 the collection of the forest fire’s precision data.
     Implying the location and measurement technology of the hand-hold GPS, forest compass and the lookout of the forest fire, aided by the GIS, the difficulty of collection of the precision data of forest fire is solved, and the precision of the forest fire data is improved. According to the condition of the forest bureau of Fangshan, the problem how to get the forest fire data is solved.
     2 the pretreatment of the forest fire data
     Implying the pretreatment technology of the forest fire data, the cause of the outlier was probed in description and in fix quantify. The noise in the forest fire is removed, and the method to replace the missing data is determined.
     3 the research on the application of the three key technology of the KD in forest fire research. Three key technology of KD is implying in the research on the relationship between the weather factors and the ignition and the spread of the forest fire attain the new knowledge and present that the weather factor’s affect on the forest fire is complex. The key technique to analysis the weather factors with the KD is present.
     4 research on the time serial data and the spatial data of the forest fire Research on the time serial data, figure out the methods to analysis the time serial data and present the calculating of the forest fire protection period and the determine of the severe area.
     The main result
     1 the combination of different weather factors may have the same infection on the ignition of the forest fire.
     The combination of the different climate factors has the same affections on the forest fire’s ignition, and that can not be expressed by a formula which is widely used in traditional statistics. This
引文
1 包国强,林火遥测自动气象站及其数据处理[J],森林防火,1998(03),P44-45.
    2 贝利,利诺夫著.袁卫等译.数据挖掘—客户关系管理的科学与艺术.北京:中国财政经济出版社.2003.
    3 常健斌,顾凤岐,温广玉,大兴安岭林火气候的区划[J],东北林业大学学报,1995(03),P98-102.
    4 陈大我,刘自强,王正非,林火烈度的计算[J],东北林业大学学报,1985(02),P58-65.
    5 陈正洪,宋正满,神农架林火的时间变化及其成因[J],湖北气象,1996(01),P38-40.
    6 崔勤善,王艳玲,瞭望台在林火监测体系中的应用[J],森林防火,2004(01),P30-31.
    7 邓纳姆著.郭崇慧等译.数据挖掘教程.北京:清华大学出版社.2005.
    8 邓 湘 雯 , 孙 刚 , 文 定 元 , 林 火 对 森 林 演 替 动 态 的 影 响 及 其 应 用 [J], 中 南 林 学 院 学报,2004(01),P53-57.
    9 范德成,林业局林火管理决策支持系统研究[J],哈尔滨工程大学学报,1996(04),P93-98
    10 冯仲科,游先祥.普通手持式 GPS 接收机用于林区近实时差分定位的研究.林业科学,2000 年
    11 月,第 36 卷第 6 期.P116-118
    11 高 颖 仪 , 杨 美 和 , 傅 巍 . 林 火 控 制 指 标 与 制 约 因 素 关 系 的 研 究 [J], 吉 林 林 学 院 学报,1995(03),P132-137.
    12 高颖仪,杨美和,王金,等.林火与各类林地面积及人口关系的研究[J],森林防火,1994(02),P19-21.
    13 侯锡铭,王伟杰,温广玉,用 Logistic 回归方法建立林火发生预报模型的研究[J],东北林业大学学报,1995(01),P102-107.
    14 胡海清,金森,黑龙江省林火规律研究 Ⅱ.林火动态与格局影响因素的分析[J],林业科学,2002(02),P100-104.
    15 胡林,冯仲科.基于空间句法的林火分布研究[J],北京林业大学学报,2005,27(supp2):40-42.
    16 胡林,冯仲科.R 软件在地理信息系统中的应用[J],北京林业大学学报,2005,27(supp2):191-194.
    17 胡林,冯仲科.基于 GIS 的林火动态风险区的划分[J],福建林学院学报,2006,26(2):131-134.
    18 胡林,冯仲科.林火强度与环境因子关系的研究[J],西北农林科技大学学报,2006,(6).
    19 黄华国,张晓丽,王蕾,基于三维曲面元胞自动机模型的林火蔓延模拟[J],北京林业大学学报,2005(03),P98-101.
    20 金森,黑龙江省林火规律研究 Ⅲ.大尺度水平林火与森林类型之间的关系研究[J],林业科学,2002(04),P171-175.
    21 金森,胡海清,黑龙江省林火规律研究Ⅰ.林火时空动态与分布[J],林业科学,2002(01),P90-96.
    22 寇晓军,冯玉芬,董俊华,黑龙江省林火时空格局分析—时间分布[J],森林防火,1997(04),P13-15.
    23 拉德著,朱扬勇译.数据挖掘实践.北京:机械工业出版社.2003.
    24 蓝荣钦,林丽霞,陈良友,等.空间数据挖掘和知识发现的现状与发展[J].地理空间信息. 2004,2(3):19-21.
    25 黎粤华,梁颖红,王述洋,人工神经网络技术在林火重灾年预测中的应用前景[J],林业劳动安全,2001(01),P29-31.
    26 李东玫,徐兰俊,魏相辉,三维成形技术模拟林火蔓延趋势系统[J],林业机械 与木工设备,1995(01),P9-10.
    27 李红,舒立福,田晓瑞,王明玉,林火研究综述(Ⅳ)—GIS 在林火管理中应用现状及发展趋势[J],世界林业研究,2004(01),P21-25.
    28 刘爱荣,易邵良,林火管理中的适度风险管理探讨[J],森林防火,2002(02),P31-33.
    29 刘碧龙 , 赵春江 , 吴华瑞 , 空间信息要素模型可视化的设计模式与应用 , 地球信息科学,2004(04),P118-121
    30 刘桂英,于立峰,黑龙江省近三年林火规律分析及对策探讨[J],森林防火,2003(02),P22-23.
    31 刘海波,李秀芬,王庆余,袁启光,殷世平,阙牡云,地理信息系统在林火监测中的应用[J],黑龙江气象,1997(03),P32+34.
    32 吕新双,胡海清,孙龙,王明玉,欧洲林火管理概况[J],森林防火,2005(02),P44-46.
    33 栾港,李畅宇,大兴安岭林火水平地带性模糊聚类区划[J],森林防火,1997(04),P16-18.
    34 罗杰,吉茨著.数据挖掘教程.北京:清华大学出版社.2003.
    35 罗伊尔,贾茨著.数据挖掘基础教程.北京:清华大学出版社.2003.12.
    36 马志贵 , 王金锡 , 牟克华 , 等 . 云南松林区的林火与火险等级分区初探 [J], 四川林业科技,1991(01),P25-32+48.
    37 毛光伶,林火与气象条件相互关系及其预报[J],气象,1988(09),P54-56.
    38 毛贤敏,风和地形对林火蔓延速度的作用[J],应用气象学报,1993(01),P102-106.
    39 米哈尔斯基等著,朱明等译.机器学习与数据挖掘.北京:电子工业出版社.2004.
    40 邱焕水,林火起火点的查找与确定[J],森林防火,2000(02),P38-39.
    41 任海,任河. 空中监测林火新技术[J],内蒙古林业,1998(06),P22.
    42 舒立福,蒋岳新,孙向然.林火情报信息综合监视及其分析[J],林业资源管理,1995(02),P61-63.
    43 舒 立 福 , 田 晓 瑞 , 寇 晓 军 , 林 火 研 究 综 述 (I) — — 研 究 热 点 与 进 展 [J], 世 界 林 业 研究,2003(03),P38-41.
    44 舒立福,田晓瑞,马林涛,林火生态的研究与应用[J],林业科学研究,1999(04),P91-96.
    45 舒立福,田晓瑞,向安民,3S 集成技术在林火管理中的应用研究[J],火灾科学,1999(01),P48-53.
    46 舒立福,张小罗,戴兴安,田晓瑞,王明玉,林火研究综述(Ⅱ)——林火预测预报[J],世界林业研究,2003(04),P35-38.
    47 宋淑芝,侯锡铭,林火决策系统森林资源数据库的研究[J],森林防火,1994(02),P24-26.
    48 唐晓燕,孟宪宇,葛宏立,易浩若,杨晓峰,基于栅格结构的林火蔓延模拟研究及其实现,北京林业大学学报,2003(01),P54-58
    49 唐晓燕,孟宪宇,葛宏立,易浩若,杨晓峰,基于栅格结构的林火蔓延模拟研究及其实现[J],北京林业大学学报,2003(01),P54-58.
    50 唐晓燕 , 孟宪宇 , 易浩若 , 林火蔓延模型及蔓延模拟的研究进展 [J], 北京林业大学学报,2002(01),P91-95.
    51 田晓瑞,舒立福,王明玉,林火动态变化对我国东北地区森林生态系统的影响[J],森林防火,2005(01),P24-28.
    52 田晓瑞,王明玉,舒立福,全球变化背景下的我国林火发生趋势及预防对策[J],森林防火,2003(03),P34-36.
    53 田 晓 瑞 , 张 有 慧 , 舒 立 福 , 王 明 玉 , 林 火 研 究 综 述 ( Ⅴ ) — 航 空 护 林 [J], 世 界 林 业 研究,2004(05),P18-21.
    54 万鲁河,刘万宇,臧淑英,森林防火辅助决策支持系统的设计与实现,管理科学,2003(03),P20-23
    55 万鲁河,臧淑英,刘万宇,火场周边信息自动提取技术,计算机工程,2004(03),P186-188
    56 万鲁河,李一军,臧淑英,集成“3S”技术的森林防火决策支持系统研究,系统工程理论与实践,2004(07),P89-94
    57 万鲁河,李一军,臧淑英,集成“3S”技术的森林防火决策支持系统研究,系统工程理论与实践,2004(07),P89-94
    58 万鲁河,李一军,臧淑英,集成“3S”技术的森林防火决策支持系统研究,系统工程理论与实践,2004(07),P89-94
    59 王得祥,朱德兰,徐钊,江文波,王晓琴,秦岭火地塘林区 4 种林分地被物林火蔓延特性研究[J],西北林学院学报,2001(01),P45-48.
    60 王海晖,朱霁平,王清安,邵剑,林火行为预测预报专家系统[J],自然灾害学报,1994(04),P105-111.
    61 王荷秀,慕建利,侯建忠,邱宇红,陕西省林火的时空分布及火源特点[J],西北林学院学报,1998(01),P76-79.
    62 王明玉,舒立福,田晓瑞,史军,林火在空间上的波动性及其对全球变化的响应(Ⅰ)[J],火灾科学,2003(03),P47-52.
    63 王明玉,舒立福,田晓瑞,史军,林火在空间上的波动性及其对全球变化的响应(Ⅱ)[J],火灾科学,2003(03),P53-58
    64 王文元,袁俊杰,卫星林火监测与航空护林结合应用初探[J],森林防火,1997(03),P33.
    65 王玉涛,侯广维,马钦彦,康峰峰,冯元普,川西高山松林火烧迹地植被天然恢复过程中物种多样性动态研究,江西农业大学学报,2005(02),P24-29
    66 王玉涛,侯广维,冯元普,马钦彦,康峰峰,川西高山松林火烧迹地植被天然恢复过程中物种多样性动态,四川林业科技,2005(02),P15-22
    67 王岳,国外林火强度计算方法,森林防火[J],1996(01),P43-44+42.
    68 温广玉,刘勇,林火蔓延的数学模型及其应用[J],东北林业大学学报,1994(02),P31-36.
    69 吴 道 圣 , 张 新 民 , 卢 国 耀 , 几 个 抗 林 火 树 种 含 水 量 和 抗 燃 性 的 研 究 [J], 浙 江 林 业 科技,2001(05),P24-27.
    70 伍建榕,马焕成,林火的生态学意义[J],林业调查规划,1995(02),P7-10+15.
    71 武乐清,林火蔓延模型及其动态模拟初探[J],林业资源管理,2003(05),P70-72.
    72 谢绍峰,张贵,肖化顺,林火动态监测中 3S 技术的应用现状与展望[J],中南林业调查规划,2005(04),P47-50.
    73 修俊儇,齐宗恕,GPS 在林火扑救中的应用[J],森林防火,1997(02),P35-36.
    74 薛惠锋,张文宇,寇晓东.智能数据挖掘技术.西安:西北工业大学出版社.2005.
    75 杨景标,马晓茜,基于突变论的林火蔓延分析[J],工程热物理学报,2003(01),P171-174.
    76 杨美和,高颖仪,张启昌,林火发生动态数学模型的研究.—森林火灾波谱与气象火灾序列的建立[J],吉林林学院学报,1996(04),P18-24.
    77 姚树人,舒立福,田晓瑞,“数字林火”系统的构成与发展[J],森林防火,2001(02),P14-15.
    78 姚树人,田晓瑞,舒立福,美国林火研究历史与发展趋势[J],森林防火,2002(01),P33-35.
    79 易浩若,纪平,何筱萍,林火监测技术研究[J],森林防火,1996(02),P32-34.
    80 袁春明,文定元,林火行为研究概况[J],世界林业研究,2000(06),P28-32.
    81 岳金柱,冯仲科,浅谈 3S 技术在林业及林火管理中的应用[J],森林防火,2002(04),P31-33.
    82 张兰星,宋士龙,杨永健,知识型决策支持系统在林火扑救决策中的应用[J],农业工程学报,1995(02),P43-47.
    83 张 尚 印 , 祝 昌 汉 , 陈 正 洪 , 森 林 火 灾 气 象 环 境 要 素 和 重 大 林 火 研 究 [J], 自 然 灾 害 学报,2000(02),P111-117.
    84 张思玉,居恩德,舒立福,王丽俊,林火发生次数、燃烧面积的时域化分析[J],森林防火,1994(01),P11-17.
    85 张玉红,冮宏军,臧淑英,基于 AO 技术的森林防火地理信息系统实例应用分析,测绘通报,2005(03),P47-49
    86 张志,森林生态系统中人工自然与林火因子的作用[J],林业调查规划,1999(02),P33-38.
    87 赵凤君;舒立福;田晓瑞;王明玉;,气候变化与林火研究综述[J],森林防火,2005(04),P22-24.
    88 赵宪文,国际林火动态和研究进展[J],林业资源管理,1995(01),P60-62.
    89 赵宪文,袁凯先,林火研究最新动态[J],世界林业研究,1995(02),P76-77.
    90 赵云喜,邸雪颖,曲绍义,塔河林业局林火规律的探讨及 1987 年“5·6”大火分析[J],东北林业大学学报,1987(S4),P222-229.
    91 郑海青,福建省暴发性林火天气预报方法研究[J],福建林学院学报,2004(01),P37-41
    92 郑 焕 能 , 骆 介 禹 , 耿 玉 超 , 几 种 林 火 强 度 计 算 方 法 的 评 价 [J], 东 北 林 业 大 学 学报,1988(05),P105-110.
    93 钟占荣,周建军,邹样辉,朱霁平,山地林火蔓延模型的研究[J],火灾科学,2001(02),P23-27
    94 周建军,黄平,张昱春,有关林火行为的一些实验研究[J],火灾科学,1998(02),P1-7
    95 朱敏,冯仲科,胡林 . 对两个森林地表火蔓延改进模型的研究 [J]. 北京林业大学学报,2005,27(2):138-141。
    96 周科亮,冯仲科,张学培,毕华兴 林地面积的手持 GPS 量测 测绘科学, 2003 年 02 期 48-49,62
    97 周志权,高国平,曲艺,辽西主要林型地被可燃物与林火发生关系的研究[J],东北林业大学学报,1999(01),P76-78.
    98 Achard, F., Eva, H. D., Stibig, H.J., et. al. 2002 Determination of deforestation rates of the world's humid tropical forests [J]. Science 297, 999-1002.
    99 Albinet, G., Searby, G., and Stauffer, D. 1986. Fire propagation in a 2-D random medium [J]. J. Phys. 47: 1-7.
    100 Alexander ME, Andrews PL. Wildland fire behavior occurrence and behavior analysis in the year 2000 and beyond [J]. Fire Management Notes. 1989, 50(4), 35-37.
    101 Alexander ME, Cole FV. Rating fire danger in Alaska ecosystems: CFFDRS provides an invaluable guide to systematically evaluating burning conditions [J]. Fireline. 2001, 12, 2-3.
    102 Alexander ME, Quintilio D. Perspectives on experimental fires in Canadian forestry research [J]. Mathematical and Computer Modeling. 1990, 13(12), 17-26.
    103 Alexander ME, Thomas DA. Forecasting wildland fire behavior: aids, guides, and knowledge-based protocols [J]. Fire Management Today. 2004, 64(1), 4-11.
    104 Alexander ME. Calculating and interpreting forest fire intensities [J]. Canadian Journal of Botany. 1980, 60, 349-357.
    105 Alexander ME. Technology transfer and wildland fire management/research [J]. Fire Management Today. 2003, 63(2), 41-42.
    106 Alexander. ME, Quintilio. D. Perspectives on experimental fires in Canadian forestry research [J].Mathematical and Computer Modeling. 1990, 13(12), 17-26.
    107 Amiro BD, Todd JB, Wotton BM, et. al. Direct carbon emissions from Canadian forest fires, 1959-1999 [J]. Canadian Journal of Forest Research. 2001, 31, 512-525.
    108 Anderson K. A model to predict lighting-caused fire occurrences [J]. International Journal of Midland Fire II. 2002, 163-172.
    109 Beck JA, Alexander ME, Harvey SD, et. al. Forecasting diurnal variations in fire intensity to enhance wildland firefighter safety [J]. International Journal of Wildland Fire. 2002, 11, 173-182.
    110 Beer, T. Percolation theory and fire spread [J]. Combust. Sci.Technol. 1990, 72: 297-304.
    111 Beer, T., and Enting I.G. Fire spread and percolation modeling [J]. Math. Comput. Model. 1990, 13: 77-96.
    112 Bergeron, Y, Flannigan, M, Gauthier, S., et. al. Past, current and future fire frequency in the Canadian boreal forest: implications for sustainable forest management [J]. Can. J. For. Res. 2004, 33: 356-360.
    113 Bergeron, Y., Gauthier, S., Kafka, V., et. al. Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry [J]. Can. J. For. Res. 2001, 31: 384-391.
    114 Bilgili, E. & Methven, I. R. The simple ellipse: a basic growth model. Proc [C]. 1st Int. Conf. Forest Fire Research, Coimbra, Portugal, 1990, paper B.18.
    115 Boychuk D, Martell DL. A Markov chain model for evaluating seasonal forest fire fighter requirements. Forest Science. 1988, 34, 647-661.
    116 Broadbent, S.R., and Hammersley, J.M. 1957. Percolation processes. I. Crystals and mazes. Proc. Camb. Philos. Soc. 53: 629-641.
    117 Brown, J.K. Bulk densities of nonuniform surface fuels and their application to fire modeling. For. Sci. 1981, 27: 667-684.
    118 Catchpole, E.A., Hatton, T.J., and Catchpole, W.R. Fire spread through nohomogeneous fuel modeled as a Markov process. Ecol. Model. 1989, 48: 101-112.
    119 Clar, S., Drossel, B., Schenk, K. & Schwabl, F. Self-organized criticality in forest-fire models. Physica A, 1999, 266, 153-159.
    120 Clark, J.S. 20th-century climate change, fire suppression, and forest production and decomposition in northwestern Minnesota. Can. J. For. Res. 1990, 20: 219-232.
    121 Cochrane, M. A. & Laurance, W. F. Fire as a large-scale edge effect in Amazonian forests. J. Trop. Ecol. 2002, 18, 311-325.
    122 Cochrane, M. A. In the line of fire: understanding the dynamics of tropical forest fires. Environment. 2001, 43, 28-38.
    123 Countryman CM. Rating fire danger by the multiple basic index system. Journal of Forestry. 1966, 64, 531-536.
    124 Cumming, S.G. A parametric model of the fire size distribution. Can. J. For. Res. 2001b, 31: 1297-1303.
    125 Cunningham, A. A., and Martell, D.L. The use of subjective probability assessments to predict forest fire occurrence. Can. J. For. Res. 1976, 6: 348-356.
    126 David Bruce Wright,A Feasibility Study for Real-Time Detection and Georeferencing of Forest Fire Hot Spots[D],University of Calgary,2004,6.
    127 Dawson M.P. Fire bans and public perception of danger [C]. In Conference on bushfire modeling and fire danger rating systems: Proceedings. 1991, pp. 32-42.
    128 de Groot WJ, Wardati , Wang Y. Calibrating the Fine Fuel Moisture Code for grass ignition potential in Sumatra, Indonesia [J]. International Journal of Wildland Fire. 2005,14, 161-168.
    129 Drossel, B. & Schwabl, F. Self organized critical forest fire model [J]. Phys. Rev. Lett. 1992, 69, 1629-1632.
    130 Duarte, J.A.M.S. Bushfire automata and their phase transitions [J]. Int. J. Modern Phys. C, 1991b.8:171-189.
    131 Duarte, J.A.M.S. Fire spread in natural fuel: computational aspects [J]. Annu. Rev. Comput. Phys. 1997a.V: 1-23.
    132 Dupuy, J. L. Slope and fuel load effects on fire behaviour [J]. Int. Jl Wildland Fire.1995,5, 153-164.
    133 Engelmark, O. Fire history correlations to forest type and topography in northern Sweden [J]. Ann. Bot. Fenn. 1987, 24: 317-324.
    134 Flannigan M, Campbell I, Wotton M, et. al. Future fire in Canada's boreal forest: paleoecology results and general circulation model-regional climate model simulations [J]. Canadian Journal of Forest Research. 2001, 31, 854-864.
    135 Flannigan MD, Stocks BJ, Wotton BM. Climate change and forest fires [J]. Science of the Total Environment. 2000, 262, 221-229.
    136 Flannigan, M.D., and Harrington, J.B. A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada 1953-80 [J]. J. Appl. Meteorol. 1988, 27: 441-52.
    137 Frandsen, W.H., and Andrews, P.L. Fire behavior in non-uniform fuels. USDA For. Serv. Res. Pap. INT-232. 1979.
    138 Fujioka, F. Estimating wildland fire rate of spread in a spatially non-uniform environment [J]. Forest Sci. 1985, 31, 21-29.
    139 Green, D. G., Gill, A. M. and Noble, I. R. Fire shapes and the adequacy of fire spread models [J]. Ecolog. Model. 1983, 20, 33-45.
    140 Green, D.G. Shapes of simulated fires in discrete fuels [J]. Ecol. Modell. 1983, 20: 21-32.
    141 Guertin, D.P., and Ball, G.L. Using a fire spread model to determine ignition probabilities [J]. In Proceedings of the 1st International. 1990.
    142 Harvey DA, Alexander ME, Janz B. A comparison of fire weather severity in northern Alberta during the 1980 and 1981 fire seasons [J]. Forestry Chronicle. 1986, 62, 507-513.
    143 Hcinselman, M.L. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota [J]. Quat. Res. 1973, 3: 329-382.
    144 Heyerdahl. E.K, Brubaker, L.B., and Agee, J.K. Spatial controls of historical fire regimes: a multiscale example from the interior west [J], USA. Ecology, 2001, 82: 660-678.
    145 Jandt R, Allen J, Horschel E. Forest floor moisture content and fire danger indices in Alaska [R]. BLM-Alaska Technical Report 54. (USDI Bureau of Land Management: Anchorage, AK). 2005.
    146 Johnson, E.A., and Gutsell, S.L. Fire frequency models, methods and interpretations [J]. Adv. Ecol. Res. 1994, 25: 239-287.
    147 Krxysatof Kogerski, A Progressive Refinement Approach To Spatial Data Mining [D]. M.Sc.Warsaw University of Technology, 1988.
    148 Krzysztof Koperski. A Progressive Refinement Approach to Spatial Data Mining [D]. M.Sc., Warsaw University of Technology, 1988.
    149 Larsen, C.P.S. Spatial and temporal variations in boreal forest fire frequency in northern Alberta [J]. J. Biogeography. 1997, 24: 663-673.
    150 Lee BS, Alexander ME, Hawkes BC, et. al. Information systems in support of wildland fire management decision making in Canada [J]. Computers and Electronics in Agriculture. 2002, 37, 185-198.
    151 Lehtonen, H., Huttunen, P., and Zetterberg, P. Influence of man on forest fire frequency in north Karelia, Finland, as evidenced by fire scars on Scots pines [J]. Ann. Bot. Fenn. 1996, 33: 257-263.
    152 Lopes, A. G., Sousa, C. M. & Viegas, D. X. Numerical simulation of turbulent flow and firepropagation in complex topography. Number [J]. Heat Transfer Jl A. 1995, 27, 229-253.
    153 McAlpine, R.S., and Wotton, B.M. The use of fractal dimension to improve wildland fire perimeter predictions [J]. Can. J. For. Res. 1993, 23: 1073-1077.
    154 Macaw WL, Alexander ME. Tripartite agreement on wildland fire science research signed [J]. International Forest Fire News, 1994, 11, 27-29.
    155 Melton M. The Keetch/Byram Drought Index: a guide to fire conditions and suppression problems [J]. Fire Management Notes. 1989, 50(4), 30-34.
    156 Melton M. The Keetch-Byram Drought Index revisited: prescribed fire applications [J]. Fire Management Notes. 1996, 56(4), 7-11.
    157 Merrill, D.F., and Alexander, M.E. Glossary of forest fire management terms. 4th ed. Canadian Committee on Forest Fire Management [J], National Research Council of Canada, Ottawa. 1987.
    158 Niklasson, ML, Granstrom.A. Numbers and sizes of fires: long-term spatially explicit fire history in a Swedish boreal landscape [J]. Ecology, 2000, 81: 1484-1499.
    159 Pitkanen, A., Turunen, J., and Tolonen, K. The role of fire in the carbon dynamics of a mire, eastern Finland [J]. Holocene, 1999, 9: 479-488.
    160 Powell, T. M. & Okubo, A. Turbulence, diffusion and patchiness in the sea [J]. Phil. Trans. R. Soc. Lond. B. 1994, 343, 11-18.
    161 R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, 2004.
    162 Richards, G. D. & Bryce, R. W. A computer algorithm for simulating the spread of wildland fire perimeters for heterogeneous fuel and meteorological conditions [J]. Int. J Wildland Fire. 1995, 5: 73-79.
    163 Rowe, S.J., and Scotter, G.W. Fire in the boreal forest [J]. Quat. Res. 1973, 3: 444-464.
    164 Siegert, F., Ruecker, G., Hinrichs, A. & Hoffmann, A. A. Increased damage from fires in logged forests during droughts caused by El Nino [J]. Nature. 2001, 414, 437-440.
    165 Steward, F. R. Fire spread through a fuel bed. New technology to reduce fire losses and costs, ch [M]. 1974, 2, pp. 315-378.
    166 Tanskanen H, Ven?l?inen A, Puttonen P, et. al. Impact of stand structure on surface fire ignition potential in Picea abies and Pinus sylvestris forests in southern Finland [J]. Canadian Journal of Forest Research. 2005, 35, 410-420.
    167 Thomas, P. H. Rates of spread of some wind-driven fires [J]. Forestry. 1971, 44, 155-175.
    168 Thomas, P. H. Some aspects of the growth and spread of fire in the open [J]. Forestry. 1967, 40,139-164.
    169 Tymstra C. PROMETHEUS: the Canadian wildland fire growth model. Initial Attack [J]. 2002, (Spring), 8-9.
    170 Van Wagner, C. E. 1977b Effects of slope on fire spread rate [J]. Can. Dept Forest. Bimonth. Res. Notes 33, 7-8.
    171 Van Wagner, C. E. Conditions for the start and spread of crown fire [J]. Can. Jl Forest Res. 1977a, 7, 23-34.
    172 Van Wagner, C.E. Age-class distribution and the forest fire cycle [J]. Can. J. For. Res. 1978, 8: 220-227.
    173 Van Wagner, C.E. Conditions for the start and spread of crown fire [J]. Can. J. For. Res. 1977, 7: 23-34.
    174 Viegas DX, Biovio G, Ferreira A, et.al. Comparative study of various methods of fire danger evaluation in southern Europe. International Journal of Wildland Fire [J]. 1999, 9, 235-246.
    175 von Niessen, W., and Blumen, A. Dynamic simulation of forest fires. Can. J. For. Res. 1988,18: 805-812.
    176 Weber, R. O. Analytical models for fire spread due to radiation [J]. Combust. Flame. 1989, 78,398-408.
    177 Wiley. Richards, G. D. A general mathematical framework for modeling two-dimensional wildland fire spread [J]. Int. Jl Wildland Fire. 1995, 5, 63-72.
    178 Williams, F. A. Urban and wildland fire phenomenology. Prog. Energy Combust [J]. Sci. 1982, 8,317-354.
    179 Wotton BM, Martell DL, Logan KA. Climate change and people-caused forest fire occurrence in Ontario [J]. Climatic Change. 2003, 60, 275-295.
    180 Wotton BM, Stocks BJ, Martell DL. An index for tracking sheltered forest floor moisture within the Canadian Forest Fire Weather Index System [J]. International Journal of Wildland Fire. 2005, 14, 169-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700