用户名: 密码: 验证码:
循环蠕变作用下材料寿命估算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业生产中,许多机械和设备的构件都是在高温条件下工作的,这些构件往往既承受着高温蠕变作用,同时还承受着循环荷载作用,这两种作用不只单独对材料构成损伤,其交互作用也会对材料的寿命产生影响。而这些构件一旦破坏,会造成重大的财产损失和人员伤亡,其安全性特别需要人们重视。因此,对该类材料在高温循环蠕变作用下寿命估算方法的研究具有重要的意义。
     本文通过对P91钢循环蠕变试验结果的分析研究以及对不同材料循环蠕变破坏断口的微观观察,从宏微观两个角度揭示了该损伤演化过程,即循环蠕变材料承受着蠕变损伤、疲劳损伤及其交互作用损伤的共同作用。根据材料循环蠕变的微观变化机理,在线性累积损伤法的基础上,提出新的“损伤”概念,弥补了应用现行“损伤”概念求解循环蠕变问题时边界条件与工程实际不相符合的缺陷,实现了三种损伤作用的叠加;利用“应变回复理论”和“金相学理论”对材料交互损伤的微观解释,定义了交互损伤项,赋予了交互损伤项新的内涵及求解方法,提出了一种循环蠕变寿命估算模型:
     发挥了灰色数学理论在处理“行为信息不完全、运行机制不清楚这类系统”的优越性,将其应用到寿命预测当中,在循环蠕变作用机制复杂且试验数据较少的情况下,保证了模型预测的精度。
     应用该模型估算了P91钢、12CrlMoV钢及316L不锈钢在循环蠕变作用下的寿命,并与试验值及其他模型的计算值进行了对比,结果显示应用本方法预测不同保载时间下构件的循环蠕变寿命精度较高,模型形式简单、计算所需参数较少、便于工程应用。
In industry, many of the engineering components are working at high temperature conditions, which suffered both high temperature creep and the cyclic loading, and both of two factors will affect the lifetime of the engineering components. It should be noted that the two mechanisms do not damage on the material individually, the interaction of two mechanisms should be taken into account in the calculation of damage and life-estimation. As we know, once these components sudden breaks or failure, it will cause severe property loss and casualties. Therefore, the study of the life-estimation of those materials which suffered cyclic loading at high temperature is urgently conducted.
     Through analysis of P91 steel cyclic creep test results and the microscopic observation of the fracture of several kinds of materials, the evolution of damage is revealed in this paper, that is the material suffers creep damage、fatigue damage and interaction damage under cyclic loading at high temperature. According to the micro mechanism and the linear cumulative damage law, a new "damage" concept is proposed, which replenish the defect of boundary conditions inconsistent with engineering when applying the existing "damage" concept solving the cyclic creep problem, superposition of the three damage mechanisms is constructed by this model. Taking advantage of "Strain Recovery Theory" and "Metallography Theory" microscopic explanation for interaction damage, the interaction damage items is defined, a cyclic creep life prediction model is proposed:
     It was used to life prediction that Gray mathematical theory's superiority in dealing with systems which has incomplete information and unclear operating mechanism, achieving fully guaranteed of model prediction accuracy in the case of complex cyclic creep mechanism and less test data.
     The lifetime of the P91 steel,12Cr1MoV steel and 316L stainless steel were calculated by this model, and then the results were compared with the experimental results, also the calculated results were also compared with some other models proposed by other researchers. The comparison shows that this model has high accuracy in predicting cyclic creep life under different loading conditions (i.e. different amplitude holding time). Meanwhile, this model is simple in form, and requires less parameter than other models in simulation. On the whole, the lifetime of material under cyclic creep at high temperature can be precisely calculated by this model; also this model is convenient for the engineering application.
引文
[1]J.Lemaitre著,倪金刚,陶春虎译。损伤力学教程[M],北京:科学出版社。1996,46-58
    [2]Soo Woo Nam,Soo Chan Lee,Je Min Lee.The effect of creep cavitation on the fatigue life under creep-fatigue interaction[J].Nuclear Engineering and Design,1995,153:213-221
    [3]杨铁成,陈凌,范志超等。1.25Cr0.5Mo钢高温疲劳蠕变交互作用的寿命预测[J]。.压力容器,2005,22(9):8-12
    [4]袁嘉祖。灰色系统理论及其应用[M],科学出版社。1991
    [5]R.Lagneborg,R.Attermo.Metall Trans[J].1971,2:1821
    [6]X.S.Xie,X.Q.Sun,et al.,Proc of 5th Int.Conf on Mechanical Behabior of Material[A]. Vol.11.Oxford,Pergamon,1987:1037
    [7]G.L.Chen.Chinese Journal of Metal Science Technology [J].1990,16:391
    [8]王翔,周浩,孔庆平.GH30和GH34合金的蠕变-疲劳交互作用.[J]金属学报,Vol.30(5),1994:195-199
    [9]Jianming Z,Maoson L.The effect of tensile-holding time on fatigue crack propagation of alloy GH36.Proc.of 1992 Sino-Japan Bilateral Symposium on High Temperature Strength of Materials,1992:239-242
    [10]魏峰.P91钢蠕变-疲劳交互作用损伤模型研究及寿命评估.西南交通大学硕士学位论文.2008
    [11]金尧.考虑加载历史影响的蠕变、疲劳寿命估算.博士论文.成都:西南交通大学,1999:65-78
    [12]Priest R.H,Ellison E.G,Combined deformation map-ductillity exhaustion approach to creep-fatigue analysis.Materials Science and Engineering.1981,49(1):7-17
    [13]郝玉龙.P91钢蠕变特性及蠕变疲劳交互作用研究.西南交通大学硕士学位论文.2005
    [14]沃诺克.著,江秉琛等译。固体力学和材料强度.1986:324-350
    [15]陈凌.典型压力容器用钢中高温环境低周疲劳和疲劳-蠕变交互作用的行为 及寿命评估技术研究.浙江大学博士学位论文.2007
    [16]T.Goswami,H.Hanninen,Dwell effects on high temperature fatigue behavior,Part Ⅰ [J]Materials and Design,2001,22(3):199-215
    [17]T.Goswami,H.Hanninen,Dwell effects on high temperature fatigue damage mechanisms Part Ⅱ [J],Materials and Design,2001,22:217-236
    [18]戴振羽。均匀应力场中材料局部疲劳损伤研究及其在疲劳-蠕变寿命估算中的应用.博士论文.成都:西南交通大学,1990
    [19]仪建章,阳志安,朱世杰,王中光。34CrMoA转子钢循环蠕变断口的分形特征。自然科学进展—国家重点实验室通迅,Vo1.3(4),1993:340-344
    [20]朱丽慧,赵钦新,顾海澄.新型耐热钢的高温低周疲劳性能[J].西安交通大学学报,1999,33(8):56-60
    [21]吴鸿遥.损伤力学.[M].北京,国防工业出版社,1990:29
    [22]大南正英,变动应力、变动温度下的蠕变,见[日]平修二编,郭廷玮等译.金属材料的高温强度理论·设计.科学出版社.1983,376-414
    [23]小寺泽良一,动态蠕变和高温疲劳,见[日]平修二编,郭廷玮等译。金属材料的高温强度理论·设计。科学出版社。1983,376-414
    [24]赵学仁,固体力学,中国科学技术出版社。1992,290-298
    [25]Rabotnov Y.N.On the equations of state for creep.Progress in Appl.Mech. 1963:307-315
    [26]孙训方,蠕变与疲劳共同作用下结构元件的寿命估算,西南交通大学学报九十周年校庆特刊,1996
    [27]陈年金,高温环境中疲劳蠕变交互作用寿命预测方法研究,硕士学位论文,杭州:浙江工业大学,2006:38-56
    [28]陈国良,束国刚,12Cr1MoV钢主蒸汽管道疲劳蠕变交互作用[J],中国电机工程学报,1990,10(1):1-10
    [29]Coffin L.F,Proc.Institution of Mech[J].Engineers,Lodon,9,74,1974:188
    [30]Coffin L.F,The concept of frequency separation in life prediction of time-dependent fatigue. [J]ASME-MPC Symposium on creep-fatigue interaction,MPC-3.1976:349-364
    [31]Manson S.S.The challenge unify treatment of high temperature fatigue-A partisan proposal based on strain range partitioning. [J].ASTM STP520,1972:744-775
    [32]何晋瑞.金属高温疲劳[M].科学出版社,1988
    [33]苏翰生,何晋瑞.拉拉应力条件下蠕变疲劳寿命预测新方法[J].机械工程材料,1989,4:30-32
    [34]吴鸿遥.损伤力学.[M].北京,国防工业出版社,1990:29
    [35]陈凌,蒋家羚。一种新的低周疲劳损伤模型及实验验证[J],金属学报,2005,41(2):157-160
    [36]J.Lemaitre,Formulation and identification of damage kinetic constitutive equations,Continum Damage Mechanics Theory and Applications,eds.D. Krajcinovic&J.Lemaitre,Springer Verlag,New York.1987:37
    [37]J.L.Chaboche, Continuum damage mechanics:Part I-general concepts. [J].Appl.Mech.,Vol.55,1988:59
    [38]J.Lemaitre,A continuous damage mechanics model for ductile fracture [J].Transactions of ASME.Journal of Engineering Materials and Technology. 1985,107:83-89
    [39]Jeong Chang Yeol, Choi Baig Gyu, Nam Soo Woo,Normalized life prediction in terms of stress relaxation behavior under creep-fatigue interaction[J],Materials Letters,2001,49(1):20-24
    [40]Soo Woo Nam,Assessment of damage and life prediction of austenitic stainless steel under high temperature creep-fatigue interaction condition[J]. Materials Science and Engineering,2002,A322(1-2):64-72
    [41]Chapu liot S,Curtit F.Experin ental determination of the C* parameter for a plate with a surface crack and submitted to bending[J].Intermational Journal of Pressure Vessels and Piping,2001,78:875-880
    [42]Fooks A J,Smith D.J.The influence of plasticity in creep crack growth in steels[J].International Journal Pressure Vessels and Piping.2003,80:453-463
    [43]YatorniM,Nikbin K.M,O,Dowd N.P.Creep crack growth prediction using a damage based approach[J].Intermational Journal Pressure Vessels and Piping 2003,80:573-583
    [44]平安等.工程实用寿命预测方法.固体的损伤与破坏.[M]成都:成都科技大学出版社,1993:48-65
    [45]王清印等.灰色系统理论的数学方法及应用.[M]成都:西南交通大学出版社,1990
    [46]Goswami T.Development of generic creep-fatigue life prediction models[J].Materials&Design,2004,25:277-288
    [47]Venkatech V,Rack H.J.A neural network approach to elevated temperature creep-fatigue life prediction[J].International Journal of fatigue,1999,21(3):225-234
    [48]Srinivasan V.S,et al Low cycle fatigue and creep-fatigue interaction behavior of 316L(N)stainless steel and life prediction by artificial neural network approach[J].International Journal of Fatigue,2003,25(12):1327-1338
    [49]L.M.Kachanov, Time of the rupture process under creep conditions [J]. Isv.Akad.Nauk.S.S.R.Otd.Tekh.Nauk.1958:8
    [50]D.Krajcinovic,Lemaitre,J.Continuum damage mechanics [J]:Theory and Application.Springer Verlag.Berlin 1987,37-89
    [51]杨光松,损伤力学与复合材料损伤[M],北京:国防工业出版社。1995
    [52]T.J.Wang,Unified CDM model and local criterion for ductile fracture-I:Unified CDM model for ductile fracture [J].Engineering Fracture Mechanics.1992,42(1):177-183
    [53]张戊林,P91钢蠕变-疲劳特性研究及蒸汽管道的寿命评估,硕士学位论文,西安理工大学,2010
    [54]陆晓燕,316L高温疲劳蠕变共同作用下裂纹扩展速率研究,硕士学位论文,浙江工业大学,2007
    [55]宋晓国,GH4169合金高温低周疲劳及蠕变性能研究,硕士学位论文,哈尔滨工业大学,2007
    [56]杨铁成,压力容器用钢1.25Cr0.5Mo高温下疲劳蠕变行为及寿命评估技术研究,博士学位论文,浙江大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700