用户名: 密码: 验证码:
四种微生物多糖合成相关酶类的生化性质与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如同核酸和蛋白质,以寡糖和糖复合物(包括糖蛋白和糖脂)形式存在的糖类化合物也是发现于所有生命体的重要生物聚合物,它们在众多复杂生物过程中发挥着不可替代的重要作用。糖链形式的特定改变与特定的病理状态(例如癌症和炎症)紧密相关,这显示了糖链在临床诊断中的应用潜力,以及作为药物开发靶标的可能性。
     在人体中的重要糖链结构包括肿瘤相关糖抗原和ABH血型抗原等。糖结构的表达异常是肿瘤的表型标志之一。人们在肿瘤细胞上发现了几种常见的糖链结构,包括Tn抗原,T抗原,SLe~x抗原,Le~y抗原,神经节苷脂(gangliosides),Globo-H和聚唾液酸(polysialic acid)等。这些异常糖链结构可以作为细胞癌变的诊断标记,也被研究开发形成抗肿瘤糖疫苗用于癌症免疫治疗。ABH血型系统是输血和器官移植医学中最为常见也最为重要的血型系统。ABH血型由红细胞等细胞表面的不同糖链结构决定,其糖抗原决定簇的结构为:GalNAcα1,3(Fucαl,2)-Gal(A抗原),Galα1,3(Fucα1,2)-Gal(B抗原)和Fucαl,2-Gal(H抗原)。获得结构均一的这些寡糖对研究它们的生物学功能和开发其在医药领域的应用是必需的。
     细菌细胞表面包裹着显著多样的多糖结构。其中一种主要的类型是O-多糖(也称为O-抗原,O-antigen)。O-多糖是细菌细胞表面脂多糖(lipopolysaccharide,LPS)的主要组成部分之一,它由多个拷贝(可以多达100个)的寡糖重复单元(O-unit)聚合而成。越来越多的证据表明O-多糖在细菌—宿主相互作用中扮演着重要角色,它们对病原菌在宿主中的有效定居以及抵抗补体介导的免疫反应发挥着不可或缺的作用。因此,对O-多糖生物合成过程的阐明有助于开发细菌相关疾病的治疗方法。
     自然界中糖链的生物合成由糖基转移酶催化。它们将相应糖核苷(糖基转移酶供体底物)上的特定单糖转移到一个糖基受体的特异羟基集团上形成糖苷键共价连接。因其在高效形成高空间特异性和立体化学特异性的糖苷键方面表现出的显然优势,糖基转移酶催化的糖链酶法合成已经成为化学合成糖链的有效替代途径。与哺乳动物中的糖基转移酶相比,来源于细菌的糖基转移酶常常更易于过量表达,获得可溶的高活性重组酶,而又不需要复杂的基因操作技术。另外,它们还常常具有广泛的底物适应性。因此,细菌糖基转移酶在酶法合成寡糖及其类似物上具有巨大的优势。还有很多细菌其细胞表面的糖链结构与哺乳动物细胞中的类似,因此,相应的糖基转移酶可以直接开发用于人体相关糖链的酶法合成。
     本论文的目标之一即是开发微生物来源的糖基转移酶用于寡糖的酶法合成。我们从大肠杆菌O-抗原生物合成基因簇中鉴定出了三个糖基转移酶,对它们的生化性质进行了研究。除了以揭示它们的底物适应性、酶的动力学性质和催化机理为目的的生化研究工作,本论文还通过岩藻糖基化寡糖和lacto-系列寡糖的小量合成实验验证了这些糖基转移酶在寡糖合成中的潜在应用价值。
     岩藻糖基化糖链结构在真核生物的多种生理和病理过程中发挥重要作用,这些过程包括组织发育、血管发生、受精作用、细胞粘连、炎症反应以及肿瘤转移等。虽然岩藻糖基化糖链结构在原核生物中没有在真核生物中那么普遍,但它们也参与病原菌的分子模拟,对宿主细胞结合和定居以及对宿主免疫反应的中和作用。在真核和原核生物中都存在的岩藻糖基转移酶(fucosyltransferase,FucT)负责岩藻糖基化反应,将岩藻糖苷从供体岩藻糖鸟苷酸二磷酸(guanosine-diphosphate fucose,GDP-Fuc)转移到各种受体分子上,这些受体分子可能为寡糖、糖蛋白或糖脂。我们鉴定和生化定性了两种微生物来源的α1,2-FucTs,并利用重组酶合成了两种岩藻糖基化寡糖。
     来源于Escherichia coli O128:B12的wbsJ基因编码一个负责在O-抗原重复单元半乳糖残基上添加α1,2-连接岩藻糖的α1,2-FucT。通过在蛋白N端融合谷胱甘肽S-转移酶(glutathione S-transferase,GST),WbsJ在E.coli BL21(DE3)中以融合蛋白的形式得到了过量表达。应用GST亲和层析和进一步的分子筛层析可以纯化得到组分均一的GST-WbsJ融合蛋白。使用各种受体底物进行的活性测定证明融合蛋白表现出广泛的底物特异性,对Galβ1,3GalNAc(T抗原),Galβ1,4Man和乳糖(Galβ1,4Glc)表现出较高的活性,对Galβ-O-Me和半乳糖的活性次之。一种天然二糖乳果糖(lactulose,Galβ1,4Fru)被发现是GST-WbsJ的最好底物,酶对其反应速度是对乳糖的四倍。动力学研究发现GST-WbsJ对乳糖比对乳果糖的亲和力强,其亲和常数K_m分别为7.81mM和13.26 mM。但是,酶对乳糖的k_(cat)/K_m值(6.36 M~(-1)·min~(-1))却只有对乳果糖的(13.39 M~(-1)·min~(-1))一半左右。另外,研究发现GST-WbsJ的α1,2-FucT活性不依赖于Mn~(2+)或Mg~(2+)等二价金属离子。酶的活性还被GDP竞争性抑制,其抑制常数K_i为1.41mM。为研究WbsJ的高度保守功能域H~(152)xR~(154)R~(155)xD~(157)的功能,我们进行了点突变和GDP-bead结合实验。与对α1,6-FucTs进行的点突变实验结果不同,WbsJ在此功能域的突变子都没有完全丧失活性。但是,结果证明R~(154)和D~(157)残基在供体结合以及酶的催化活动中发挥至关重要的作用。H~(152)和R~(155)也对酶与GDP-Fuc的结合十分重要。实验结果同时暗示在α1,2-FucTs和α1,6-FucTs都存在的HxRRxD功能域在酶与底物结合与催化活动中的功能不尽相同。最后,以Galβ-O-Me和乳糖-β-N_3为受体底物,使用重组纯化的融合蛋白成功合成了毫克级的岩藻糖基化寡糖。
     另一个细菌α1,2-FucT编码基因,wbwK,来源于E.coli O86,也以GST融合蛋白的形式进行了成功的表达和纯化。WbwK在非二价金属离子依赖性方面表现出与WbsJ相似的特性。但是,与WbsJ的广泛底物适应性不同,WbwK底物特异性非常严格,仅识别Galβ1,3GalNAcα-OBn(Me)(T-抗原衍生物)作为底物合成Ⅲ型H血型抗原,而对简单单糖底物半乳糖及其衍生物和其它寡糖底物没有活性。WbwK和WbsJ都能以T抗原为受体,只是受体底物广泛性不同。一种假说认为糖基转移酶序列中的高变区决定着其底物特异性。为验证此假说,我们对WbsJ和WbwK进行了高变区互换实验,结果形成六个嵌合体蛋白。尽管区域互换严重影响了酶的功能,使其中三个嵌合体丧失功能,另外三个嵌合体酶活也很低;但是三个具有酶活的嵌合体表现出广泛的底物特异性。这显示出高变区在决定受体底物适应性上的可能作用。
     糖基转移酶催化的糖基化反应需要以高能量的糖核苷为供体底物。特别的,FucT需要以GDP-Fuc为供体。GDP-Fuc在体内有两种合成途径,以GDP-甘露糖为起始物的从头合成途径,以及以岩藻糖、ATP和GTP为反应物的拯救途径。我们克隆并在大肠杆菌中过量表达了在细菌中负责GDP-Fuc拯救途径合成的双功能酶FKP,这是在细菌中目前发现的唯一的GDP-Fuc拯救合成途径。在体外反应中,FKP表现出GDP-Fuc合成功能,可以应用于GDP-Fuc的体外大量低成本合成。除此之外,利用毛细管电泳检测FKP反应还发现FKP具有广泛的底物适应性。实验的九种岩藻糖类似物中的七种被FKP以不同的反应活性转化生成相应的核苷供体。这为体外酶法合成岩藻糖基化寡糖类似物奠定了条件。为检验FKP在体内条件下的底物适应性并开发应用于多糖代谢改造,我们将其引入GDP-Fuc从头合成途径敲除的E.coli O86:B7菌株中。以岩藻糖类似物喂食这种GDP-Fuc合成途径工程化后的菌株时,岩藻糖类似物被细菌的多糖合成途径利用,最终整合到表面多糖结构中,从而实现了结构重塑多糖的体内合成。对重塑多糖进行的CE-MS检测证实了其结构。通过此方法引入细胞表面多糖的化学功能性集团,包括叠氮和氨基集团,可以通过体外选择性化学反应实现进一步修饰和荧光标记。这项研究提供了一种在多糖中引入结构修饰的简单而有效的方法。这一技术为多糖在生命过程中的功能研究和机理揭示提供了强大的工具。
     半乳糖残基在原核和真核生物的多种糖缀合物中广泛存在,并发挥重要作用。各种连接的半乳糖基结构是生命体中糖链高度多样性的重要表现形式。各种半乳糖基转移酶(galactosyltransferase,GalT)催化半乳糖基化反应,生成不同连接的糖苷键,包括α1,2-,α1,3-,α1,4-,α1,6-或β1,3-,β1,4-连接。乳-N-二糖1(lacto-N-biose I,Galβ1,3GlcNAc),即I型核心糖链,是人体中很多糖表位的组成部分,例如Le~a,Le~b和SLe~a抗原。Galβ1,3GlcNAc结构还存在于其它重要多糖,如乳-N-四糖(lacto-N-tetraose,LNT)中。
     我们由E.coli O55:H7的O-抗原合成基因簇中鉴定出一个β1,3-GalT编码基因,wbgO。WbgO以GST融合蛋白的形式进行了重组表达并通过GST亲和层析纯化得到比活力为67.5 mU mg~(-1)的均一蛋白。其β1,3-GAlT活性通过放射性活性检测和对其合成的二糖产物的ESI-MS和NMR结构分析得到了验证。与GST的融合对其可溶性表达和有效纯化是必要的。融合蛋白在pH 6.0-8.0条件下表现较好催化活性,且最适pH值为7.0。另外,它还对缓冲体系具有偏好性,HEPES是用于实验的四个缓冲体系(包括HEPES,Tris-HCl,MES和柠檬酸钠)中最适合的。其活性依赖于特异的二价金属离子(Mn~(2+)和Mg~(2+))。N-乙酰葡萄糖胺(GlcNAc)以及以GlcNAc为非还原端的寡糖是其主要受体。但是,N-乙酰半乳糖胺(GalNAc)以及以GalNAc为非还原端的寡糖也可以作为其受体。乳-N-三糖(lacto-N-triose,GlcNAcβ1,3Galβ1,4 Glcβ-OBn)是实验的所有受体中最好的。酶对底物动力学参数与底物特异性实验结果一致。最后,使用重组酶,以乳-N-三糖为受体成功合成了LNT寡糖。产物的结构通过ESI-MS和NMR分析得到了证实。TLC检测发现,重组酶可以实现受体底物的完全转化,显示出此酶作为寡糖合成工具酶的潜在应用价值。
     总之,本论文以三种糖基转移酶和一种糖核苷合成酶的生化定性为中心,提高了人们对细菌多糖合成相关酶类基础知识的认识,同时以此为基础为岩藻糖基化寡糖和LNT寡糖合成提供了一种替代途径,还建立一种细菌多糖修饰的新技术。
Like nucleic acids and proteins,glycans in the form of oligosaccharides and glycoconjugates(glycoproteins and glycolipids) are vital biopolymers found in organisms across all domains of life.They play critical roles in mediation of numerous complex biological processes.Specific changes in glycan profiles have been associated with certain disease states such as cancer and inflammation,illustrating the potential of using glycans in clinical diagnosis and perhaps as targets to develop therapeutics.
     Important glycan structrues in human body include tumor-associated antigens and ABH blood group antigens.Altered expression of glycans constitutes a hallmark of the tumor phenotype.Several glycan structures are commonly found on malignant cells.They include Tn antigen,T antigen,sialyl Lewis x,Lewis y,gangaliosides,Globo-H and polysialic acid.These tumor-associated glycan structures can serve as diagnostic markers for cell malignancy and have also been exploited as targets for cancer immuno-therapy via the development of glycan-based vaccines.ABH system is one of the most common and important blood group systems in transfusion medicine.The structures of the ABH glycan epitopes are defined as GalNAc-α1,3(Fuc-α1.2)-Gal(A antigen),Gal-α1.3(Fuc-α1.2)-Gal (B antigen) and Fuc-α1,2-Gal(H antigen).Available of these oligosaccharides are required for their functional study and therapeutical applications.
     The bacterial cell surface is decorated with remarkable variations of polysaccharide (PS) structures.One major type of them,O-PS,is a major component of the bacterial cell surface lipopolysaccharide(LPS).It is composed of multiple copies(as many as 100) of an oligosaccharide repeating unit(O-unit).O-PS plays an important role in mediating bacteria-host interactions such as the effective colonization of the host and the resistance to complement-mediated immune responses.The illumination of their synthesis pathway would assist the medical application related to baterial deseases.
     The biosynthesis of saccharides in nature uses glycosyltransferase.They transfer a given monosaccharide from the corresponding sugar nucleotide(sugar donor) to a specific hydroxyl group of a sugar acceptor.With obvious advantages of achieving high regio- and stereochemistry of glycosidic bonds,often in a high efficient manner,glycosyltransferasecatalyzed enzymatic synthesis of saccharides becomes an attractive and powerful alternative to the chemical synthesis.Compared with their mammalian counterparts, bacterial glycosyltransferases are more easily overexpressed as soluble and active forms without complicated gene manipulation techniques.Furthermore,they appear to have broader substrate specificity,thereby offering tremendous advantages in the enzymatic synthesis of oligosaccharides and their analogs.In addition,various bacteria exhibit structural mimicry of mammalian glycans on cell surfaces.Therefore,corresponding glycosyltransferases can be explored for the synthesis of human-like glycans.
     One the aim of this thesis is exploring bacterial glycosyltransferases for enzymatic synthesis of oligosaccharides.We have identified and charactered three glycosyltransferases from E.coli O-antigen biosynthesis gene cluster.In addition to the biochemical study towards the illumination of their substrate adaptability,enzymatic dynamics and catalytic mechanism,the synthetic applications of these glycosyltransferases were also elucidated by the synthesis of fucosylated or lacto-series oligosaccharides in small scale.
     Fucosylated carbohydrate structures are involved in a variety of biological and pathological processes in eukaryotic organisms including tissue development,angiogenesis, fertilization,cell adhesion,inflammation,and tumor metastasis.In contrast,fucosylation appears less common in prokaryotic organisms and has been suggested to be involved in molecular mimicry,adhesion,colonization,and modulating the host immune response. Fucosyltransferases(FucTs),present in both eukaryotic and prokaryotic organisms,are the enzymes responsible for the catalysis of fucose transfer from donor guanosine-diphosphate fucose(GDP-Fuc) to various acceptor molecules including oligosaccharides,glycoproteins, and glycolipids.We have identified and characterized two bacterialα1,2-FucTs and synthesized fucosylated oligosaccharides with the recombinant enzyme.
     The wbsJ gene from Escherichia coli O128:B12 encodes anα1,2-FucT responsible for adding a fucose onto the galactose residue of the O-antigen repeating unit via anα1,2 linkage.The wbsJ gene was overexpressed in E.coli BL21 as a fusion protein with glutathione S-transferase(GST) at its N-terminus.GST-WbsJ fusion protein was purified to homogeneity via GST affinity chromatography followed by size exclusion chromatography. The enzyme showed broad acceptor specificity with Galβ1,3GalNAc(T antigen), Galβ1,4Man and lactose being better acceptors than Galβ-O-Me and galactose.Lactulose (Galβ1,4Fru),a natural sugar,was furthermore found to be the best acceptor for GST-WbsJ with a reaction rate four times faster than that of lactose.Kinetic studies showed that GST-WbsJ has a higher affinity for lactose than lactulose with K_m values of 7.81 mM and 13.26 mM,respectively.However,the k_(cat)/K_m value of lactose(6.36 M~(-1)·min~(-1)) is two times lower than that of lactulose(13.39 M~(-1)·min~(-1)).In addition,theα1,2-FucT activity of GST-WbsJ was found to be independent of divalent metal ions such as Mn~(2+) or Mg~(2+).This activity was competitively inhibited by GDP with a K_i value of 1.41 mM.Site-directed mutagenesis and a GDP-bead binding assay were also performed to investigate the functions of the highly conserved motif H~(152)xR~(154)R~(155)xD~(157).In contrast toα1,6-FucTs, none of the mutants of WbsJ within this motif exhibited a complete loss of enzyme activity. However,residues R~(154) and D~(157) were found to play critical roles in donor binding and enzyme activity.H~(152) and R~(155) are also important in GDP-Fuc binding.The results suggest that the common motif shared by bothα1,2-FucTs andα1,6-FucTs may have different functions.Enzymatic synthesis of fucosylated sugars in mg-scale was successfully performed using Galβ-O-Me and lactoseβ-N_3 as acceptors.
     Anotherα1,2-FucT encoding gene,wbwK,from E.coli O86 was also expressed and purified as a GST fusion protein.It has similar features with WbsJ regarding metal ion independence.But WbwK shows strict substrate specificity and only recognizes Galβ1,3GalNAcoα-OR(T antigen and derivatives) as the acceptor to generate the H-type 3 blood group antigen.In contrast to otherα1,2-FucTs,WbwK does not display activity toward the simple substrate Galβ-OMe.WbwK and WbsJ share a common acceptor substrate,Galβ1,3GalNAcα-OR,but WbsJ has broad acceptor specificity.A hypothesis has been proposed that the high variable regions in glycosyltransferase determined acceptor specificity.To verify this hypothesis,a swapping experiment between variable regions of WbsJ and WbwK has been performed leading to six chimeric enzymes.Even though region swapping resulted in activity loss of three chimeras,other three chimeras showed decreased activity but broad acceptor specificity,indicating the possible roles of the variable regions for acceptor adaptability determination.
     The glycosyltransferase-catalyzed glycosylation reactions require high-energy sugar nucleotides as donor substrate.Specifically,for FucT,GDP-Fuc is needed.GDP-Fuc can be generated from GDP-mannose via de novo pathway or from fucose,ATP and GTP via salvage pathway.We overexpressed an enzyme(FKP) from bacterium Bacteroides fragilis responsible for the only identified GDP-Fuc salvage biosynthesis pathway in prokaryote.In addition to its application potential for feasible production of GDP-Fuc indicated by in vitro reaction,FKP also showed promiscuity for different fucose analogs through CE analysis of FKP reaction with nine fucose analogs as substrate.To investigate its promiscuity in vivo, we introduced this enzyme into E.coli O86:B7 strain of which the GDP-Fuc de novo pathway was disrupted.The matant strain with engineered GDP-Fuc biosynthesis pathway was feeded with a panel of unnatural fucose analogs.These analogs were successfully incorporated into bacterial surface polysaccharides to generate structurally novel polysaccharides.Selective chemical reactions were carried out in vitro to further elaborate the functional groups(azido and amino groups) appended to the polysaccharides.In conclusion,we provide a general,facile and effective means to introduce modifications into polysaccharides in vivo.The technology presents a powerful tool to dissect the functions and roles of polysaccharide in biological processes.
     Galactose is commonly found in several classes of glycoconjugates in both prokaryotes and eukaryotes.Various galactosyltransferase(GalT) enzymes catalyze the addition of galactose(Gal) in two anomeric configurations throughα1,2-,α1,3-,α1,4-,α1,6- orβ1,3-,β1,4-linkages.The variety of galactosylation reactions significantly contributes to the tremendous diversity of oligosaccharide structures expressed by living organisms.Lacto-N-biose I disaccharide(Galβ1,3GlcNAc),also known as type 1 chain,is the precursor of a number of important carbohydrate epitopes in human body,such as Lewis a,Lewis b and sialyl Lewis a antigens.Galβ1,3GlcNAc motif is also present in other important oligosaccharides,such as lacto-N-tetraose(LNT).
     Aβ1,3-GalT(WbgO) was identified from E.coli O55:H7.It was overexpressed with a GST fused at its N-terminal and purified by GST affinity chromatography with a specific activity of 67.5 mU mg~(-1).Itsβ1,3-GalT activity was verified by radioactive assay and structure characterization of the synthesized disaccharide by ESl-MS and NMR.Fusion with GST is essential for its soluble expression and efficient purification.The fused enzyme catalyzed galactosyl-transferring reaction under pH 6.0-8.0 with an optimal pH of 7.0.It also showed preferce for different pH system with HEPES buffer as the best among the four buffer systems which have been used in the assay.Its activity is dependent on certain divalent metal ions(Mn~(2+) or Mg~(2+)).N-acetylglucosamine(GlcNAc) and oligosaccharide with GlcNAc at the non-reducing end were shown to be its predominant acceptors. However,N-acetylgalactosamine(GalNAc) and oligosaccharides with GalNAc at the non-reducing end were also accepted.Lacto-N-triose appeared to be the best acceptor among the tested acceptors.The kinetic parameters for the donor substrate and three acceptors were estimated,which are consistent with the substrate specificity study.At last, LNT was synthesized with the purified GST-WbgO using lacto-N-triose as the sugar acceptor.The product structure was confirmed by ESI-MS and NMR analysis.The synthetic reaction resulted in a complete convertion of the sugar acceptor,indicating the potential usage of this enzyme for oligosaccharide synthesis.
     In conclusion,focusing on the biochemical characterization of three glycosyltransferases and one sugar nucleotide synthetase,studies in this thesis enrich the basic knowledge of the enzymes related to bacterial polysaccharide synthesis.Furthermore, feasible synthesis methods for fucosylated oligosaccharide and lacto-N-tetraose and a novel bacterial polysaccharide remodeling technology have been developed based on these enzymes.
引文
1. Geijtenbeek, T. B., Torensma, R., van Vliet, S. J., van Duijnhoven, G.C., Adema, G. J., van Kooyk, Y., and Figdor, C. G. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses CW/2000, 100, 575.
    
    2. Gornik, O., Dumic, J., Flogel, M., and Lauc, G.Glycoscience - a new frontier in rational drug design Acta Pharm 2006, 56, 19.
    
    3. Ratner, D. M., Adams, E. W., Disney, M. D., and Seeberger, P. H. Tools for glycomics: mapping interactions of carbohydrates in biological systems ChemBioChem 2004, 5, 1375.
    
    4. Holgersson, J., Gustafsson, A., and Breimer, M. E. Characteristics of protein-carbohydrate interactions as a basis for developing novel carbohydrate-based antirejection therapies Immunol Cell Biol 2005, 83, 694.
    
    5. Watkins, W. M. Blood group substances Science 1966, 152, 172.
    
    6. Brooks, S. A., Carter, T. M., Royle, L., Harvey, D. J., Fry, S. A., Kinch, C., Dwek, R. A., and Rudd, P. M. Altered glycosylation of proteins in cancer: what is the potential for new anti-tumour strategies Anti-Cancer Agents Med Chem 2008, 8, 2.
    
    7. Dube, D. H. and Bertozzi. C. R. Glycans in cancer and inflammation - potential for therapeutics and diagnostics Nat Rev Drug Discovery 2005,4, 477.
    
    8. Gilewski, T. A., Ragupathi, G., Dickler, M., Powell, S., Bhuta, S., Panageas, K., Koganty, R. R., Chin-Eng, J., Hudis. C., Norton, L., Houghton, A. N., and Livingston, P. O. Immunization of High-Risk Breast Cancer Patients with Clustered sTn-KLH Conjugate plus the Immunologic Adjuvant QS-21 Clin Cancer Res 2007, 13,2977.
    
    9. Krug, L. M., Ragupathi, G., Hood, C. Kris, M. G. Miller, V. A., Allen, J. R., Keding. S. J., Danishefsky, S. J., Gomez, J., Tyson, L., Pizzo, B., Baez, V., and Livingston, P. O. Vaccination of Patients with Small-Cell Lung Cancer with Synthetic Fucosyl GM-1 Conjugated to Keyhole Limpet Hemocyanin Clin. Cancer Res. FIELD Full Journal Title:Clinical Cancer Research 2004, 10, 6094.
    
    10. Krug, L. M., Ragupathi, G., Ng, K. K., Hood, C., Jennings, H. J., Guo, Z., Kris, M. G., Miller, V., Pizzo, B., Tyson, L., Baez, V., and Livingston, P. O. Vaccination of Small Cell Lung Cancer Patients with Polysialic Acid or N-Propionylated Polysialic Acid Conjugated to Keyhole Limpet Hemocyanin Clin. Cancer Res. FIELD Full Journal Title .Clinical Cancer Research 2004, 10, 916.
    11.Livingston,P.O.and Ragupathi,G.Cancer vaccines targeting carbohydrate antigens Hum.Vaccines FIELD Full Journal Title:Human Vaccines 2006,2,137.
    12.Springer,G.F.Immunoreactive T and Tn epitopes in cancer diagnosis,prognosis,and immunotherapy J Mol Med 1997,75,594.
    13.Livingston,P.O.,Hood,C.,Krug,L.M.,Warren,N.,Kris,M.G.,Brezicka,T.,and Ragupathi,G.Selection of GM2,fucosyl GMl,globo H and polysialic acid as targets on small cell lung cancers for antibody mediated immunotherapy Cancer Immunol Immunother 2005,54,1018.
    14.Chang,W.-W.,Lee,C.H.,Lee,P.,Lin,J.,Hsu,C.-W.,Hung,J.-T.,Lin,J.-J.,Yu,J.-C.,Shao,L.-e.,Yu,J.,Wong,C.-H.,and Yu,A.L.Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis Proc Natl Acad Sci USA 2008,105,11667.
    15.Wang,C.-C.,Huang,Y.-L.,Ren,C.-T.,Lin,C.-W.,Hung,J.-T.,Yu,J.-C.,Yu,A.L.,Wu,C.-Y.,and Wong,C.-H.Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer Proc.Natl.Acad.Sci.U.S.A.FIELD Full Journal Title:Proceedings of the National Academy of Sciences of the United States of America 2008,105,11661.
    16.Gilewski,T.,Ragupathi,G.,Bhuta,S.,Williams,L.J.,Musselli,C.,Zhang,X.-F.,Bencsath,K.P.,Panageas,K.S.,Chin,J.,Hudis,C.A.,Norton,L.,Houghton,A.N.,Livingston,P.O.,and Danishefsky,S.J.Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate:a phase I trial Proc Natl Acad Sci USA 2001,98,3270.
    17.Ragupathi,G.,Koide,F.,Livingston,P.O.,Cho,Y.S.,Endo,A.,Wan,Q..Spassova,M.K.,Keding,S.J.,Allen,J.,Ouerfelli,O.,Wilson,R.M.,and Danishefsky,S.J.Preparation and Evaluation of Unimolecular Pentavalent and Hexavalent Antigenic Constructs Targeting Prostate and Breast Cancer:A Synthetic Route to Anticancer Vaccine Candidates J.Am.Chem.Soc.FIELD Full Journal Title:Journal of the American Chemical Society 2006,128,2715.
    18.Whitfield,C.Biosynthesis and assembly of capsular polysaccharides in Escherichia coli Annu Rev Biochem 2006,75,39.
    19.Guo,H.,Yi,W.,Song,J.K.,and Wang,P.G.Current understanding on biosynthesis of microbial polysaccharides Curr.Top.Med.Chem.(Sharjah,United Arab Emirates)FIELD Full Journal Title:Current Topics in Medicinal Chemistry(Sharjah,United Arab Emirates) 2008,8,141.
    20.Raetz,C.R.H.and Whitfield,C.Lipopolysaccharide endotoxins Annu Rev Biochem 2002,71,635.
    21.Jann,K.and Jann,B.Capsules of Escherichia coli,expression and biological significance Can J Microbiol 1992,38,705.
    22.Paton,J.C.and Morona,J.K.Pneumococcal capsular polysaccharides:biosynthesis and regulation Mol.Biol.Streptococci FIELD Full Journal Title:Molecular Biology of Streptococci 2007,119.
    23.Moreau,M.and Schulz,D.Polysaccharide based vaccines for the prevention of pneumococcal infections J Carbohydr Chem 2000,19,419.
    24.Hallemeersch,I.,De Baets,S.,and Vandamme,E.J.Exopolysaccharides of lactic acid bacteria Biopolymers 2002,5,407.
    25.Myszka,K.and Czaczyk,K.The role of microbial exopolysaccharides in food technology Zywnosc FIELD Full Journal Title:Zywnosc 2004,11,18.
    26.Leathers,T.D.and Cote,G.L.Biofilm formation by exopolysaccharide mutants of Leuconostoc mesenteroides strain NRRL B-1355 Appl.Microbiol.Biotechnol.FIELD Full Journal Title:Applied Microbiology and Biotechnology 2008,78,1025.
    27.Sutherland,I.W.Biofilm exopolysaccharides:a strong and sticky framework Microbiology 2001,147,3.
    28.Valvano,M.A.Export of O-specific lipopolysaccharide Front Biosci 2003,8,S452.
    29.Lehrer,J.,Vigeant,K.A.,Tatar,L.D.,and Vaivano,M.A.Functional characterization and membrane topology of Escherichia coli WecA,a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide J Bacteriol 2007,189,2618.
    30.Price,N.P.and Momany,F.A.Modeling bacterial UDP-HexNAc:polyprenol-P HexNAc-1-P transferases Glycobiology 2005,15,29R.
    31.Marolda,C.L.,Vicarioli,J.,and Valvano,M.A.Wzx proteins involved in biosynthesis of O antigen function in association with the first sugar of the O-specific lipopolysaccharide subunit Microbiology(Reading,U.K.) FIELD Full Journal Title:Microbiology(Reading,United Kingdom) 2004,150,4095.
    32.Carter,J.A.,Biondel,C.J.,Zaldivar,M.,Alvarez,S.A.,Marolda,C.L.,Valvano,M.A.,and Contreras,I.O-antigen model chain length in Shigella flexneri 2a is growth-regulated through RfaH-mediated transcriptional control of the wzy gene Microbiology 2007,153,3499.
    33.Daniels,C.,Vindurampulle,C.,and Morona,R.Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy) Mol Microbiol 1998, 28, 1211.
    
    34. Marolda, C. L., Haggerty, E. R., Lung, M., and Valvano, M. A. Functional analysis of predicted coiled-coil regions in the Escherichia coli K-12 O-antigen polysaccharide chain length determinant Wzz J Bacteriol 2008, 190,2128.
    
    35. Guo, H., Yi, W., Shao, J., Lu, Y., Zhang, W., Song, J., and Wang, P. G. Molecular analysis of the O-antigen gene cluster of Escherichia coli O86:B7 and characterization of the chain length determinant gene (wzz) Appl Environ Microbiol 2005, 71, 7995.
    
    36. Young, J. and Holland, I. B. ABC transporters: bacterial exporters-revisited five years on Biochim Biophys Acta Biomembr 1999, 1461, 177.
    
    37. Fath, M. J. and Kolter, R. ABC transporters: bacterial exporters Microbiol. Rev. 1993, 57, 995.
    
    38. Abeyrathne, P. D. and Lam, J. S. WaaL of Pseudomonas aeruginosa utilizes ATP in in vitro ligation of O antigen onto lipid A-core Mol Microbiol 2007, 65, 1345.
    
    39. Kaniuk, N. A., Vinogradov, E., and Whitfield, C. Investigation of the Structural Requirements in the Lipopolysaccharide Core Acceptor for Ligation of O Antigens in the Genus Salmonella: WaaL "Ligase" is not the Sole Determinant of Acceptor Specificity J Biol Chem 2004, 279, 36470.
    
    40. Mitchell, E., Houles, C., Sudakevitz, D., Wimmerova, M., Gautier, C., Perez, S., Wu, A. M., Gilboa-Garber, N., and Imberty, A. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients Nat Struct Biol 2002, 9, 918.
    
    41. Weijers, C. A. G. M., Franssen. M. C. R., and Visser, G. M. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides Biotechnol Adv 2008,26,436.
    
    42. Cantarel, B. L., Coutinho, P. M., Rancurel. C., Bernard, T., Lombard, V., and Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics Nucleic Acids Research 2009, 37, D233.
    
    43. Ge, C. and Stanley, P. The O-fucose glycan in the ligand-binding domain of Notchl regulates embryogenesis and T cell development Proc Natl Acad Sci USA 2008, 105, 1539.
    
    44. Mollicone, R., Cailleau, A., and Oriol, R. Molecular genetics of H, Se, Lewis and other fucosyltransferase genes Transfus Clin Biol 1995, 2, 235.
    
    45. Avent, N. D. Human erythrocyte antigen expression: its molecular basis Br. J. Biomed. Sci. 1997, 54, 16.
    46. Kyprianou, P., Betteridge, A., Donald, A. S., and Watkins, W. M. Purification of the blood group H gene associated alpha-2-L-fucosyltransferase from human plasma Glycoconj J 1990, 7, 573.
    47. Sarnesto, A., Kohlin, T., Thurin, J., and Blaszczyk-Thurin, M. Purification of H gene-encoded beta-galactoside alpha 1-2 fucosyltransferase from human serum J Biol Chem 1990,265, 15067.
    48. Domino, S. E., Zhang, L., and Lowe, J. B. Molecular cloning, genomic mapping, and expression of two secretor blood group a(1,2)fucosyltransferase genes differentially regulated in mouse uterine epithelium and gastrointestinal tract J Biol Chem 2001, 276, 23748.
    49. Bureau, V., Marionneau, S., Cailleau-Thomas, A., Le Moullac-Vaidye, B., Liehr, T., and Le Pendu, J. Comparison of the three rat GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferases FTA, FTB and FTC EurJ Biochem 2001, 268, 1006.
    50. Wang, G., Boulton. P. G., Chan, N. W. C., Palcic, M. M., and Taylor, D. E. Novel Helicobacter pylori α1,2-fucosyltransferase, a key enzyme in the synthesis of Lewis antigens Microbiology 1999,145, 3245.
    51. Wang, G., Ge, Z., Rasko, D. A., and Taylor, D. E. Lewis antigens in Helicobacter pylori: biosynthesis and phase variation Mol Microbiol 2000, 36, 1187.
    52. Preston, A., Mandrell, R. E., Gibson, B. W., and Apicella, M. A. The lipooligosaccharides of pathogenic gram-negative bacteria Crit Rev Microbiol 1996, 22, 139.
    53. Kolkman, M. A., van der Zeijst, B. A., and Nuijten, P. J. Functional analysis of glycosyltransferases encoded by the capsular polysaccharide biosynthesis locus of Streptococcus pneumoniae serotype 14 J Biol Chem 1997, 272, 19502.
    54. Jennings, M. P., Virji, M., Evans, D., Foster, V., Srikhanta, Y. N., Steeghs, L., van der Ley, P., and Moxon, E. R. Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis Mol Microbiol 1998, 29, 975.
    55. Chappell. T. G., Hajibagheri, M. A., Ayscough, K., Pierce, M., and Warren, G. Localization of an α1,2 galactosyltransferase activity to the Golgi apparatus of Schizosaccharomyces pombe Mol Biol Cell 1994, 5, 519.
    56. Miege, C., Marechal, E., Shimojima, M. Awai, K., Block, M. A., Ohta, H., Takamiya, K., Douce, R., and Joyard, J. Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG Eur J Biochem 1999,265, 990.
    57. Awai, K., Marechal, E., Block, M. A., Brun, D., Masuda, T., Shimada, H., Takamiya, K., Ohta, H., and Joyard, J. Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana Proc Natl Acad Sci USA 2001, 98, 10960.
    58. Miller, K. D., Guyon, V., Evans, J. N., Shuttleworth, W. A., and Taylor, L. P. Purification, cloning, and heterologous expression of a catalytically efficient flavonol 3-O-galactosyltransferase expressed in the male gametophyte of Petunia hybrida J Bio! Chem 1999,274, 34011.
    59. Edwards, M. E., Dickson, C. A., Chengappa, S., Sidebottom, C., Gidley, M. J., and Reid, J. S. Molecular characterisation of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis Plant J 1999, 19, 691.
    60. Fitchette, A. C., Cabanes-Macheteau, M., Marvin, L., Martin, B., Satiat-Jeunemaitre, B., Gomord, V., Crooks, K., Lerouge, P., Faye, L., and Hawes, C. Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cell Plant Physiol 1999,121,333.
    61. Hennet, T. The galactosyltransferase family Cell Mol Life Sci 2002, 59,1081.
    62. Gilbert, M., Brisson, J. R., Karwaski, M. F., Michniewicz, J., Cunningham, A. M., Wu, Y., Young, N. M., and Wakarchuk, W. W. Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-mhz (1)h and (13)c NMR analysis J Biol Chem 2000, 275, 3896.
    63. Linton, D., Gilbert, M., Hitchen, P. G., Dell, A., Morris, H. R., Wakarchuk, W. W., Gregson, N. A., and Wren, B. W. Phase variation of a beta-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni Mol Microbiol 2000, 37, 501.
    64. Watanabe, M., Miyake, K., Yanae, K., Kataoka, Y., Koizumi, S., Endo, T., Ozaki, A., and Iijima, S. Molecular characterization of a novel betal,3-galactosyltransferase for capsular polysaccharide synthesis by Streptococcus agalactiae type Ib J Biochem 2002, 131,183.
    65. Yi, W., Perali, R. S., Eguchi, H., Motari, E., Woodward, R., and Wang, P. G. Characterization of a bacterial β-1,3-galactosyltransferase with application in the synthesis of tumor-associated T-antigen mimics Biochemistry 2008,47,1241.
    66. Guo, H., Yi, W., Li, L., and Wang, P. G.Three UDP-hexose 4-epimerases with overlapping substrate specificity coexist in E. coli O86:B7 Biochem Biophys Res Commun 2007, 356, 604.
    67. Guo, H., Li, L.. and Wang, P. G.Biochemical characterization of UDP-GlcNAc/Glc 4-epimerase from Escherichia coli O86:B7 Biochemistry 2006,45,13760.
    68. Wu, B., Zhang, Y., Zheng, R., Guo, C., and Wang, P. G.Bifunctional phosphomannose isomerase/GDP-D-mannose pyrophosphorylase is the point of control for GDP-D-mannose biosynthesis in Helicobacter pylori FEBS Lett 2002,519, 87.
    69. Wu, B., Zhang, Y., and Wang, P. G. Identification and characterization of GDP-d-mannose 4,6-dehydratase and GDP-1-fucose snthetase in a GDP-1-fucose biosynthetic gene cluster from Helicobacter pylori Biochem Biophys Res Commun 2001,285, 364.
    70. Coyne, M. J., Reinap, B., Lee, M. M., and Comstock, L. E. Human symbionts use a host-like pathway for surface fucosylation Science 2005, 307, 1778.
    71. Mootoo, D. R., Konradsson, P., Udodong, U., and Fraser-Reid, B. Armed and disarmed n-pentenyl glycosides in saccharide couplings leading to oligosaccharides J Am Chem Soc 1988, 110,5583.
    72. Sears, P. and Wong, C-H. Toward automated synthesis of oligosaccharides and glycoproteins Science 2001,291,2344.
    73. Burkhart, F., Zhang, Z., Wacowich-Sgarbi, S., and Wong, C-H. Synthesis of the Globo H hexasaccharide using the programmable reactivity-based one-pot strategy Angew Chem, Int Ed 2001,40,1274.
    74. Murata, T. and Usui, T. Enzymatic synthesis of oligosaccharides and neoglycoconjugates Biosci, Biotechnol, Biochem 2006. 70, 1049.
    75. Zhang, J., Shao, J., Kowal, P., and Wang, P. G.Enzymatic synthesis of oligosaccharides Carbohydr.-Based Drug Discovery FIELD Full Journal Title: Carbohydrate-Based Drug Discovery 2003, 1, 137.
    76. Ohrlein, R. Glycosyltransferase-catalyzed synthesis of non-natural oligosaccharides Top Curr Chem 1999, 200, 227.
    77. Shao, J., Zhang, J., Kowal, P., Lu, Y., and Wang, P. G.Overexpression and biochemical characterization of β-1,3-N-acetylgalactosaminyltransferase LgtD from Haemophilus influenzae strain Rd Biochem Biophys Res Commun 2002, 295, 1.
    78. Chan, N. W. C., Stangier, K., Sherburne, R., Taylor, D. E., Zhang, Y., Dovichi, N. J., and Palcic, M. M. The biosynthesis of Lewis X in Helicobacter pylori Glycobiology 1995, 5,683.
    79. Zhang, J., Chen, X., Shao, J., Liu, Z., Kowal, P., Lu, Y., and Wang, P. G. Synthesis of galactose-containing oligosaccharides through superbeads and superbug approaches: substrate recognition along different biosynthetic pathways Methods Enzymol FIELD Full Journal Title .Methods in Enzymology 2003, 362, 106.
    80. Chen, X., Liu, Z., Zhang, J., Zhang, W., Kowal, P., and Wang, P. G.Reassembled biosynthetic pathway for large-scale carbohydrate synthesis: alpha -gal epitope producing "superbug" ChemBioChem 2002,3,47.
    81. Shoda, S.-i., Kohri, M., and Kobayashi, A. Glycosidase-catalyzed synthesis of oligosaccharides through intermediate analogue substrates Biocatalysis: Chemistry and Biology 2005, 83.
    82. Singh, S., Scigelova, M., and Crout, D. H. G.Glycosidase-catalyzed synthesis of alpha -galactosyl epitopes important in xenotransplantation and toxin binding using the alpha -galactosidase from Penicillium multicolor Chem Commun 1999,2065.
    83. Nilsson, K. G.I. Synthesis with glycosidases Front Nat Prod Res 1996, 1,518.
    84. Nilsson, K. G.I. Glycosidase-catalyzed synthesis of di- and trisaccharide derivatives related to antigens involved in the hyperacute rejection of xenotransplants Tetrahedron Lett 1997, 38, 133.
    85. Hancock, S. M., Vaughan, M. D., and Withers, S. G.Engineering of glycosidases and glycosyltransferases Curr Opin Chem Biol 2006, 10. 509.
    86. Shaikh, F. A. and Withers, S. G. Teaching old enzymes new tricks: engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis Biochem Cell Biol 2008, 86, 169.
    87. Nihira, T. Evolution of the oligosaccharide synthesis by glycosynthases Trends Glycosci Glycotechnol 2007, 19, 49.
    88. Vaughan, M. D., Johnson, K., DeFrees, S., Tang, X., Warren, R. A. J.. and Withers, S. G
    Glycosynthase-mediated synthesis of glycosphingolipids J. Am. Chem. Soc. FIELD FullJournal Title: Journal of the American Chemical Society 2006, 128, 6300.
    89. Mullegger, J., Chen, H. M., Warren, R. A. J., and Withers, S. G.Glycosylation of a neoglycoprotein by using glycosynthase and thioglycoligase approaches: the generation of a thioglycoprotein Angew Chem, Int Ed 2006, 45, 2585.
    90. Prescher, J. A. and Bertozzi, C. R. Chemistry in living systems Nat Chem Biol 2005, 1, 13.
    91.Prescher,J.A.and Bertozzi,C.R.Chemical technologies for probing glycans Cell (Cambridge,MA,U.S.) FIELD Full Journal Title:Cell(Cambridge,MA,United States)2006,126,851.
    92.Brown,J.R.,Fuster,M.M.,and Esko,J.D.Glycoside primers and inhibitors of glycosylation Carbohydrate-Based Drug Discovery 2003,2,883.
    93.Murrey,H.E.,Gama,C.I.,Kalovidouris,S.A.,Luo,W.I.,Driggers,E.M.,Porton,B.,and Hsieh-Wilson,L.C.Protein fucosylation regulates synapsin Ia/Ib expression and neuronal morphology in primary hippocampal neurons Proc Natl Acad Sci USA 2006,103,21.
    94.Chang,P.V.,Prescher,J.A.,Hangauer,M.J.,and Bertozzi,C.R.Imaging Cell Surface Glycans with Bioorthogonal Chemical Reporters J.Am.Chem.Soc.FIELD Full Journal Title:Journal of the American Chemical Society,2007,129,8400.
    95.Campbell,C.T.,Sampathkumar.S.G.,and Yarema,K.J.Metabolic oligosaccharide engineering:perspectives,applications,and future directions Mol BioSyst 2007,3,187.
    96.Sampathkumar,S.-G.,Li,A.V.,Jones,M.B.,Sun,Z.,and Yarema,K.J.Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology Nat Chem Biol 2006,2,149.
    97.Luchansky,S.J.,Goon,S.,and Bertozzi,C.R.Expanding the diversity of unnatural cell-surface sialic acids ChemBioChem 2004,5,371.
    98.Griffin,R.J.The medicinal chemistry of the azido group Prog Med Chem 1994,31,121.
    99.Koehn,M.and Breinbauer,R.The Staudinger iigation - A gift to chemical biology Angew Chem,Int.Ed 2004,43,3106.
    100.Wang,Q.,Chan,T.R.,Hilgraf.R.,Fokin.V.V.,Sharpless,K.B.,and Finn,M.G.Bioconjugation by copper(Ⅰ)-catalyzed azide-alkyne[3 + 2]cycloaddition J.Am.Chem.Soc.FIELD Full Journal Title:Journal of the American Chemical Society 2003,125,3192.
    101.Prescher,J.A.,Dube,D.H.,and Bertozzi,C.R.Chemical remodelling of cell surfaces in living animals Nature 2004,430,873.
    102.Saxon,E.and Bertozzi,C.R.Cell surface engineering by a modified Staudinger reaction Science 2000,287,2007.
    103.Rostovtsev,V.V.,Green.L.G.,Fokin,V.V.,and Sharpless,K.B.A stepwise Huisgen cycloaddition process:copper(Ⅰ)-catalyzed regioselective "ligation" of azides and terminal alkynes Angew Chem, Int Ed 2002,41,2596.
    104.Jessani, N. and Cravatt, B. F. Chemical strategies for activity-based proteomics Chem Biol 2001, 1,403.
    105.Seo, T. S., Bai, X., Ruparel, H., Li, Z., Turro, N. J., and Ju, J. Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry Proc Natl Acad Sci USA 2004, 101, 5488.
    106.Agard, N. J., Baskin, J. M., Prescher, J. A., Lo, A., and Bertozzi, C. R. A comparative study of bioorthogonal reactions with azides ACS Chem. Biol. FIELD Full Journal Title: ACS Chemical Biology 2006, 1, 644.
    107.Baskin, J. M., Prescher, J. A., Laughlin, S. T., Agard, N. J., Chang, P. V., Miller, I. A., Lo, A., Codelli, J. A., and Bertozzi, C. R. Copper-free click chemistry for dynamic in vivo imaging Proc Natl Acad Sci USA 2007, 104, 16793.
    108.Sengupta, P., Bhattacharyya, T., Shashkov, A. S., Kochanowski, H., and Basu, S. Structure of the O-specific side chain of the Escherichia coli 0128 lipopolysaccharide Carbohydr Res 1995,277,283.
    109.Lerouge, I. and Vanderleyden, J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions FEMS Microbiol Rev 2002,26, 17.
    110.Rietschel, E. T., Brade, H., Hoist, O., Brade, L., Muller-Loennies, S., Mamat, U., Zahringer, U., Beckmann, F., Seydel, U., Brandenburg, K., Ulmer, A. J., Mattern, T.. Heine, H., Schletter, J., Loppnow, H., Schonbeck, U., Flad, H. D., Hauschildt, S., Schade, U. F., Di Padova, F., Kusumoto, S., and Schumann, R. R. Bacterial endotoxin: Chemical constitution, biological recognition, host response, and immunological detoxification Curr Top Microbiol Immunol 1996, 216, 39.
    111.Moran, A. P., Prendergast, M. M., and Appelmelk, B. J. Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease FEMS Immunol Med Microbiol 1996, 16, 105.
    112.Sengupta, P., Bhattacharyya, T., Majumder, M., and Chatterjee, B. P. Determination of the immunodominant part in the O-antigenic polysaccharide from Escherichia coli 0128 by ELISA-inhibition study FEMS Immunol Med Microbiol 2000, 28, 133.
    113.Shao, J., Li, M., Jia, Q., Lu, Y., and Wang, P. G.Sequence of Escherichia coli O128 antigen biosynthesis cluster and functional identification of an α-1.2-fucosyltransferase FEBS Lett 2003, 553, 99.
    114. Springer, G. F., Wang, E. T., Nichols, J. H., and Shear, J. M. Relations between bacterial lipopolysaccharide structures and those of human cells Ann N Y Acad Sci 1966, 133, 566.
    115. Springer, G.F., Williamson, P., and Brandes, W. C. BLOOD GROUP ACTIVITY OF GRAM-NEGATIVE BACTERIA J. Exp. Med. 1961, 113,1077.
    116. Springer, G. F. and Horton, R. E. Blood group isoantibody stimulation in man by feeding blood group-active bacteria J Clin Invest 1969,48, 1280.
    117. Andersson, M., Carlin, N., Leontein, K., Lindquist, U., and Slettengren, K. Structural studies of the O-antigenic polysaccharide of Escherichia coli 086, which possesses blood-group B activity Carbohydr Res 1989, 185, 211.
    118. Yi, W., Bystricky, P., Yao, Q., Guo, H., Zhu, L., Li, H., Shen, J., Li, M., Ganguly, S., Bush, C. A., and Wang, P. G. Two different O-polysaccharides from Escherichia coli 086 are produced by different polymerization of the same O-repeating unit Carbohydr Res 2006, 341, 100.
    119. Sambrook, J. and Russell, D. W., Molecular Cloning: A Laboratory Manual. 3rd edition. 2001: Cold Spring Harbor Press.
    120.Qasba, P. K., Ramakrishnan, B., and Boeggeman, E. Substrate-induced conformational changes in glycosyltransferases Trends Biochem Sci 2005, 30, 53.
    121. Antoine, T., Priem, B., Heyraud, A., Greffe, L., Gilbert, M., Wakarchuk, W. W., Lam, J. S., and Samain, E. Large-scale in vivo synthesis of the carbohydrate moieties of gangliosides GM1 and GM2 by metabolically engineered Escherichia coli ChemBioChem 2003,4,406.
    122.Mulichak, A. M., Losey, H. C., Walsh, C. T., and Garavito, R. M. Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of Vancomycin group antibiotics Structure 2001, 9, 547.
    123. Wong, C-H., Ruo Wang, R., and Ichikawa, Y. Regeneration of sugar nucleotide for enzymic oligosaccharide synthesis: use of Gal-1-phosphate uridyltransferase in the regeneration of UDP-galactose, UDP-2-deoxygalactose, and UDP-galactosamine J. Org. Chem 1992, 57, 4343.
    124.Faik, A., Bar-Peled, M., DeRocher, A. E., Zeng, W., Perrin, R. M., Wilkerson, C., Raikhel, N. V., and Keegstra, K. Biochemical characterization and molecular cloning of an α-1,2-fucosyltransferase that catalyzes the last step of cell wall xyloglucan biosynthesis in pea J Biol Chem 2000,275, 15082.
    125.Miyashiro, M., Furuya, S., and Sugita, T. Development of a sensitive separation and quantification method for sialyl Lewis X and Lewis X involving anion-exchange chromatography: biochemical characterization of α1-3 fucosyltransferase-VII J Biochem (Tokyo) 2004, 136, 723.
    126.Takahashi, T., Ikeda, Y., Tateishi, A., Yamaguchi, Y., Ishikawa, M., and Taniguchi, N. A sequence motif involved in the donor substrate binding by α1,6-fucosyltransferase: the role of the conserved arginine residues Glycobiology 2000,10, 503.
    127.Oriol, R., Mollicone, R., Cailleau, A., Balanzino, L., and Breton, C. Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria Glycobiology 1999, 9, 323.
    128. Wang, G., Rasko, D. A., Sherburne, R., and Taylor, D. E. Molecular genetic basis for the variable expression of Lewis Y antigen in Helicobacter pylori: analysis of the α(1,2) fucosyltransferase gene Mol Microbiol 1999, 31, 1265.
    129.Martinez-Duncker, I., Mollicone, R., Candelier, J. J., Breton, C., and Oriol, R. A new superfamily of protein-O-fucosyltransferases, α2-fucosyltransferases, and a6-fucosyltransferases: phylogeny and identification of conserved peptide motifs Glycobiology 2003, 13, 1C.
    130.Chazalet, V., Uehara, K., Geremia, R. A., and Breton, C. Identification of essential amino acids in the Azorhizobium caulinodans fucosyltransferase NodZ J Bacteriol 2001,183,7067.
    131.Breton, C., Oriol, R., and Imberty, A. Conserved structural features in eukaryotic and prokaryotic fucosyltransferases Glycobiology 1998, 8, 87.
    132.Unligil, U. M. and Rini, J. M. Glycosyltransferase structure and mechanism Curr Opin Struct Biol 2000, 10,510.
    
    133. Ha, S., Walker, D., Shi, Y., and Walker, S. The 1.9 A crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis Protein Sci 2000, 9, 1045.
    
    134. Vrielink, A., Ruger, W., Driessen, H. P., and Freemont, P. S. Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose Embo J 1994,13, 3413.
    
    135.Barrett, D., Wang, T.-S. A., Yuan, Y., Zhang, Y., Kahne, D., and Walker, S. Analysis of Glycan Polymers Produced by Peptidoglycan Glycosyltransferases J Biol Chem 2007, 282,31964.
    
    136.Sarnesto, A., Kohlin, T., Hindsgaul, O., Thurin, J., and Blaszczyk-Thurin, M. Purification of the secretor-type β-galactoside α1,2-fucosyltransferase from human serum J Biol Chem 1992,267,2737.
    137.Masutani,H.and Kimura,H.Purification and characterization of secretory-type GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferase from human gastric mucosa J Biochem(Tokyo) 1995,118,541.
    138.Le Pendu,J.,Cartron,J.P.,Lemieux,R.U.,and Oriol,R.The presence of at least two different H-blood-group-related β-D-gal α-2-L-fucosyltransferases in human serum and the genetics of blood group H substances Am J Hum Genet 1985,37,749.
    139.Hoffmeister,D.,Ichinose,K.,and Bechthold,A.Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity Chem Biol 2001,8,557.
    140.Adelhorst,K.and Whitesides,G.M.Large-scale synthesis of beta-L-fucopyranosyl phosphate and the preparation of GDP-beta-L-fucose Carbohydr Res 1993,242,69.
    141.Ichikawa,Y.,Sim,M.M.,and Wong,C.H.,Efficient chemical synthesis of GDP-fucose.1992.p.2943-2946.
    142.Albermann,C.,Piepersberg,W.,and Wehmeier,U.F.Synthesis of the milk oligosaccharide 2'-fucosyllactose using recombinant bacterial enzymes Carbohydr Res 2001,334,97.
    143.Pastuszak,I.,Ketchum,C.,Hermanson,G.,Sjoberg,E.J.,Drake,R.,and Elbein,A.D.GDP-L-fucose pyrophosphorylase.Purification,cDNA cloning,and properties of the enzyme J Biol Chem 1998,273,30165.
    144.Hinderlich,S.,Berger,M.,Blume,A.,Chen,H.,Ghaderi,D.,and Bauer,C.Identification of human L-fucose kinase amino acid sequence Biochem Biophys Res Commun 2002,294,650.
    145.Kotake,T.,Hojo,S.,Tajima,N.,Matsuoka,K.,Koyama,T.,and Tsumuraya,Y.A bifunctional enzyme with L-fucokinase and GDP-L-fucose pyrophosphorylase activities salvages free L-fucose in Arabidopsis J Biol Chem 2008,283,8125.
    146.Wang,L.,Xie,J.,and Schultz,P.G.Expanding the genetic code Annu.Rev.Biophys.Biomol.Struct.FIELD Full Journal Title:Annual Review of Biophysics and Biomolecular Structure 2006,35,225.
    147.Hsu,T.-L.,Hanson,S.R.,Kishikawa,K.,Wang,S.-K.,Sawa,M.,and Wong,C.-H.Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells Proc Natl Acad Sci USA 2007,104,2614.
    148. Jennings, H. J., Gamian, A., and Ashton, F. E. N-Propionylated group B meningococcal polysaccharide mimics a unique epitope on group B Neisseria meningitidis J. Exp. Med. 1987, 165, 1207.
    149.Sadamoto, R., Niikura, K., Sears, P. S., Liu, H., Wong, C-H., Suksomcheep, A., Tomita, F., Monde, K., and Nishimura, S. Cell-wall engineering of living bacteria J Am Chem Soc 2002, 124,9018.
    150.Goon, S., Schilling, B., Tullius, M. V., Gibson, B. W., and Bertozzi, C. R. Metabolic incorporation of unnatural sialic acids into Haemophilus ducreyi lipooligosaccharides Proc Natl Acad Sci USA 2003, 100, 3089.
    151.Ma, B., Simala-Grant, J. L., and Taylor, D. E. Fucosylation in prokaryotes and eukaryotes Glycobiology FIELD Full Journal Title .Glycobiology 2006, 16, 158R.
    152. Link, A. J. and Tirrell, D. A. Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition J Am Chem Soc 2003,125, 11164.
    153.Rabuka, D., Hubbard, S. C., Laughlin, S. T., Argade, S. P., and Bertozzi, C. R. A chemical reporter strategy to probe glycoprotein fucosylation J Am Chem Soc 2006, 128,12078.
    154.Sawa, M., Hsu, T. L., Itoh, T., Sugiyama, M., Hanson, S. R., Vogt, P. K., and Wong, C. H. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo Proc Natl Acad Sci USA 2006, 103, 12371.
    155.Kerr, C. L., Hanna, W. F., Shaper, J. H., and Wright, W. W. Lewis X-containing glycans are specific and potent competitive inhibitors of the binding of ZP3 to complementary sites on capacitated, acrosome-intact mouse sperm Biol Reprod 2004, 71, 770.
    156.Thurin, M. and Kieber-Emmons, T. SA-Lea and tumor metastasis: the old prediction and recent findings Hybrid Hybridomics 2002,21,111.
    157.Lasky, L. A. Selectins: interpreters of cell-specific carbohydrate information during inflammation Science 1992, 258, 964.
    158. Wang, Q. Y., Wu, S. L., Chen, J. H., Liu, F.. and Chen, H. L. Expressions of Lewis antigens in human non-small cell pulmonary cancer and primary liver cancer with different pathological conditions J Exp Clin Cancer Res 2003,22, 431.
    159.Hakomori, S. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines Adv Exp Med Biol 2001,491, 369.
    160.Ugorski, M. and Laskowska, A. Sialyl Lewis(a): a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells Acta Biochim Pol 2002,49,303.
    161.German, J. B., Freeman, S. L., Lebrilla, C. B., and Mills, D. A. Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria Nestle Nutr Workshop Ser Pediatr Program 2008, 62, 205.
    162. Thomas, R. and Brooks, T. Common oligosaccharide moieties inhibit the adherence of typical and atypical respiratory pathogens J Med Microbiol 2004, 53, 833.
    163.Ramphal, R., Carnoy, C., Fievre, S., Michalski, J. C., Houdret, N., Lamblin, G., Strecker, G., and Roussel, P., Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal beta 1-3GlcNAc) or type 2 (Gal beta 1-4GlcNAc) disaccharide units. 1991. p. 700-704.
    164.Isshiki, S., Togayachi, A., Kudo, T., Nishihara, S., Watanabe, M., Kubota, T., Kitajima, M., Shiraishi, N., Sasaki, K., Andoh, T., and Narimatsu. H. Cloning, expression, and characterization of a novel UDP-galactose:beta-N-acetylglucosamine beta1,3-galactosyltransferase (beta3Gal-T5) responsible for synthesis of type 1 chain in colorectal and pancreatic epithelia and tumor cells derived therefrom J Biol Chem 1999, 274. 12499.
    165.Hennet, T., Dinter, A., Kuhnert, P., Mattu, T. S., Rudd, P. M., and Berger, E. G. Genomic cloning and expression of three murine UDP-galactose: beta-N-acetylglucosamine beta1,3-galactosyltransferase genes J Biol Chem 1998, 273, 58.
    166.Donnenberg, M. S., Kaper, J. B., and Finlay, B. B. Interactions between enteropathogenic Escherichia coli and host epithelial cells Trends Microbiol 1997. 5, 109.
    167.Nataro, J. P. and Kaper, J. B. Diarrheagenic Escherichia coli Clin Microbiol Rev 1998, 11,142.
    168. Wick, L. M.. Qi, W., Lacher, D. W., and Whittam, T. S. Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7 J Bacteriol 2005, 187,1783.
    l69.Sotiriadis, J., Shin, S.-C., Yim, D., Sieber. D.. and Kim, Y. B. Thomsen-Friedenreich (T) antigen expression increases sensitivity of natural killer cell lysis of cancer cells Int. J. Cancer 2004, 111,388.
    170.Lindberg, B., Lindh, F., Lonngren, J., Lindberg, A. A., and Svenson, S. B. Structural studies of the O-specific side-chain of the lipopolysaccharide from Escherichia coli O 55 Carbohydrate Research 1981, 97, 105.
    171.Blixt, O. and Razi, N. Chemoenzymatic synthesis of glycan libraries Methods Enzymol 2006,415,137.
    172. Li, M., Liu, X. W., Shao, J., Shen, J., Jia, Q., Yi, VV., Song, J. K., Woodward, R., Chow, C. S., and Wang, P. G. Characterization of a novel alpha 1,2-fucosyltransferase of Escherichia coli O128:b12 and functional investigation of its common motif Biochemistry 2008, 47, 378.
    173.Vetere, A., Miletich, M., Bosco, M., and Paoletti, S. Regiospecific glycosidase-assisted synthesis of lacto-N-biose I (Galbetal-3GlcNAc) and 3'-sialyl-lacto-N-biose I (NeuAcalpha2-3Galbeta1-3GlcNAc) EurJ Biochem 2000, 267, 942.
    
    174.Barreras, M., Abdian, P. L., and lelpi, L. Functional characterization of GumK, a membrane-associated beta-glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis Glycobiology 2004, 14,233.
    175.van den Brink-van der Laan, E., Boots, J. W., Spelbrink, R. E., Kool, G. M., Breukink, E., Killian, J. A., and de Kruijff, B. Membrane interaction of the glycosyltransferase MurG: a special role for cardiolipin J Bacteriol 2003, 185, 3773.
    176.Breton, C., Snajdrova, L., Jeanneau, C., Koca, J., and Imberty, A. Structures and mechanisms of glycosyltransferases Glycobiology 2006, 16, 29R.
    177.Altschuler, Y., Kinlough, C. L., Poland, P. A., Bruns, J. B., Apodaca, G., Weisz, O. A.. and Hughey, R. P. Clathrin-mediated endocytosis of MUC1 is modulated by its glycosylation state Mol Biol Cell 2000, 11,819.
    178.Malissard, M., Dinter, A., Berger, E. G., and Hennet, T. Functional assignment of motifs conserved in beta 1,3-glycosyltransferases Eur J Biochem 2002.269,233.
    179.Randriantsoa, M., Drouillard, S., Breton, C., and Samain, E. Synthesis of globopentaose using a novel beta1,3-galactosyltransferase activity of the Haemophilus influenzae beta1,3-N-acetylgalactosaminyltransferase LgtD FEBS Lett 2007, 581, 2652.
    180.Lairson, L. L., Henrissat, B., Davies. G. J., and Withers, S. G. Glycosyltransferases: structures, functions, and mechanisms Annu Rev Biochem 2008, 77, 521.
    181.Schuman, B., Alfaro, J. A., and Evans, S. V. Glycosyltransferase structure and function Top Curr Chem 2007,272, 217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700