用户名: 密码: 验证码:
层状星形聚合物的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星形聚合物是一类具有特殊形态学结构的聚合物,因其自身表现出良好的反应性与多功能性,自出现以来一直受到广泛的关注。高分子科学家制备和研究了各种结构的星形聚合物,例如:多臂、杂臂、嵌段、接枝等。其中,具有层状结构的星形聚合物因其特殊的空间拓扑结构在药物传输/缓释放、医学成像、多层纳米膜的制备、分子捕捉和金属净化剂等领域展示出较大的应用前景。在前人研究工作的基础上,本论文主要是描述了几种结构新颖的层状结构星形聚合物的合成与性能研究,并对水相中制备聚苯酚进行了一定的研究,具体内容如下:
     1.用核交联的方法合成了大环聚苯乙烯封端的星形聚合物,类似的工作还未见报道。首先用“点击”化学和原子转移自由基聚合(ATRP)联用的方法合成了大环聚苯乙烯与线形聚苯乙烯的两嵌段蝌蚪状共聚物,接着用ATRP方法将蝌蚪状聚合物的活性链末端与二乙烯基苯交联形成核交联的星形聚合物。所得星形聚合物的臂的数量通过核磁谱计算得到,绝对分子量通过配有多角激光光散射检测器的凝胶液相色谱仪测量。用线形链较短的蝌蚪状前驱物制备的星形聚合物反而具有较大的分子量和更多的臂,这些聚合物环封端的星形聚合物拥有高度交联的核和很多扩散开来的臂,并有两个玻璃化转变温度,分别对应与线形和聚合物环。
     2.合成了一种结构新颖的四臂星形两嵌段共聚物(sPS-b-HPG)4,其中每条臂都是由线形的聚苯乙烯(PS)和超支化缩水甘油(HPG)组成的两嵌段共聚物。星形PS是以四官能团的引发剂用ATRP方法引发聚合而制备的,随后将其链末端转变为羟基,并以此星形PS的端羟基引发缩水甘油在三氟化硼乙醚(BF3-OEt2)催化下进行阳离子开环聚合。核磁共振氢谱和碳谱用来表征该嵌段共聚物的化学结构,DSC的分析结果表明(sPS-b-HPG)4有两个玻璃化转变温度,分别对应PS和HPG。在(sPS-b-HPG)4中掺杂的LiC1O4的量较少时,HPG的玻璃化转变温度会升高,而加入的LiC1O4的量较多时,HPG的玻璃化转变温度会降低,而LiC1O4的加入对PS嵌段的玻璃化转变温度基本没有影响。通过粘度分析方法研究了锂离子与(sPS-b-HPG)4以及与HPG之间的相互作用,发现sPS内核可以促进锂离子与HPG之间的相互作用。星形超支化层状结构固体电解质(sPS-b-HPG)4/LiClO4的离子电导率要明显高于单纯超支化HPG/LiCl04。
     3.水相分散的碳纳米管可以控制酶促氧化聚合苯酚的高分子结构,得到的聚苯酚中有90%的结构单元都是热稳定性很好的苯醚结构,聚合物的产率取决于碳纳米管的使用量,说明碳管的表面吸附对结构控制起到关键作用。在用碳纳米管为模板的酶催化苯酚聚合的基础上,以碳纳米管表面共价接枝的对苯二酚为起始剂,成功制备聚苯醚改性的纳米碳管。本工作为制备高性能的聚合物和碳纳米管的改性提供了一种新的途径。
Star polymers, a kind of polymers with special morphological structures, have attracted great interests throughout the world due to its good performance in the responsiveness and versatility. A variety of star polymers with different structures, such as multi-arm, miktoarm, block, graft, and so on, have been prepared and studied. Due to their special topological structures, star polymers with a layered structure have exhibited good application prospects in the field of drug delivery/controlled release, medical imaging, multi-layer nano-membranes, molecular capturing and metal scavengers, etc. Based on the work of precursors, this dissertation mainly describes several interesting research in synthesis of star polymers with a layered structure and studied their performance thereby. In addition, we also do some research about enzymatic polymerization of phenol in water. The main results could be summarized as follows:
     1. We have synthesized macrocyclic polystyrene-(PS-) terminated star polymers via a core-crosslinking approach, and similar work has also not been reported. A tadpole-shaped macrocyclic PS-linear-PS copolymer was synthesized at first via both click reaction and ATRP polymerization method. The "living"ATRP chain-ends of the tadpole-shaped copolymers were linked together via ATRP polymerization with divinylbenzene to form a core-crosslinked star polymer. The number of arms attached to the macrocyclic star polymers was measured by using NMR, and absolute molecular weights by using gel permeation chromatography (GPC) with multiangle laser light scattering detector. The shorter tadpole-shaped precursors caused core-crosslinked star polymers with higher molecular weights and more arm numbers. These macrocyclic star polymers had a highly crosslinked core and many radiating arms. The macrocycle-terminated core-cross-linked star polymers showed two glass transition temperatures, one arising from the linear branches and another from the macrocycles.
     2. In this work, novel star-hyperbranched block copolymers containing four polystyrene arms and hyperbranched polyglycidol at the end of each arm (sPS-b-HPG)4 have been synthesized. The star polystyrenes were prepared through atom transfer radical polymerization of styrene starting from a four-arm initiator. The hydroxyl terminated PS star polymers served as precursors for the cationic ring opening polymerization of glycidol using BF3·OEt2 as the catalyst. The chemical structures of these block copolymers were characterized by using 1H and 13C NMR. DSC analysis indicated that the star-hyperbranched block copolymers exhibited two distinct glass transition temperatures corresponding to the linear PS and the HPG segments, respectively. The addition of LiClO4 increased the Tg of HPG segments at low concentrations, however, decreased the Tg at high concentrations. The Tg of PS segments was not affected by the addition of salts at all. Furthermore, the interaction of (sPS-b-HPG)4 with Li ions was studied by using viscosity analysis based on the Jones-Dole equation, and HPG was used as the control trial. The ionic conductivity of (sPS-b-HPG)4/LiClO4 electrolyte was measured to be higher than that of HPG/LiClO4 electrolyte at the same ratio of HPG/Li.
     3. Carbon nanotubes (CNTs) acted as a structural regulator for enzymatic polymerization of phenol in water. About 90% of total polymeric units in the obtained polymers are the highly thermally stable oxyphenylene units. The polymer-yields are dependent on the quantities of CNTs used. On the basis of MWNT-templated enzymatic polymerization of phenol, we grafted polyphenol chains to the surface of MWNT starting from the covalently anchored hydroquinone. This approach supplies a novel way for producing high performance polymers and for functionalization of the surface of CNT.
引文
[1]Szwarc M, Levy M, Milkovitch R. Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers[J]. J.Am.Chem.Soc,1956,78,2656-2657.
    [2]丘坤元.自由基聚合近20年的发展[J].高分子通报,2008,7,15-28.
    [3]Otsu T. Iniferter Concept and Living Radical Polymerization[J]. J Polym Sci Part A:Polym Chem,2000,38,2121-2136.
    [4]Otsu T, Matsunaga T, Doi T. "Features of living radical polymerization of vinyl monomers in homogeneous system using N, N-diethyldithiocarbamate derivatives as photoinitiators"[J]. Eur Polym J,1995,31,67-78.
    [5]Otsu T, Matsunaga T,.Kuriyama A. Living radical polymerization through the use of iniferters: Controlled synthesis of polymers[J]. Eur Polym J,1989,25,643-650.
    [6]陈欢,王国建.用引发转移终止剂制备嵌段和接枝共聚物[J].高分子通报,2008,4,79-84.
    [7]钦曙辉,丘坤元.新型引发转移终止剂引发烯类单体活性自由基聚合及共聚合[J].高分子学报,2002,2,127-136.
    [8]Turner S, Richard W, Blevins. Photoinitiated block copolymer formation using dithiocarbamate free radical chemistry[J]. Macromolecules,1990,23,1856-1859.
    [9]Lambrinos P, Tardi M, Polton A, Sigwalt P. The mechanism of the polymerization of n.butyl acrylate initiated with N,N-diethyl dithiocarbamate derivatives[J]. Eur Polym J,1990,26, 1125-1135.
    [10]Georges MK, Veregin RPN, Kazmaier PM, Hamer GK. Narrow molecular weight resins by a free-radical polymerization process[J]. Macromolecules,1993,26,2987-2988.
    [11]Veregin RPN, Odell PQ Michalak LM, Georges MK. The Pivotal Role of Excess Nitroxide Radical in Living Free Radical Polymerizations with Narrow Polydispersity[J]. Macromolecules,1996,29,2746-2754.
    [12]Veregin RPN, Odell PG, Michalak LM, Georges MK. Molecular Weight Distributions in Nitroxide-Mediated Living Free Radical Polymerization:Kinetics of the Slow Equilibria between Growing and Dormant Chains[J]. Macromolecules,1996,29,3346-3352.
    [13]张玉.2005.苯乙烯在新的引发剂和调控剂下的氮氧稳定自由基聚合[D]:[硕士].苏州:苏州大学,3-10.
    [14]Moad G, Rizzardo E, Solomon DH.The reaction of acyl peroxides with 2,2,6, 6-tetramethylpi-peridinylloxy[J]. Tetrahedron letters,1981,22,1165-1168.
    [15]Li IQ, Howell BA. Mono-and Dinitroxide Styrene Polymerization Initiators[J]. Macromolecules,1996,29,8554-8555.
    [16]Hawker CJ. Molecular Weight Control by a "Living" Free-Radical Polymerization Process[J]. J. Am. Chem. Soc.1994,116,11185-11186.
    [17]Hawker CJ, Georges G B. Initiating Systems for Nitroxide-Mediated "Living" Free Radical Polymerizations:Synthesis and Evaluation[J]. Macromolecules,1996,29,5245-5254.
    [18]Matyjaszewski K.50 years of living polymerization[J]. Progress in Polymer Scienee,2006,31, 1.039-1040.
    [19]Brauneeker WA,et al. Controlled/living radieal polymerization:Feature, Developments, and perspeetives[J]. Progress in Polymer Scienee,2007,32,93-146.
    [20]Wang JS, et al. Controlled/"living" radical polymerization. Atom transfer polymerization in the presence of transition-metal complexes[J]. J. AM. Chem. Soc.,1995,117,5614-5615
    [21]Wang JS, et al. "Living"/Controlled Radical Polymerization. Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator [J]. Macromolecules,1995,28,7572-7573.
    [22]Wang JS, et al. Controlled/"living"radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(Ⅰ)/Cu(Ⅱ) redox process[J]. Macromolecules,1995,28, 7901-7910.
    [23]Kato M, Kamigaito M, Sawamoto M, et al. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)[J]. Macromolecules,1995,28, 1721-1723.
    [24]Ando T, Kato M, Kamigaite M, et al. Living radical polymerization of methyl methacrylate with ruthenium complex:formation of polymers with controlled molecular weights and very narraw distributions[J]. Macromolecules,1996,29,1070-1072.
    [25]Percec V, Barboiu B. "Living"radical polymerization of styrene initiated by arenesulfonyl chlorides and CuI(bpy)nCl[J]. Macromolecules,1995,28,7970-7972.
    [26]Curran DP.1992. Comprehensive Organic Synthsis [M], Pergamon, New York.
    [27]Matyjaszewski K, Patten TE, Xia J. Controlled/"Living" Radical Polymerization. Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene[J]. J. Am. Chem. Soc., 1997,119,674-680.
    [28]Qiu J, Matyjaszewski K. Polymerization of Substituted Styrenes by Atom Transfer Radical Polymerization[J]. Macromolecules,1997,30,5643-5648.
    [29]Grimaud T, et al. Controlled/"Living" Radical Polymerization of Methyl Methacrylate by Atom Transfer Radical Polymerization[J]. Macromolecules,1997,30,2216-2218.
    [30]Matyjaszewski K, Jo SM, Paik H. Synthesis of well-defined polyacrylonitrile by atom transfer radical polymerization[J]. Macromolecules,1997,30,6398-6400.
    [31]Teodorescu M, Matyjaszewski K. Atom Transfer Radical Polymerization of (Meth)acrylamides[J]. Macromolecules,1999,32,4826-4831.
    [32]Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization[J]. Progress in Polymer Scienee,2001,26,337-377.
    [33]Tsarevsky NV, Matyjaszewski K. Reversible Redox Cleavage/Coupling of Polystyrene with Disulfide or Thiol Groups Prepared by Atom Transfer Radical Polymerization[J]. Macromolecules,2002,35,9009-9014.
    [34]Marsh A, et al. Atom Transfer Polymerization:Use of Uridine and Adenosine Derivatized Monomers and Initiators[J], Macromolecules,1999,32,8725-8731.
    [35]Min K, Yu S, et al. High Yield Synthesis of Molecular Brushes via ATRP in Miniemulsion[J]. Macromolecules,2007,40,6557-6563.
    [36]Esteves ACC, Bombalski L, Trindade T, Matyjaszewski K, Barros-Timmons A. Polymer Grafting from CdS Quantum Dots via AGET ATRP in Miniemulsion[J]. Small,2007,3, 1230-1236.
    [37]Qiu J, Matyjaszewski K, Thouin L, Amatore C. Cyclic Voltammetry Studies of Copper Complexes Catalyzing Atom Transfer Radical Polymerization[J]. Macromol. Chem. Phys., 2000,201,1625-1631.
    [38]王新红,李杨,张春庆,宋天喜,王玉荣.原子转移自由基聚合引发体系的最新研究[J].化学进展,2008,20,1726-1732.
    [39]Le TP, Moad G, Rizzardo E, et al. Polymerization with living characteristics PCT Int Appl. WO 9801478 Al.980115,1998.
    [40]Moad G, et al. Living free radical polymerization with reversible addition fragmentation chain transfer (the life of RAFT) [J]. Polym. Int.,2000,49,993-1001.
    [41]唐向阳,于九皋,王艳君.可逆加成-断裂链转移聚合研究进展[J].高分子通报,2004,3,29-37.
    [42]Mitsukami Y, Donovan MS, Lowe AB, et al. Water-Soluble Polymers.81. Direct Synthesis of Hydrophilic Styrenic-Based Homopolymers and Block Copolymers in Aqueous Solution via RAFT[J]. Macromolecules,2001,34,2248-2256.
    [43]Jancova K, et al. Synthesis by ATRP of poly(ethylene-co-butylene)-block-polystyrene, poly(ethylene-co-butylene)-block-poly(4-acetoxystyrene) and its hydrolysis product poly(ethylene-co-butylene)-block-poly(hydroxystyrene) [J]. Macromol Rapid Commun, 1999,20,219-223.
    [44]Chong BYK, et al. A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization:The RAFT Process[J].
    Macromolecules,1999,32,2071-2074.
    [45]Shi L, Chapman TM, Beckman EJ. Poly(ethylene glycol)-block-poly(N-vinylformamide) copolymers synthesized by the RAFT methodology[J]. Macromolecules,2003,36, 2563-2567.
    [46]Smulders WW, Jones CW, et al.Synthesis of Block Copolymers Using RAFT Miniemulsion Polymerization in a Train of CSTRs[J]. Macromolecules,2004,37,9345-9354.
    [47]Shi Y, Fu Z. Li B, Yang W. Synthesis of Diblock Copolymers by Combining Stable Free Radical Polymerization and Atom Transfer Radical Polymerization[J]. J Polym Sci Part A: Polym Chem 2006,44,2468-2475.
    [48]He XH, Sun WQ, Yan DY, Xie MR, Zhang YQ. Synthesis and Characterization of Side-Chain Liquid Crystalline ABC Triblock Copolymers with p-Methoxyazobenzene Moieties by Atom Transfer Radical Polymerization[J].J Polym Sci Part A:Polym Chem,2008,46, 4442-4450.
    [49]Zhang ZB, Shi ZQ, Ying SK. Synthesis of fluorine-containing block copolymers via ATRP[J]. Polymer,1998,40,1341-1343.
    [50]Hong CY, You YZ, Pan CY. Synthesis and characterization of well-defined diblock and triblock copolymers of poly(N-isopropylacrylamide) and poly(ethylene oxide)[J]. J Polym Sci Part A:Polym Chem,2004,42,4873-4881.
    [51]俞峰萍.2007.复杂接枝聚合物的合成与表征[D]:[硕士].上海:复旦大学,7-8.
    [52]Xie M, Dang J, Han H, Wang W, Liu J, He X, Zhang Y. Well-Defined Brush Copolymers with High Grafting Density of Amphiphilic Side Chains by Combination of ROP, ROMP, and ATRP[J]. Macromolecules,2008,41,9004-9010.
    [53]Quinn JF, Chaplin RP, Davis TP. Facile Synthesis of Comb, Star, and Graft Polymers via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization[J]. J Polym Sci Part A:Polym Chem,2002,40,2956-2966.
    [54]Kim YH. Hyperbranched Polyarylene. U.S.Patent 4857630,1987.
    [55]Hawker CJ, Frechet JMJ, et al. Preparation of Hyperbranched and Star Polymers by a "Living" Self-condensing Free RadicalPolymerization[J]. J. Am. Chem. Soc,1995,117, 10763-10764.
    [56]Li C, He J, Cao J, Yang Y. Controlled Radical Polymerization of Styrene in the Presence of a Polymerizable Nitroxide Compound[J]. Macromolecules,1999,32,7012-7014.
    [57]Tao YF, He JP, Wang ZM, Pan JY, Jiang HJ, Chen SM, Yang YL. Synthesis of Branched Polystyrene and Poly(styrene-b-4-methoxystyrene) by Nitroxyl Stable Radical Controlled Poly merization[J]. Macromolecules,2001,34,4742-4748.
    [58]Powell KT, Cheng C, Wooley KL. Complex Amphiphilic Hyperbranched Fluoropolymers by AtomTransfer Radical Self-Condensing Vinyl (Co)polymerization[J]. Macromolecules. 2007,40,4509-4515.
    [59]Muthukrishnan S, et al. Synthesis of Hyperbranched Glycopolymers via Self-Condensing Atom Transfer Radical Copolymerization of a Sugar-Carrying Acrylate[J]. Macromolecules,2005,38,9-18.
    [60]Mori H, Chan SD, Lechner H, Zhang M, Miiller AHE. Synthesis and Characterization of Branched Polyelectrolytes.1.Preparation of Hyperbranched Poly(acrylic acid) via Self-Condensing Atom Transfer Radical Copolymerization[J]. Macromolecules,2002,35, 9270-9281.
    [61]Cheng C, Powell KT, Khoshdel E, Wooley KL. Polydimethylsiloxane-(PDMS-) Grafted Fluorocopolymers by a "Grafting through" Strategy Based on Atom Transfer Radical (Co)polymerization[J]. Macromolecules,2007,40,7195-7207.
    [62]Flory PJ, Schaefgen JR. Synthesis of Multichain Polymers and Investigation of Their Viscosities[J]. J. AM. Chem. Soc,1948,70,2709-2718.
    [63]Klok HA, et al. Fluorescent Star-Shaped Polystyrenes:"Core-First" Synthesis from Perylene-Based ATRP Initiators and Dynamic Mechanical Solid-State Properties[J]. Macromol. Chem. Phys,2002,203,1106-1113.
    [64]Blencowe A, Tan JF, Goh TK, Qiao GG. Core cross-linked star polymers via controlled radical polymerization[J]. Polymer,2009,50,5-32.
    [65]Connal LA, Vestberg R, Hawker CJ, Qiao GG. Synthesis of Dendron Functionalized Core Cross-linked Star Polymers[J]. Macromolecules,2007,40,7855-7863.
    [66]Angot S, et al. Atom Transfer Radical Polymerization of Styrene Using a Novel Octafunctional Initiator:Synthesis of Well-Defined Polystyrene Stars[J]. Macromolecules, 1998,31,7218-7225.
    [67]张士福,罗宁,应圣康.原子转移自由基聚合合成星状聚合物.合成橡胶业,1998,21,56
    [68]Tsoukatos T, Pispas S, Hadjichristidis N. Star-Branched Polystyrenes by Nitroxide Living Free-Radical Polymerization[J]. J Polym Sci Part A:Polym Chem,2001,39,320-325.
    [69]Gao H, Matyjaszewski K. Synthesis of Star Polymers by a Combination of ATRP and the "Click" Coupling Method[J]. Macromolecules,2006,39,4960-4965.
    [70]Qin S, et al. Synthesis of block, statistical and gradient copolymers containing octadecyl side chains by atom transfer radical polymerization[J]. Macromolecules,2003,36,8969-8977.
    [71]Matyjaszewski K, Greszta D, Pakula T. Gradient copolymers of styrene and acrylonitrile via atom transfer radical polymerization[J]. Polym. Prepr.,1997,38,700-710.
    [72]张钰英.2009.基于RAFT聚合的含氟梯度共聚物的制备及其自组装行为的研究[D]:[硕士].武汉:武汉理工大学,1-4.
    [73]Geoffrey H, et al. Rubberlike block polymers. U. S Patent 3265765,1966-8-01.
    [74]Mignard E, Leblanc T, Bertin D, Guerret O, Reed WF. Online Monitoring of Controlled Radical Polymerization:Nitroxide-Mediated Gradient Copolymerization[J]. Macromolecules,2004,37,966-975.
    [75]Kim J, et al. Uniquely Broad Glass Transition Temperatures of Gradient Copolymers Relative to Random and Block Copolymers Containing Repulsive Comonomers[J]. Macromolecules,2006,39,6152-6160.
    [76]Kim J, Zhou H, Nguyen ST, et al. Synthesis and application of styrene/4-hydroxystyrene gradient copolymers made by controlled radical polymerization: Compatibilization of immiscible polymer blends via hydrogen-bonding effects[J]. Polymer,2006,47, 5799-5809.
    [77]Karaky K, Billon L, Pouchan C, et al. Amphiphilic Gradient Copolymers Shape Composition Influence on the Surface/Bulk Properties[J]. Macromolecules,2007,40,458-464.
    [78]Cuervo-Rodrigues R, et al. Nitroxide-mediated free-radical copolymerization of styrene with butyl acrylate[J]. J Polym Sci Part A:Polym Chem,2004,42,4168-4176.
    [79]Karaky K, Clisson G, Reiter G, Billon L. Semicrystalline Macromolecular Design by Nitroxide-Mediated Polymerization[J]. Macromol Chem Phys,2008,209,715-722.
    [80]Gray MK, Zhou H, Nguyen SBT, Torkelson JM. Synthesis and Glass Transition Behavior of High Molecular Weight Styrene/4-Acetoxystyene and Styrene/4-Hydroxystyrene Gradient Copolymers Made via Nitroxide-Mediated Controlled Radical Polymerization[J]. Macromolecules,2004,37,5586-5595.
    [81]Moad G, Rizzardo E, Thang SH. Radical addition-fragmentation chemistry in polymer synthesis[J]. Polymer,2008,49,1079-1131.
    [82]Qin S, et al. Synthesis of Block, Statistical, and Gradient Copolymers from Octadecyl (Meth)acrylates Using Atom Transfer Radical Polymerization[J]. Macromolecules,2003, 36,8969-8977.
    [83]Lee SB, Russell AJ, Matyjaszewski K. ATRP Synthesis of Amphiphilic Random, Gradient, and Block Copolymers of 2-(Dimethylamino)ethyl Methacrylate and n-Butyl Methacryl ate in Aqueous Media[J]. Biomacromolecules,2003,4,1386-1393.
    [84]Nakatani K, Terashima T, Sawamoto M. Concurrent Tandem Living Radical Polymerization: Gradient Copolymers via In Situ Monomer Transformation with Alcohols[J]. J. AM. Chem. Soc.,2009,131,13600-13601.
    [85]Miura Y, Shibata T, et al. Stereogradient Polymers by Ruthenium-Catalyzed Stereospecific Living Radical Copolymerization of Two Monomers with Different Stereospecificities and Reactivities[J]. J. Am. Chem. Soc.,2006,128,16026-16027.
    [86]Kolb H, Finn M, Sharpless K. Click Chemistry:Diverse Chemical Function from a Few Good Reactions[J]. Angew. Chem. Int. Ed.,2001,40,2004-2021.
    [87]李娟,段明.张烈辉,蒋晓慧.点击化学及其应用[J].化学进展,2007、19,1754-1759.
    [88]Finn MG, et al. Click Chemistry Definition and Aims[J]. Prog. Chem,2008,20,1-4.
    [89]Rostovtsev V, et al. Huisgen Cycloaddition Process:Copper(Ⅰ)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes[J]. Angew. Chem. Int. Ed.,2002,41, 2596-2599.
    [90]Krasinski A, Radic Z, Kolb H C, et al. In Situ Selection of Lead Compounds by Click Chemistry:Target-Guided Optimization of Acetylcholinesterase Inhibitors[J]. J.Am. Chem. Soc.,2005,127,6686-6692.
    [91]Manetsch R, Krasinski A, Radic Z, et al. In Situ Click Chemistry:Enzyme Inhibitors Made to Their Own Specifications[J]. J.Am. Chem. Soc.,2004,126,12809-12018.
    [92]Malkoch M, Thibault R J, Hawker C J, et al. Orthogonal Approaches to the Simultaneous and Cascade Functionalization of Macromolecules Using Click Chemistry[J]. J. Am. Chem. Soc.,2005,127,14942-14949.
    [93]Parrish B, Breitenkamp R B, Emrick T. PEG-and Peptide-Grafted Aliphatic Polyesters by Click Chemistry [J]. J. Am. Chem. Soc.,2005,127,7404-7410.
    [94]Li ZA, Li Z, Qin JG, et al. An Attempt To Modify Nonlinear Optical Effects of Polyurethanes by Adjusting the Structure of the Chromophore Moieties at the Molecular Level Using "Click" Chemistry[J]. Macromolecules,2006,39,8544-8546.
    [95]Liebert T, Hansch C, Heinze T. Click Chemistry with Polysaccharides[J]. Macromol. Rapid Commun.,2006,27,208-213.
    [96]Luxenhofer R, Jordan R. Click Chemistry with Poly(2-oxazoline)s[J]. Macromolecules,2006, 39,3509-3516.
    [97]Altintas O, Yamkul B, Tunca U, et al. A3-type star polymers via click chemistry[J]. J Polym Sci Part A:Polym Chem,2006,44,6458-6465.
    [98]Diaz D D, Punna S, FikonVV, et al. Click chemistry in materials synthesis.1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition[J]. J Polym Sci Part A: Polym Chem,2004,42,4392-4403.
    [99]Li C, Finn M G. Click chemistry in materials synthesis. Ⅱ. Acid-swellable crosslinked polymers made by copper-catalyzed azide-alkyne cycloaddition[J]. J Polym Sci Part A:
    Polym Chem,2006,44,5513-5518.
    [100]Thibault RJ, Takizawa K, et al. A Versatile New Monomer Family:Functionalized 4-Vinyl-l, 2,3-Triazoles via Click Chemistry[J]. J. Am. Chem. Soc.,2006,128,12084-12085.
    [101]Urien M, et al. Poly(3-hexylthiophene) Based Block Copolymers Prepared by "Click" Chemistry [J]. Macromolecules,2008,41,7033-7040.
    [102]Andrew JD, Magenau, et al.Polyisobutylene RAFT CTA by a Click Chemistry Site Transformation Approach:Synthesis of Poly(isobutylene-b-N-isopropylacrylamide)[J]. Macromolecules,2009,42,8044-8051.
    [103]Tzokova N, et al. The Effect of PEO Length on the Self-Assembly of Poly(ethylene oxide) Tetrapeptide Conjugates Prepared by "Click" Chemistry [J]. Langmuir,2009,25, 11082-11089.
    [104]Megia EF, Correa J, Riguera R. "Clickable" PEG-Dendritic Block Copolymers[J]. Biomacromolecules,2006,7,3104-3111.
    [105]Opsteen, J. A.; Van Hest, J. C. M. Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers[J]. Chem. Commun.,2005,57-59.
    [106]Hua C, Peng SM, Dong CM. Synthesis and Characterization of Linear-Dendron-like Poly(ε-caprolactone)-b-poly(ethylene oxide) Copolymers via the Combination of Ring-Opening Polymerization and Click Chemistry[J]. Macromolecules,2008,41, 6686-6695.
    [107]Parrish B, et al. "PEG and Peptide-grafted Aliphatic Polyesters by Click Chemistry" [J]. J. Am. Chem. Soc.,2005,127,7404-7410.
    [108]Altintas O, Hizal G, Tunca U. ABC-Type Hetero-Arm Star Terpolymers Through "Click" Chemistry[J]. J Polym Sci Part A:Polym Chem,2006,44,5699-5707.
    [109]Whittaker MR, Urbani CN, Monteiro MJ. Synthesis of 3-Miktoarm Stars and 1st Generation Mikto Dendritic Copolymers by "Living" Radical Polymerization and "Click" Chemistry [J]. J. Am. Chem. Soc.,2006,128,11360-11361.
    [110]Urbani CN, Bell CA, et al. Reactive Alkyne and Azide Solid Supports To Increase Purity of Novel Polymeric Stars and Dendrimers via the "Click" Reaction[J]. Macromolecules, 2007,40,7056-7059.
    [111]Zhang, Y.; Li, C.; Liu, S. One-Pot Synthesis of ABC Miktoarm Star Terpolymers by Coupling ATRP, ROP, and Click Chemistry Techniques[J]. J Polym Sci Part A:Polym Chem,2009,47,3066-3077.
    [112]Xie J, Hu L, Shi W. Synthesis and characterization of hyperbranched polytriazole via an 'A2+B3'approach based on click chemistry[J]. Polym Int,2008,57,965-974.
    [113]Li Z, Yu G, Hu P, Ye C, et al. Azo-Chromophore-Containing Hyperbranched Polytriazoles Derived from AB2 Monomers via Click Chemistry under Copper(1) Catalysis[J]. Macromolecules,2009,42,1589-1596.
    [114]Tang Y, Jim CKW, et al. Synthesis and Curing of Hyperbranched Poly(triazole)s with Click Polymerization for Improved Adhesion Strength[J]. Applied Materials & Interfaces,2010, 2,566-574.
    [115]Kong LZ, et al. Synthesis and Characterization of Hyperbranched Polystyrene via Click Reaction of AB2 Macromonomer[J]. J Polym. Sci Part A:Polym Chem,2010,48,454-462.
    [116]McLeish T. Polymers Without Beginning or End [J]. Science,2002,297,2005-2006.
    [117]Bielawski CW, Benitez D, Grubbs RH. An"Endless" Route to Cyclic Polymers[J]. Science, 2002,297,2041-2044.
    [118]Geiser D, Hocker H. Synthesis and Investigation of Macrocyclic Polystyrene[J]. Macromolecules,1980,13,653-656.
    [119]Roovers J, ToPorowski PM. Synthesis of High Molcular Weight Ring Polystyrene[J]. Macromolecules,1983,16,843-849.
    [120]Clarson SJ, Semlyen JA. Cyclic Polysiloxanes:1. Preparation and Characterization of Poly(phenylsiloxane)[J]. Polylmer,1986,27,1633-1636.
    [121]Roovers J. Viscoelastic Properties of Polybutadiene Rings[J]. Macromolecules,1988,21, 1517-1521.
    [122]Laurent BA, Grayson SM. An Efficient Route to Well-Defined Macrocyclic Polymers via "Click" Cyclization[J]. J. Am. Chem. Soc.,2006,128,4238-4239.
    [123]Hoskins J, Grayson SM. Synthesis and Degradation Behavior of Cyclic Poly(ε-caprolactone) [J]. Macromolecules,2009,42,6406-6413.
    [124]Xu J, Ye J, Liu S. Synthesis of Well-Defined Cyclic Poly(N-isopropylacrylamide) via Click Chemistry and Its Unique Thermal Phase Transition Behavior[J]. Macromolecules,2007, 40,9103-9110.
    [125]Dong YQ, et al. Preparation of Tadpole-Shaped Amphiphilic Cyclic PS-b-linear PEO via ATRP and Click Chemistry[J]. Macromolecules,2009,42,2940-2948.
    [126]Clark PG, et al. Synthesis of a Molecular Charm Bracelet via Click Cyclization and Olefin Metathesis Clipping[J]. J. Am. Chem. Soc.,2010,132,3405-3412.
    [127]Misaka H, Kakuchi R, Zhang C, Sakai R, et al. Synthesis of Well-Defined Macrocyclic Poly(δ-valerolactone) by "Click Cyclization" [J]. Macromolecules,2009,42,5091-5096.
    [128]Ge Z, Wang D, Zhou Y, Liu H, Liu S. Synthesis of Organic/Inorganic Hybrid Quatrefoil Shaped Star-Cyclic Polymer Containing a Polyhedral Oligomeric Silsesquioxane Core[J]. Macromolecules,2009,42,2903-2910.
    [129]沈家瑞.聚合新技术-模板(Matrix)聚合(Ⅰ).广州化工,1990,2,1-8.
    [130]Saito Y, et al. Template Polymerization with Noria as a Template[J]. Macromolecules,2008, 41,3755-3757.
    [131]Sanji T, Kato N, Tanaka M. Size-Selective Helical Stacking and Template Polymerization of Oligosaccharides around a Linear Polymeric Guest Molecule[J]. Angew. Chem. Int. Ed.,2009,48,1130-1132.
    [132]Sherif HE, Masry ME. Biocatalytic hydrogels by template polymerization[J]. Polym. Adv. Technol.2008,19,342-350.
    [133]Van de Grampel HT, et al. Template Polymerization of N-Vinylimidazole along Poly(meth-acrylic acid) in Water.5. Influence of Template Tacticity[J]. Macromolecules,1992,25, 1049-1056.
    [134]Sugiyama J, Yokozawa T, Endo T. Production of polymers from polymers:Novel template polymerization via radical ring-opening isomerization[J].J. Am. Chem. Soc.,1993,115, 2041-2042.
    [135]South CR, Weck M. Template-Enhanced Ring-Opening Metathesis Polymerization[J]. Macromolecules,2007,40,1386-1394.
    [136]Kim YJ, Uyama H, Kobayashi S. Regioselective Synthesis of Poly(phenylene) as a Complex with Poly(ethylene glycol) by Template Polymerization of Phenol in Water. Macromolecules,2003,36,5058-5060.
    [1]Yin R, Hogen-Esch TE. Synthesis and characterization of narrow molecular weight distribution polystyrene poly(dimethylsiloxane) macrocyclic block copolymers and their isobaric prec-ursors[J]. Macromolecules,1993,26,6952-6957.
    [2]Gan Y, Dong D, Carlotti S, Hogen-Esch TE. Enhanced Fluorescence of Macrocyclic Polystyrene[J]. J. Am. Chem.Soc.,2000,122,2130-2131.
    [3]Ge Z, et al. High-Efficiency Preparation of Macrocyclic Diblock Copolymers via Selective Click Reaction in Micellar Media[J], J. Am. Chem.Soc.,2009,131,1628-1629.
    [4]Culkin DA, et al. Zwitterionic Polymerization of Lactide to Cyclic Poly(Lactide) by Using N-Heterocyclic Carbene Organocatalysts[J]. Angew. Chem. Int. Ed.,2007,46,2627-2630.
    [5]Bielawski C, Benitez D, Grubbs R. An "Endless" Route to Cyclic Polymers[J]. Science,2002, 297,2041-2044.
    [6]Bielawski CW, Benitez D, Grubbs RH. Synthesis of Cyclic Polybutadiene via Ring-Opening Metathesis Polymerization:The Importance of Removing Trace Linear Contaminants[J]. J. Am. Chem. Soc.,2003,125,8424-8425.
    [7]Adachi K, et al. ATRP-RCM Synthesis of Cyclic Diblock Copolymers[J]. Macromolecules, 2008,41,7898-7903.
    [8]Matyjaszewski K. Macromolecular engineering:From rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties[J]. Progress in Polymer Science,2005,30,858-875.
    [9]Rostovtsev V, Green LG, et al. Stepwise Huisgen Cycloaddition Process:Copper(Ⅰ)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes[J]. Angew. Chem. Int. Ed.,2002, 41,2596-2599.
    [10]Laurent BA, Grayson SM. An Efficient Route to Well-Defined Macrocyclic Polymers via "Click" Cyclization[J]. J. Am. Chem. Soc.,2006,128,4238-4239.
    [11]Dong YQ, et al. Preparation of Tadpole-Shaped Amphiphilic Cy-clic PS-b-linear PEO via ATRP and Click Chemistry[J]. Macromolecules,2009,42,2940-2948.
    [12]Jia Z, Fu, Q, Huang J. Synthesis of Amphiphilic Macrocyclic Graft Copolymer Consisting of a Poly(ethylene oxide) Ring and Multi-Polystyrene Lateral Chains[J]. Macromolecules, 2006,39,5190-5193.
    [13]Ochiai B, Ootani Y, Endo T. Controlled Cyclopolymerization through Quantitative 19-Memb ered Ring Formation[J]. J. Am. Chem. Soc.,2008,130,10832-10833.
    [14]Connal LA, Vestberg R, et al. Synthesis of Dendron Functionalized Core Cross-linked Star Polymers[J]. Macromolecules,2007,40,7855-7863.
    [15]Gao H, Matyjaszewski K. Synthesis of Low-Polydispersity Miktoarm Star Copolymers via a Simple "Arm-First" Method:Macromonomers as Arm Precursors[J]. Macromolecules,2008, 41,4250-4257.
    [16]Connal LA, Li Q, Quinn JF, Tjipto E, Caruso F, Qiao GG. pH-Responsive Poly(acrylic acid) Core Cross-Linked Star Polymers:Morphology Transitions in Solution and Multilayer Thin Films[J]. Macromolecules,2008,41,2620-2626.
    [17]Gao H, Ohno S, Matyjaszewski K. Low Polydispersity Star Polymers via Cross-Linking Mac romonomers by ATRP[J]. J. Am.Chem. Soc.,2006,128,15111-15113.
    [18]Gao H, Matyjaszewski K. Arm-First Method As a Simple and General Method for Synthesis of Miktoarm Star Copolymers[J]. J. Am. Chem. Soc.,2007,129,11828-11834.
    [19]Wiltshire JT, Qiao GG. Selectively Degradable Core Cross-Linked Star Polymers[J]. Macromolecules,2006,39,9018-9027.
    [20]Gao H, et al. Synthesis of Star Polymers by A New "Core-First" Method:Sequential Polymerization of Cross-Linker and Monomer[J]. Macromolecules,2008,41,1118-1125.
    [21]Shen X, Liu H, Li Y, Liu S. Click-Together Azobenzene Dendrons:Synthesis and Characterization[J]. Macromolecules,2008,41,2421-2425.
    [22]Geiser D, Hocker H. Synthesis and Investigation of Macrocyclic Polystyrene[J]. Macromolecules,1980,13,653-656.
    [23]Liu H, Wilen CE. Extension of the chain-end, free-volume theory for predicting glass temperature as a function of conversion in hyperbranched polymers obtained through one-pot approaches[J]. J Polym Sci Part B:Polym Phys,2004,42,1235-1242.
    [1]Syromyatnikov VG, Paskal LP, Mashkin OA. Polymeric electrolytes for lithium chemical power sources[J]. Russ Chem Rev,1995,64,249-257.
    [2]Bruce PG. Ion-polyether coordination complexes:crystalline ionic conductors for clean energy storage[J]. Dalton Trans,2006,11,1365-1369.
    [3]Matsumiya Y, Balsara NP, Kerr JB, Inoue T, Watanabe H. In Situ Dielectric Characterization of Poly(ethylene oxide) Melts Containing Lithium Perchlorate under Steady Shear Flow[J]. Macromolecules,2004,37,544-553.
    [4]Singh M, et al. Effect of Molecular. Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes[J]. Macromolecules,2007,40,4578-4585.
    [5]Passerini S, Lisi M, Momma T, et al. Gelified co-continuous polymer blend system as polymer electrolyte for Li batteries[J]. Electrochem Soc,2004,151,578-582.
    [6]Hawker CJ, Chu F, Pmery PJ. Swelling Dynamics of Cross-Linked Poly(acrylic acid) and Neutralized Poly(acrylate-co-acrylic acid) in Aqueous Solutions of Hydroxypropyl cellulose [J]. Macromolecules,1996,29,3931-3936.
    [7]Allcock HR, Kuharcik SE, Reed CS, Napierala ME. Synthesis of Polyphosphazenes with Ethyleneoxy-Containing Side Groups:New Solid Electrolyte Materials[J]. Macromolecules, 1996,29,3384-3389.
    [8]Allcock HR, et al. Polyphosphazenes Bearing Branched and Linear Oligoethyleneoxy Side Groups as Solid Solvents for Ionic Conduction[J]. Macromolecules,1996,29,7544-7552.
    [9]Wang X, Liu H, Jin Y, Chen C. Polymer-Functionalized Multiwalled Carbon Nanotubes as Lithium Intercalation Hosts[J]. J Phys Chem B,2006,110,10236-10240.
    [10]Zubarev ER, Pralle MU, et al. Self-Assembly of Dendron Rodcoil Molecules into Nanoribbons [J]. J. Am. Chem. Soc.,2001,123,4105-4106.
    [11]Enomoto M, Kishimura A, Aida T. Coordination Metallacycles of an Achiral Dendron Self-Assemble via Metal-Metal Interaction To Form Luminescent Superhelical Fibers[J]. J. Am. Chem. Soc.,2001,123,5608-5609.
    [12]Percec V, Cho WD, et al. Design and Structural Analysis of the First Spherical Monodendron Self-Organizable in a Cubic Lattice[J]. J. Am. Chem. Soc.,2000,122,4249-4250.
    [13]Cho BK, Jain A, Gruner S, Wiesner U. Mesophase Structure-Mechanical and Ionic Transport Correlations in Extended Amphiphilic Dendrons[J]. Science,2004,305,1598-1601.
    [14]Duan H, et al. Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent[J]. J. Am. Chem. Soc.,2001,123,12097-12098.
    [15]Connal LA, Vestberg R, et al. Synthesis of Dendron Functionalized Core Cross-linked Star Polymers[J]. Macromolecules,2007,40,7855-7863.
    [16]Gitsov I, et al. Stimuli-Responsive Hybrid Macromolecules:Novel Amphiphilic Star Copolymers With Dendritic Groups at the Periphery[J]. J. Am. Chem. Soc.,1996,118, 3785-3786.
    [17]De Jesus OLP, Ihre HR, et al. Polyester Dendritic Systems for Drug Delivery Applications:In Vitro and In Vivo Evaluation[J]. Bioconjugate Chem,2002,13,453-461.
    [18]Ihre H, De Jesu's O. L. P, et al. Fast and Convenient Divergent Synthesis of Aliphatic Ester Dendrimers by Anhydride Coupling[J]. J. Am. Chem. Soc.,2001,123,5908-5917.
    [19]Piotti ME, et al. Synthesis and Catalytic Activity of Unimolecular Dendritic Reverse Micelles with "Internal" Functional Groups[J]. J. Am. Chem. Soc.,1999,121,9471-9472.
    [20]Zhao Y, Shuai X, et al. Synthesis of Star Block Copolymers from Dendrimer Initiator s by Combining Ring-Opening Polymerization and Atom Transfer Radical Polymerization[J]. Macromolecules,2004,37,8854-8862.
    [21]Mai Y, Zhou Y, Yan D. Synthesis and Size-Controllable Self-Assembly of a Novel Amphiphilic Hyperbranched Multiarm Copolyether[J]. Macromolecules,2005,38, 8679-8686;
    [22]Jones G, Dole M. The Viscosity of Aqueous Solutions of Strong Electrolytes with Special Reference to Barium Chloride[J]. J. Am. Chem. Soc.,1929,51,2950-2964.
    [23]Zamir T, Khan A, Durrani S, Uddin F. Study of ion-solvent interactions and activation energy of LiBr in DMSO, H2O and DMSO-H2O mixtures at various temperatures[J]. Ionics,2007,13,245-255.
    [24]Lepoittevin B, et al. Synthesis of Dendrimer-Like Polystyrene by Atom Transfer Radical Polymerization and Investigation of Their Viscosity Behavior[J]. Macromolecules,2005, 38,3120-3128.
    [25]Matmour R, Lepoittevin B, et al. Synthesis and Investigation of Surface Properties of Dendrimer-like Copolymers Based on Polystyrene and Poly(tert-butylacrylate)[J]. Macromolecules,2005,38,5459-5467;
    [26]Francis R, Taton D, Logan JL, et al. Synthesis and Surface Properties of Amphiphilic Star-Shaped and Dendrimer-like Copolymers Based on Polystyrene Core and Poly(ethylene oxide) Corona[J]. Macromolecules,2003,36,8253-8259.
    [27]Sunder A, Hanselmann R, et al. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization[J]. Macromolecules,1999,32,4240-4246.
    [28]Frey H, Haag R. Dendritic polyglycerol:a new versatile biocompatible material[J]. Mol Biotech,2002,90,257-267.
    [29]Ding X, Xu R, Liu H, Shi W, Liu S, Li Y. Hyperbranched Polymer-Assisted Hydrothermal In situ Synthesis of Submicrometer Silver Tubes[J]. Cryst Growth Des,2008,8,2982-2985.
    [30]Barriau E, Marcos AG, Kautz H, Frey H. Linear-Hyperbranched Amphiphilic AB Diblock Copolymers Based on Polystyrene and Hyperbranched Polyglycerol[J]. Macromol Rapid Commun,2005,26,862-867.
    [31]Hawker CJ, et al. One-step syhthesis of hyperbranched dendritic polyesters[J]. J. Am. Chem. Soc.,1991,113,4583-4588.
    [32]Ho'lter D, Burgath A, Frey H. Degree of branching in hyperbranched polymers[J]. Acta Polym,1997,48,30-35.
    [33]Angot S, Murthy KS, Taton D, Gnanou Y. Atom Transfer Radical Polymerization of Styrene Using a Novel Octafunctional Initiator:Synthesis of Well-Defined Polystyrene Stars[J]. Macromolecules,1998,31,7218-7225.
    [34]Watanabe M, Endo T, Nishimoto A, et al. High ionic conductivity and electrode interface properties of polymer electrolytes based on high molecular weight branched polyether[J]. Journal of Power Sources,1999,81,786-789.
    [35]Proshin PP, Passerini S, Vellone R, et al. V2O5 xerogel lithium-polymer electrolyte batteries [J]. Journal of Power Sources,1998,75,73-83.
    [36]Murata K, Izuchi S, Yoshihisa Y. An overview of the research and development of solid polymer electrolyte batteries[J]. Electrochimica Acta,2000,45,1501-1508.
    [37]Jenkins HDB, Marcus Y. Viscosity B-Coefficients of Ions in Solution[J]. Chem Rev,1995, 95,2695-2724.
    [1]Hay AS. Polymerization by oxidative coupling:Discovery and commercialization of PPO(?) and Noryl(?) resins[J]. J Polym Sci Part A:Polym Chem,1998,36,505-517.
    [2]Kobayashi S, Higashimura H. Oxidative polymerization of phenols revisited[J]. Progress in Polymer Science,2003,28,1015-1048.
    [3]Shibasaki Y, et al. Regiocontrolled Oxidative Coupling Polycondensation of 2, 5-Dimethylphenol Induced by Mesoporous Interior[J]. Macromolecules,2004,37, 9657-9659.
    [4]Uyama H, et al. Enzymatic synthesis of polyphenols[J]. Curr Org Chem,2003,7,1387-1397.
    [5]Xu P, et al. Monitoring the Enzymatic Polymerization of 4-Phenylphenol by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry:A Novel Approach[J]. Biomacromolecules,2002,3,889-893.
    [6]Higashimura H, Fujisawa K, et al. Highly Regioselective Oxidative Polymerization of 4-Phenoxyphenol to Poly(1,4-phenylene oxide) Catalyzed by Tyrosinase Model Complexes[J]. J. Am. Chem. Soc.,1998,120,8529-8530.
    [7]Kobayashi S, et al. Enzymatic Polymerization[J]. Chem Rev,2001,101,3793-3818.
    [8]Caramyshev A, Evtushenko EG, et al. Synthesis of Conducting Polyelectrolyte Complexes of Polyaniline and Poly(2-acrylamido-3-methyl-1-propanesulfonic acid) Catalyzed by pH-Stable Palm Tree Peroxidase[J]. Biomacromolecules,2005,6,1360-1366.
    [9]Yoshida T, Lu R, Han S, et al. Laccase-catalyzed polymerization of lignocatechol and affinity on proteins of resulting polymers[J]. J Polym Sci Part A:Polym Chem,2009,47,824-832.
    [10]Sikora T, Marcilla R, Mecerreyes D, Rodriguez J, et al. Enzymatic synthesis of water-soluble conducting poly(3,4-ethylenedioxythiophene):A simple enzyme immobilization strategy for recycling and reusing[J]. J Polym Sci Part A:Polym Chem,2009,47,306-309.
    [11]Zhao Q, Sun J, Ren H, Zhou Q, Lin Q. Horseradish peroxidase immobilized in macroporous hydrogel for acrylamide polymerization[J]. J Polym Sci Part A:Polym Chem,2008,46, 2222-2232.
    [12]Harada A, Johnin K, Kawamura A, et al. Preparation of temperature-responsive polymer gels physically immobilizing core-shell type bioconjugates[J]. J Polym Sci Part A:Polym Chem,2007,45,5942-5948.
    [13]Dordick JS, Marletta MA, Klibanov AM. Polymerization of Phenols Catalyzed by Peroxidase in Nonaqueous Media[J]. Biotechnol Bioeng,1987,30,31-36.
    [14]Reihmann MH, Ritter H. Oxidative Copolymerisation of para-Functionalized Phenols Catalyzed by Horseradish peroxidase and Thermocrosslinking via Diels-Alder and (1+3) Cycloaddition[J]. Macromol Biosci,2001,1,85-90.
    [15]Oguchi T, Tawaki SI, Uyama H, Kobayashi S. Soluble polyphenol[J]. Macromol Rapid Commun,1999,20,401-403.
    [16]Ayyagari M, Marx KA., Tripathy SK., Akkara JA, et al. Controlled Free Radical Polymerization of Phenol Derivatives by Enzyme Catalyzed Reactions in Organic Solverits[J]. Macromolecules,1995,28,5192-5197.
    [17]Kim YJ, Uyama H, Kobayashi S. Regioselective Synthesis of Poly(phenylene) as a Complex with Poly(ethylene glycol) by Template Polymerization of Phenol in Water[J]. Macromolecules,2003,36,5058-5060.
    [18]Bruno FF, et al. Enzymic Mediated Synthesis of Conjugated Polymers at the Langmuir Trough Air-Water Interface[J]. Langmuir,1995,11,889-892.
    [19]Karajanagi SS, Vertegel AA, Kane RS, Dordick JS. Structure and Function of Enzymes Adsorbed onto Single-Walled Carbon Nanotubes[J]. Langmuir,2004,20,11594-11599.
    [20]Wang X, Liu H, Jin Y, Chen C. Polymer-Functionalized Multiwalled Carbon Nanotubes as Lithium Intercalation Hosts[J]. J. Phys. Chem. B.,2006,110,10236-10240.
    [21]Wang X, Liu H, Qiu L. Cationic polymerization of tetrahydrofuran from multiple-walled carbon nanotubes:Preparation and glass transition kinetics[J]. Mater Lett,2007,61, 2350-2353.
    [22]Peng Y, Liu H. Effects of Oxidation by Hydrogen Peroxide on the Structures of Multiwalled Carbon Nanotubes[J]. Ind. Eng. Chem. Res.,2006,45,6483-6488.
    [23]Xu P, Uyama H, Whitten J, Kobayashi S, et al. Peroxidase-Catalyzed in Situ Polymerization of Surface Orientated Caffeic Acid[J]. J. Am. Chem. Soc.,2005,127,11745-11753;
    [24]Liu J, Nie Z, Gao Y, Adronov A, Li H. "Click" Coupling Between Alkyne-Decorated Multiwalled Carbon Nanotubes and Reactive PDMA-PNIPAM Micelles[J]. J Polym Sci Part A:Polym Chem,2008,46,7187-7199.
    [25]Jeong JY, Lee HJ, Kang SW, Tan LS, Baek JB. Nylon 610/functionalized multiwalled carbon nanotube composite prepared from in-situ interfacial polymerization[J]. J Polym Sci Part A:Polym Chem,2008,46,6041-6050.
    [26]Jeon IY, et al. Nanocomposites derived from in situ grafting of linear and hyperbranched poly(ether-ketone)s containing flexible oxyethylene spacers onto the surface of multiwalled ca-rbon nanotubes[J]. J Polym Sci Part A:Polym Chem,2008,46, 3471-3481.
    [27]Kim M, Hong CK, Choe S, Shim SE. Synthesis of polystyrene brush on multiwalled carbon
    nanotubes treated with KMnO4 in the presence of a phase-transfer catalyst[J]. J Polym Sci Part A:Polym Chem,2007,45,4413-4420.
    [28]Hong J, Hong CK, et al. Preparation of poly(acrylamide)/MWNTs nanocomposite using carboxylated MWNTs[J]. J Polym Sci Part A:Polym Chem,2007,45,3477-3481.
    [29]Potter DW, Mille DW, Hinson JA. Identification of acetaminophen polymerization products catalyzed by horseradish peroxidase[J]. J. Biol. Chem.1985,260,12174-12180.
    [30]Montellano PRO, et al. Cooxidation of styrene by horseradish peroxidase and phenols:a biochemical model for protein-mediated cooxidation[J]. Biochemistry,1987,26, 5310-5314.
    [31]Sang S, Yang CS, Ho CT. Peroxidase-mediated oxidation of catechins[J]. Phytochem Rev, 2004,3,229-241.
    [32]In I, Lee H, Kim SY. Synthesis of Hyperbranched Poly(phenylene oxide) by Ullmann Polycondensation and Subsequent Utilization as Unimolecular Micelle[J].Macromol Chem Phys,2003,204,1660-1664;
    [33]Cho CG, et al. Preparation of Poly(phenylene oxide-gstyrenesu-Ifonic acid) and their Characterization for DMFC Membrane[J]. High Perform Polym,2006,18,579-591.
    [34]Ruzgas T, Emneus J, Lo G, Varga GJ. Kinetic models of horseradish peroxidase action on a graphite electrode[J]. J. Electroanal. Chem.1995,391,41-49.
    [35]Yin Y, Lu Y, Wu P, Cai C. Direct Electrochemistry of Redox Proteins and Enzymes Promoted by Carbon Nanotubes[J]. Sensors,2005,5,220-234.
    [36]Gao C, Jin YZ, et al. Polyurea-Functionalized Multiwalled Carbon Nanotubes:Synthesis, Morphology, and Raman Spectroscopy[J]. J. Phys. Chem. B,2005,109,11925-11932.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700