用户名: 密码: 验证码:
永磁直线伺服电机及其冷却系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁直线伺服电机(PMLSM)具有结构简单,运行可靠,体积小,质量轻,推力密度大,效率高,可控性好,运行平稳等优点,已逐渐成为直线伺服系统的主流驱动电机,而如何提高推力密度和削弱推力波动一直是永磁直线伺服电机领域的两个重要研究内容。本文围绕这两个问题,对两种常用结构的永磁直线伺服电机进行了深入研究,分别为适用于轻载、快速反应、高精度特性要求场合的双边空心PMLSM (DAPMLSM)和高负载、大推力要求场合的单边水冷PMLSM。
     首先基于等效磁化强度法建立了PMLSM磁场分布和推力特性解析计算的统一分层线性模型,适用于不同形状及分布的永磁体、不同交直流电枢电流及不同绕组分布的PMLSM。
     其次对DAPMLSM进行了电磁设计。推导了空载气隙磁场解析表达式,对其他磁体形状的DAPMLSM提出了将磁体分成矩形块再线性叠加的简化统一的处理方法,并给出了电机各参数的选取原则。指出优化空载磁通密度波形可有效降低推力波动,提高伺服性能。另外,该类电机横向边缘效应较大,会影响气隙磁场分布、使空载反电势和推力幅值减小,因此定义了横向漏磁系数做定量衡量,其主要影响因素为电机横向长度、气隙高度和永磁体厚度。实验样机的测量结果验证了解析模型和有限元分析的可信性。
     再次,针对单边水冷PMLSM首先对其进行了电磁设计,研究了铁心端部磁场的分布特点;综合运用多种措施有效降低了磁阻力。在建立的直线电机对拖平台上测量了样机的空载与负载往复运动特性,证明了样机具有较好的伺服性能。
     最后,重点分析了其热特性并设计了合理的水冷系统,大幅度提高了电磁负荷与推力密度。在损耗计算的基础上,建立了三维温度管流耦合场模型,运算速度快,且可综合考虑修正热源、接触热阻、初次级间热传递、水流流动和冷却等方面对电机温度分布的影响。研究了无水冷和有水冷时不同工况下的热特性,得出最大允许负载电流和最大工作时间,为电机驱动提供指导。总结了PMLSM水冷系统参数和水道的设计原则。附加水冷系统后,在同样的温升限值下,长时间运行的最大推力密度提高为无水冷时的2.6倍,大大提高了驱动能力。在直线伺服系统中添加了空气绝缘隔离和精确水冷系统,降低了工作平台温度,减少了机床部件的热变形,从而保证了伺服加工精度。实验测量结果与温度分析模型计算结果相符,验证了温度分析方法和分析结论的正确性。
Permanent magnet linear servo motor (PMLSM) has the advantages of simple structure, small size, light weight, high thrust density, high efficiency, good controllability and stable and reliable operation. Thus it has gradually become the mainstream of the linear servo motor. However, how to improve the thrust density and weaken the thrust ripple have been two important contents in the research field of PMLSM. The studies of two commonly used PMLSM structures are carried out about the two issues in this paper. One is double-side air-cored PMLSM (DAPMLSM) which is suitable for light loads, rapid response, high precision requirements, and another is unilateral water-cooled PMLSM which is suitable for high-load, high-thrust occasions.
     Firstly, based on the equivalent magnetization intensity (EMI) method, the unified hierarchical linear model is established for PMLSM magnetic field and thrust analytical calculation. It is suitable for permanent magnet with different shapes and distribution, different AC or DC armature currents and different winding distributions.
     Secondly, the electromagnetic design of DAPMLSM is studied. Analytical expression of no-load air-gap magnetic field is obtained based on EMI. One simplified and unified method for other shapes PM is introduced, through dividing PM to rectangular segments and then superposing. The selection principles of motor parameters are given after analysis. Intelligent algorithm is introduced to optimize the no-load flux density waveform, effectively reducing the thrust fluctuations and improving the servo performance. The larger transverse end-effect of DAPMLSM will affect the air-gap magnetic field, no-load back EMF and thrust. Thus a flux leakage coffeient is defined to evaluate the end-effect, and it is influenced by the transverse length of the motor, the height of the air-gap and the height of. PM Experiments of the prototype verify the credibility of the analytical model and finite element analysis.
     Thirdly, the electromagnetic design of unilateral water-cooled PMLSM is studied. The magnetic field distribution characteristic at the end of the primary is obtained. The detent force is reduced through comprehensive use of various methods after the source analysis. Based on the established linear motors platform, reciprocating motion characteristics under no-load and load conditions are measured. The results indicate the motor has good servo performance.
     The final studies mainly focus on its thermal characteristics and reasonable cooling system design to improve its electromagnetic load and thrust density. Based on the loss calculation results, a three-dimensional model coupling temperature field and pipe flow is established. It calculates fast and could comprehensive consider the heat source modification, the thermal contact resistances, heat transfer between the primary and the secondary, water flow and its cooling effect on the temperature distribution in the motor. The thermal characteristics of the usual and the water-cooled motor in different conditions are studied. The obtianed maximum permissible load current and the maximum operating time provide guidance for the motor drive. The parameters selection methods and the design principles of the water-cooling system are provided for the guidance of PMLSM water-cooling system design. Because for the additional water-cooling system, the maximum thrust density is improved2.6times with the same temperature rise limits. It indicates the drive ability of PMLSM is greatly improved. Air-insulated isolation and precise cooling system are added to the linear servo system to reduce the temperature of the working platform, reduce the thermal deformation of machine components and to ensure the servo machining accuracy. The experimental results and temperature analysis match well, verfiying the correctness of temperature analytical methods and conclusions.
引文
[1]叶云岳.直线电机原理与应用[M].北京:机械工业出版社,2000.
    [2]叶云岳.直线电机伺服系统的应用与发展[C].2006年全国直线电机学术年会.中国黑龙江哈尔滨.pp.5-8.
    [3]王健.大推力永磁直线伺服电机及驱动器设计[D].硕士,沈阳工业大学,2008.
    [4]Doyle M R, Samuel D J, Conway T, et al. Electromagnetic aircraft launch system-EMALS[J]. Magnetics, IEEE Transactions on.1995,31(1):528-533.
    [5]Patterson D, Monti A, Brice C W, et al. Design and simulation of a permanent-magnet electromagnetic aircraft launcher[J]. Industry Applications, IEEE Transactions on.2005, 41(2):566-575.
    [6]Mirzaei M, Abdollahi S E, Lesani H. A Large Linear Interior Permanent Magnet Motor for Electromagnetic Launcher[J]. Plasma Science, IEEE Transactions on.2011,39(6): 1566-1570.
    [7]刘爱民,张锦辉,高君.直线电机的推力波动及其抑制方法[J].沈阳工业大学学报.2003(06):482-485.
    [8]叶晓平,马永寿,金涛.动磁式直线压缩机设计与试验研究[J].浙江大学学报(工学版).2008(02):229-233.
    [9]张育兴,马名中,马伟明,等.双定子直线感应电机饱和特性分析[J].中国电机工程学报.2012(36):102-108.
    [10]程远雄.永磁同步直线电机推力波动的优化设计研究[D].博士,华中科技大学,2011.
    [11]张颖.永磁同步直线电机磁阻力分析及控制策略研究[D].博士,华中科技大学,2008.
    [12]康润生,杨新伟,郝文玲.低速永磁直线同步电动机齿层比磁导的分析计算[J].煤矿机电.2007(04):57-60.
    [13]乔德治.基于等效磁网络法改进Halbach阵列的研究[D].北京工业大学,2010.
    [14]Mohammadpour A, Gandhi A, Parsa L. Winding factor calculation for analysis of back EMF waveform in air-core permanent magnet linear synchronous motors[J]. Electric Power Applications, IET.2012,6(5):253-259.
    [15]Chayopitak N, Taylor D G. Performance Assessment of Air-Core Linear Permanent-Magnet Synchronous Motors[J]. Magnetics, IEEE Transactions on.2008,44(10):2310-2316.
    [16]Vaez-Zadeh S, Isfahani A H. Multiobjective design optimization of air-core linear permanent-magnet synchronous motors for improved thrust and low magnet consumption[J]. Magnetics, IEEE Transactions on.2006,42(3):446-452.
    [17]Gyu-Hong K, Jung-Pyo H, Gyu-Tak K. Design and analysis of air core type permanent magnet linear brushless motor by using equivalent magnetizing current[C].Industry Applications Conference,2000. Conference Record of the 2000 IEEE. Rome, Italy.pp.29-35.
    [18]Analytical computation of normal and tangential forces in linear synchronous motor with air-core and Halbach permanent magnets[J]. Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology.2012,34(3):94-97.
    [19]Selcuk A H, Kurum H. Investigation of End Effects in Linear Induction Motors by Using the Finite-Element Method[J]. Magnetics, IEEE Transactions on.2008,44(7):1791-1795.
    [20]Tong Y, Libing Z, Langru L. Influence of Design Parameters on End Effect in Long Primary Double-Sided Linear Induction Motor[J]. Plasma Science, IEEE Transactions on.2011,39(1): 192-197.
    [21]Junyong L, Weiming M. Research on End Effect of Linear Induction Machine for High-Speed Industrial Transportation[J]. Plasma Science, IEEE Transactions on.2011,39(1): 116-120.
    [22]Hajji M, Khoidja M A N, Barhoumi E M, et al. Vector control for linear induction machine with minimization of the end effects[C].Renewable Energies and Vehicular Technology (REVET),2012 First International Conference on.pp.466-471.
    [23]Bessaih B, Boucheta A, Bousserhane I K, et al. Speed control of linear induction motor considering end-effects compensation using rotor time constant estimation[C].Systems, Signals and Devices (SSD),2012 9th International Multi-Conference on.pp.1-7.
    [24]In-Soung J, Jin H, Dong-Seok H.3-D analysis of permanent magnet linear synchronous motor with magnet arrangement using equivalent magnetic circuit network method[J]. Magnetics, IEEE Transactions on.1999,35(5):3736-3738.
    [25]Akmese R, Eastham J F. Design of permanent magnet flat linear motors for standstill applications[J]. Magnetics, IEEE Transactions on.1992,28(5):3042-3044.
    [26]Zhu Z Q, Xia Z P, Howe D, et al. Reduction of cogging force in slotless linear permanent magnet motors[J]. Electric Power Applications, IEE Proceedings-.1997,144(4):277-282.
    [27]崔连峰,赫玉丽.机床用永磁直线同步电机推力波动的优化设计[J].微电机.2012(10):29-33.
    [28]全磊,范承志,叶云岳.基于极弧系数组合的永磁直线电机齿槽力削弱方法[J].机电工程.2011(10):1209-1212.
    [29]解红磊,张为民,杨勇.数控机床用永磁直线同步电机干扰力分析及补偿[J].机械科学与技术,2012(10):1554-1558.
    [30]付子义,李华群,刘爱军.抑制永磁直线同步电动机推力波动的补偿技术[J].工矿自动化.2009(09):45-48.
    [31]张盛锋,姚丙雷,刘永江.永磁直线伺服电动机的分析计算[J].电机与控制应用.2009(01):11-15.
    [32]潘开林.永磁直线电机的驱动特性理论及推力波动优化设计研究[D].博士,浙江大学,2003.
    [33]夏加宽.高精度永磁直线电机端部效应推力波动及补偿策略研究[D].博士,沈阳工业大学,2006.
    [34]Tavana N R, Shoulaie A. Analysis and Design of Magnetic Pole Shape in Linear Permanent-Magnet Machine[J]. Magnetics, IEEE Transactions on.2010,46(4):1000-1006.
    [35]Mellor P H, Roberts D, Turner D R. Lumped parameter thermal model for electrical machines of TEFC design[J]. Electric Power Applications, IEE Proceedings B.1991,138(5): 205-218.
    [36]Cassat A, Espanet C, Wavre N. BLDC motor stator and rotor iron losses and thermal behavior based on lumped schemes and 3-D FEM analysis[J]. Industry Applications, IEEE Transactions on.2003,39(5):1314-1322.
    [37]Boglietti A, Cavagnino A, Pastorelli M, et al. Thermal analysis of induction and synchronous reluctance motors[J]. Industry Applications, IEEE Transactions on.2006,42(3):675-680.
    [38]Powell D J, Atallah K, Jewell G. Thermal Modeling of Flooded Rotor Electrical Machines for Electro-Hydrostatic Actuators[C].Electric Machines & Drives Conference,2007. IEMDC'07. IEEE International.pp.1632-1637.
    [39]Sooriyakumar G, Perryman R, Dodds S J. Analytical thermal modelling for permanent magnet synchronous motors[C].Universities Power Engineering Conference,2007. UPEC 2007.42nd International.pp.192-196.
    [40]Demetriades G D, de la Parra H Z, Andersson E, et al. A Real-Time Thermal Model of a Permanent-Magnet Synchronous Motor[J]. Power Electronics, IEEE Transactions on.2010, 25(2):463-474.
    [41]Li G J, Ojeda J, Hoang E, et al. Thermal-electromagnetic analysis of a fault-tolerant dual-star flux-switching permanent magnet motor for critical applications[J]. Electric Power Applications, IET.2011,5(6):503-513.
    [42]Kyu-Seob K, Byeong-Hwa L, Hae-Joong K, et al. Thermal analysis of outer rotor type IPMSM using thermal equivalent circuit[C].Electrical Machines and Systems (ICEMS),2012 15th International Conference on.pp.1-4.
    [43]Ruoho S, Kolehmainen J, Ikaheimo J, et al. Interdependence of Demagnetization, Loading, and Temperature Rise in a Permanent-Magnet Synchronous Motor[J]. Magnetics, IEEE Transactions on.2010,46(3):949-953.
    [44]Kyu-Seob K, Byeong-Hwa L, Jung-Pyo H. Improvement of Thermal Equivalent Circuit Network and Prediction on Heat Characteristic of Motor by Calculation of Convection Heat Transfer Coefficient[C].Electromagnetic Field Problems and Applications (ICEF),2012 Sixth International Conference on.pp.1-4.
    [45]Staton D A, So E. Determination of optimal thermal parameters for brushless permanent magnet motor design[C].Industry Applications Conference,1998. Thirty-Third IAS Annual Meeting. The 1998 IEEE.pp.41-49.
    [46]Chin Y K, Staton D A. Transient thermal analysis using both lumped-circuit approach and finite element method of a permanent magnet traction motor[C].AFRICON,2004.7th AFRICON Conference in Africa.pp.1027-1035.
    [47]Youguang G, Jian G Z, Wei W. Thermal analysis of soft magnetic composite motors using a hybrid model with distributed heat sources[J]. Magnetics, IEEE Transactions on.2005,41(6): 2124-2128.
    [48]Liu H P, Lelos V, Hearn C S. Transient 3-D thermal analysis for an air-cooled induction motor[C].Electric Machines and Drives,2005 IEEE International Conference on.pp.417-420.
    [49]Bianchi N, Bolognani S. Luise F. Analysis and Design of a PM Brushless Motor for High-Speed Operations[J]. Energy Conversion, IEEE Transactions on.2005,20(3):629-637.
    [50]Yunkai H, Jianguo Z, Youguang G, et al. Design and Analysis of a High-Speed Claw Pole Motor With Soft Magnetic Composite Core[J]. Magnetics, IEEE Transactions on.2007, 43(6):2492-2494.
    [51]Lenin N C, Arumugam R. Analysis and characterization of linear switched reluctance motors: Static, dynamic, frequency spectrum and thermal analyses[C].Electromagnetic Field Computation (CEFC).2010 14th Biennial IEEE Conference on.pp.1.
    [52]Liyi L, Baiping Y, Chengming Z. Research on temperature characteristic of giant magnetostrictive actuator[C].Electrical Machines and Systems (ICEMS),2011 International Conference on.pp.1-4.
    [53]Deaconu A S, Ghita C, Navrapescu V, et al. Permanent magnet synchronous motor thermal analysis[C].Power Electronics, Machines and Drives (PEMD 2012),6th IET International Conference on.pp.1-5.
    [54]Kefalas T D, Kladas A G. Finite element transient thermal analysis of PMSM for aerospace applications[C].Electrical Machines (1CEM),2012 XXth International Conference on.pp. 2566-2572.
    [55]Srinivas K N, Arumugam R. Analysis and characterization of switched reluctance motors: Part Ⅱ. Flow, thermal, and vibration analyses[J]. Magnetics, IEEE Transactions on.2005, 41(4):1321-1332.
    [56]Zhu H, Zou J. Temperature rise calculation and test of the wheel motor for satellite in vacuum[C].Electrical Machines and Systems,2005. ICEMS 2005. Proceedings of the Eighth International Conference on.pp.695-698.
    [57]Makni Z, Besbes M, Marchand C. Multiphysics Design Methodology of Permanent-Magnet Synchronous Motors[J]. Vehicular Technology, IEEE Transactions on.2007,56(4): 1524-1530.
    [58]Dorrell D G. Combined Thermal and Electromagnetic Analysis of Permanent-Magnet and Induction Machines to Aid Calculation[J]. Industrial Electronics, IEEE Transactions on.2008, 55(10):3566-3574.
    [59]Marignetti F, Delli Colli V, Coia Y. Design of Axial Flux PM Synchronous Machines Through 3-D Coupled Electromagnetic Thermal and Fluid-Dynamical Finite-Element Analysis[J]. Industrial Electronics, IEEE Transactions on.2008,55(10):3591-3601.
    [60]Yunkai H, Jianguo Z, Youguang G. Thermal Analysis of High-Speed SMC Motor Based on Thermal Network and 3-D FEA With Rotational Core Loss Included[J]. Magnetics, IEEE Transactions on.2009,45(10):4680-4683.
    [61]Weili L, Junci C, Xiaochen Z. Electrothermal Analysis of Induction Motor With Compound Cage Rotor Used for PHEV[J]. Industrial Electronics, IEEE Transactions on.2010,57(2): 660-668.
    [62]Daesuk J, Ju-Hee C, Kyungil W, et al. Electromagnetic Field and Thermal Linked Analysis of Interior Permanent-Magnet Synchronous Motor for Agricultural Electric Vehicle[J]. Magnetics, IEEE Transactions on.2011,47(10):4242-4245.
    [63]Lei Z, Xuhui W, Youlong W. An improved analytical method for eddy-current losses and thermal analysis in permanent magnets of PMSMs[C].Electrical Machines and Systems (ICEMS),2011 International Conference on.pp.1-5.
    [64]Youlong W, Wen X, Lei Z, et al. Design and experimental verification of high power density interior permanent magnet motors for underwater propulsions[C].Electrical Machines and Systems (ICEMS),2011 International Conference on.pp.1-6.
    [65]Tucker P G. CFD applied to electronic systems:a review[J]. Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on.1997,20(4):518-529.
    [66]Naruta T, Akiyama Y, Niwa Y. A study of cooling coefficient of the brushless DC motor for car air conditioner[C].Electrical Machines and Systems,2007. ICEMS. International Conference on.pp.896-899.
    [67]Kolondzovski Z. Numerical modelling of the coolant flow in a high-speed electrical machine[C].Electrical Machines,2008. ICEM 2008.18th International Conference on.pp. 1-5.
    [68]Liyi L, Zhiyin S, Xuzhen H, et al. Thermal analysis of high speed motor based on flow field calculation considering tooth-slots effects[C].Electrical Machines and Systems (ICEMS), 2011 International Conference on.pp.1-4.
    [69]Ye Z, Luo W, Zhang W, et al. Simulative analysis of traction motor cooling system based on CFD[C].Electric Information and Control Engineering (ICEICE),2011 International Conference on.pp.746-749.
    [70]Jungreuthmayer C, Bauml T, Winter O, et al. A Detailed Heat and Fluid Flow Analysis of an Internal Permanent Magnet Synchronous Machine by Means of Computational Fluid Dynamics[J]. Industrial Electronics, IEEE Transactions on.2012,59(12):4568-4578.
    [71]Polikarpova M, Roytta P, Alexandrova J, et al. Thermal design and analysis of a direct-water cooled direct drive permanent magnet synchronous generator for high-power wind turbine application[C].Electrical Machines (ICEM),2012 XXth International Conference on.pp. 1488-1495.
    [72]Ponomarev P, Polikarpova M, Pyrhonen J. Thermal modeling of directly-oil-cooled permanent magnet synchronous machine[C].Electrical Machines (ICEM),2012 XXth International Conference on.pp.1882-1887.
    [73]Peters T B, Mccarthy M, Allison J, et al. Design of an Integrated Loop Heat Pipe Air-Cooled Heat Exchanger for High Performance Electronics[J]. Components, Packaging and Manufacturing Technology, IEEE Transactions on.2012,2(10):1637-1648.
    [74]Amoros J G, Andrada P, Blanque B. An analytical approach to the thermal design of a double-sided linear switched reluctance motor[C].Electrical Machines (ICEM),2010 XIX International Conference on.pp.1-4.
    [75]Chayopitak N, Taylor D G. Thermal analysis of linear variable reluctance motor for manufacturing automation applications[C].Electric Machines and Drives,2005 IEEE International Conference on.pp.866-873.
    [76]Yuxing Z, Weiming M, Junyong L, et al. The transient thermal characteristics of periodic pulse-type linear induction motor[C].Electrical Machines (ICEM),2010 XIX International Conference on.pp.1-5.
    [77]Alvarenga B, Chabu 1, Cardoso J R. Thermal characterization of long electrical devices-application to a tubular linear induction motor[C].Electric Machines and Drives Conference,2003. IEMDC'03. IEEE International.pp.938-942.
    [78]Jinlin G, Gillon F, Brochet P. Magnetic and thermal 3D finite element model of a Linear Induction Motor[C].Vehicle Power and Propulsion Conference (VPPC),2010 IEEE.pp.1-6.
    [79]刘元江.圆筒型直线感应电动机稳态、瞬态特性和动态温度场的研究[D].博士,西安交通大学,1998.
    [80]刘元江,刘新正,陈世坤,等.圆筒型直线感应电动机温度场的有限元计算[J].微电机(伺服技术).2000(6):10-12.
    [81]马骏.圆筒型直线电机模型建立及其动态温度场研究[D].硕士,哈尔滨理工大学,2005.
    [82]李红涛.长初级直线感应电动机的设计及其电磁场与温度场研究[D].硕士,哈尔滨理工大学,2008.
    [83]Vese I, Marignetti F, Radulescu M M. Multiphysics Approach to Numerical Modeling of a Permanent-Magnet Tubular Linear Motor[J]. Industrial Electronics, IEEE Transactions on. 2010,57(1):320-326.
    [84]Liyi L, Xuzhen H, Liangliang Z, et al. Thermal characteristic of double-side tabular permanent magnet linear synchronous motor in different working models[C].Vehicle Power and Propulsion Conference,2008. VPPC'08. IEEE.pp.1-5.
    [85]Attaianese C, Carbone S, Marignetti F. Thermal design of linear generators for wave energy converters[C].Electrical Machines (ICEM),2010 XIX International Conference on.pp.1-8.
    [86]王旭强.圆筒型永磁直线同步电机电磁性能及温度场研究[D].硕士,河南理工大学,2010.
    [87]师巍.轴向充磁永磁直线电机推力波动及温度场问题的研究[D].硕士,哈尔滨工业大学,2011.
    [88]Changsoo J, Jong Y K, Yung J K, et al. Heat transfer analysis and simplified thermal resistance modeling of linear motor driven stages for SMT applications[J]. Components and Packaging Technologies, IEEE Transactions on.2003,26(3):532-540.
    [89]Liyi L, Xuzhen H, Baoquan K. Air flow of the linear motor for electromagnetic launch system[C].Electromagnetic Launch Technology (EML),2012 16th International Symposium on.pp.1-5.
    [90]Guangxia H, Zhenping L, Yahui Y, et al. Finite element calculation and analysis on thermal field in flat permanent magnet linear synchronous motor[C].World Automation Congress (WAC),2012.pp.323-326.
    [91]黄广霞,余亚辉.分段式永磁直线同步电机温度场分析[J].机电技术.2009(4):68-69.
    [92]黄广霞,布占伟.直线电机温度场有限元计算与分析[J].枣庄学院学报.2012(5):85-89.
    [93]黄广霞.永磁直线同步电动机温度场的计算[D].硕士,河南理工大学,2007.
    [94]牟晓杰.扁平型永磁直线同步电机进给系统热态特性的研究[D].硕士,浙江大学,2012.
    [95]Elwell R J, Garman R W, Doyle M. Thermal management techniques for an advanced linear motor in an electric aircraft recovery system[J]. Magnetics, IEEE Transactions on.2001, 37(1):476-479.
    [96]刘泉,张建民,孙洁,等.平板式永磁直线电动机的热分析与冷却系统设计[J].北京理工大学学报.2005(3):194-197.
    [97]孙洁,刘成颖.永磁同步直线电动机冷却系统结构设计[J].现代制造工程.2006(4):108-111.
    [98]汤蕴缪.电机内的电磁场[M].北京:科学出版社,1981.
    [99]Melcher J R. Continuum Eleetromeehanies[M]. Cmabridge:MA:MITPress,1981.
    [100]Xinghua W, Qingfu L, Shuhong W, et al. Analytical calculation of air-gap magnetic field distribution and instantaneous characteristics of brushless DC motors[J]. Energy Conversion, IEEE Transactions on.2003,18(3):424-432.
    [101]Zhu Z Q, Howe D. Instantaneous magnetic field distribution in brushless permanent magnet DC motors. III. Effect of stator slotting[J]. Magnetics, IEEE Transactions on.1993,29(1): 143-151.
    [102]刘晓.空心式永磁直线伺服电机及其驱动控制系统研究[D].浙江大学,2008.
    [103]刘晓,张玉秋,叶云岳,等.双边空心式永磁直线伺服电机的空载磁场分析[J].电机与控制学报.2010(1):56-60.
    [104]肖家乐,康燕琴,上官璇峰.基于遗传算法圆筒型直线感应电机的优化设计[J].电机技术.2008,No.118(05):1-4.
    [105]杨海柱,封孝辉,付子义.遗传算法在永磁直线同步电动机设计中的应用[J].微电机(伺服技术).2003(02):13-15.
    [106]李俊玲.遗传算法在圆筒型直线电机优化设计中的应用[D].沈阳工业大学,2008.
    [107]陈宇,卢琴芬,叶云岳.长定子同步直线电动机的设计及其优化[J].电工技术学报.2003,18(2):18-21.
    [108]lsfahani A H, Vaez-Zadeh S. Design of a Linear Permanent Magnet Synchronous Motor with Extra Low Force Pulsations[C].Power Electronics and Drives Systems,2005. PEDS 2005. International Conference on.pp.1386-1389.
    [109]张广溢.直线电动机静态横向边端效应研究[J].电机与控制学报.1999,3(2):126-128.
    [110]谭建成.永磁无刷直流电机技术[M].机械工业出版社,2011.
    [111]Zhu Z Q, Howe D. Influence of design parameters on cogging torque in permanent magnet machines[J]. Energy Conversion, IEEE Transactions on.2000,15(4):407-412.
    [112]杜卫民.永磁直线电机的电磁设计及磁阻力研究[D].硕士,河南理工大学,2009.
    [113]刘仲恕.定子斜槽的混合励磁永磁同步发电机研制[J].福建工程学院学报.2012(03):259-262.
    [114]李华,龚天明,祝令帅.定子斜槽结构对永磁同步电动机影响的分析[J].防爆电机.2012(04):6-8.
    [115]梁文毅,陆天雄,张翔.基于分段斜槽技术的电机斜槽特性分析[J].电工技术学报.2011(11):135-140.
    [116]乔鸣忠,张晓锋,李槐树.考虑定子斜槽及转子运动永磁推进电机反电势及定位力矩的数值计算[J].武汉理工大学学报(交通科学与工程版).2004(05):645-648.
    [117]郭宏,吴凯,宋纪平.永磁交流伺服电动机定位转矩的消除方法[J].微电机.1997(04):11-14.
    [118]乔静秋,陈旭东,陈立铭,等.直槽与斜槽式永磁无刷电动机的有限元分析[J].电机与控制学报.2001(04):229-232.
    [119]应红亮,张舟云,曲家骐,等.转子分段斜极在永磁同步电动机中的应用分析[J].微特电机.2009(07):10-13.
    [120]Jeans C G, Cruise R J, Landy C F. Methods of detent force reduction in linear synchronous motors[C].Electric Machines and Drives,1999. International Conference IEMD'99.pp. 437-439.
    [121]Bertotti G. General properties of power losses in soft ferromagnetic materials[J]. Magnetics, IEEE Transactions on.1988,24(1):621-630.
    [122]Reinert J, Brockmeyer A, De Doncker R W A A. Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation[J]. Industry Applications, IEEE Transactions on.2001,37(4):1055-1061.
    [123]Lin D, Zhou P, Fu W N, et al. A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis[J]. Magnetics, IEEE Transactions on. 2004,40(2):1318-1321.
    [124]沈启平.车用高功率密度永磁同步电机的研究[D].博士,沈阳工业大学,2012.
    [125]Yamazaki K, Fukushima Y, Sato M. Loss Analysis of Permanent Magnet Motors with Concentrated Windings-Variation of Magnet Eddy Current Loss Due to Stator and Rotor Shapes[C].Industry Applications Society Annual Meeting,2008. IAS'08. IEEE.pp.1-8.
    [126]Yoshida K, Hita Y, Kesamaru K. Eddy-current loss analysis in PM of surface-mounted-PM SM for electric vehicles[J]. Magnetics, IEEE Transactions on.2000,36(4):1941-1944.
    [127]Fu W N, Liu Z J. Estimation of eddy-current loss in permanent magnets of electric motors using network-field coupled multislice time-stepping finite-element method[J]. Magnetics, IEEE Transactions on.2002,38(2):1225-1228.
    [128]Hung V X, Lahaye D, Hoeijmakers M J, et al. Studying rotor eddy current loss of PM machines using nonlinear FEM including rotor motion[C].Electrical Machines (ICEM),2010 XIX International Conference on.pp.1-7.
    [129]Yuqiu Z, Kaiyuan L, Yunyue Y. Permanent Magnet Eddy Current Loss Analysis of a Novel Motor Integrated Permanent Magnet Gear[J]. Magnetics, IEEE Transactions on.2012,48(11): 3005-3008.
    [130]Ede J D, Atallah K, Jewell G W, et al. Effect of Axial Segmentation of Permanent Magnets on Rotor Loss in Modular Permanent-Magnet Brushless Machines[J]. Industry Applications, IEEE Transactions on.2007,43(5):1207-1213.
    [131]邹华生,钟理,伍钦.流体力学与传热[M].广州:华南理工大学出版社,2004.
    [132]Daesuk J, Ju-Hee C, Kyungil W, et al. Electromagnetic Field and Thermal Linked Analysis of Interior Permanent-Magnet Synchronous Motor for Agricultural Electric Vehicle[J]. Magnetics, IEEE Transactions on.2011,47(10):4242-4245.
    [133]牟晓杰.扁平型永磁直线同步电机进给系统热态特性的研究[D].硕士,浙江大学,2012.
    [134]COMSOL Multiphysics. http://www.comsol.com/.
    [135]COMSOL Multiphysics 弱形式入门. http://comsol.cntech.com.cn/.
    [136]王刚,安琳.COMSOL Multiphysics工程实践与理论仿真——多物理场数值分析技术[M].北京:电子工业出版社,2012.
    [137]Cai K, Jiang Z, Shouchang Z, et al. A novel finite element method for analyzing viscoelastic dynamics in biological tissues[C].Engineering in Medicine and Biology Society,1998. Proceedings of the 20th Annual International Conference of the IEEE.pp.2842-2845.
    [138]Ede J D, Atallah K, Jewell G W, et al. Effect of Axial Segmentation of Permanent Magnets on Rotor Loss in Modular Permanent-Magnet Brushless Machines[J]. Industry Applications, IEEE Transactions on.2007,43(5):1207-1213.
    [139]魏永田,孟大伟,温佳斌.电机内热交换[M].北京:机械工业出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700