用户名: 密码: 验证码:
基于流体力学及熵原理的集装箱港区交通流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于集装箱在运输过程中的优势以及适箱货物的不断增多,集装箱港口在各国经济发展中占有越来越重要的地位,因此,集装箱吞吐量已经成为衡量一个港口竞争能力最为重要的指标。然而,目前在集装箱港口中普遍存在交通压力过大、港区堵塞严重的问题,导致这一现象的原因主要是港区集疏运规划不当,进而造成船只排队等待、货物不能及时集输港等一系列影响港口吞吐量增长的不利后果。另一方面,国内外知名的集装箱港口大多位于经济发达的沿海地区,这些地区寸土寸金,土地资源极其宝贵,如何在合理利用土地资源的基础上使港区交通流顺畅,保证港口的通过能力,已经成为一个亟待解决的问题。
     目前,国内外对于港口交通流方面的研究尚处于初步发展阶段,具体体现在两个方面:(一)研究内容相对孤立。目前的研究将港区各系统作为单独的研究对象,虽然在各方面取得了不同的研究成果,但忽视了其内在联系;(二)研究手段相对单一。大多数研究是从管理科学角度展开,这些研究首先假设其不变的流动方式,然后在此基础上进行管理方法上的优化,上述研究方法忽视了集装箱交通流本身所具有的自然流动属性,因而不能完全反映出集装箱最佳的流动状态。
     本文研究内容及手段与以往相关研究具有较大差别。将集装箱港区堆场-道路作为整体系统进行研究,认为堆场与道路布置之间存在内在联系,堆场与道路系统的协调性对于集装箱港区的畅通与否至关重要。而这一点正是目前研究领域的空白,在我国港口工程技术规范中尚未有明确的条文规定。
     本研究选用类热力学熵及流体力学原理对集装箱堆场-道路系统进行关联性分析,这是本课题的创新点之一。注意到港区道路中集装箱交通流与流体的相似性,本文提出了采用经典流体力学原理模拟、研究集装箱在道路中运动规律的想法,首先建立了港口集装箱交通流与流体力学概念体系的比照关系,进而运用流体力学中质量守恒、动量定理等原理,针对港区道路中的集装箱车流进行分析,并对不同流态进行判别,最终导出港内道路保持最大通行能力的最优长度表达式。在推导过程中采用了稠密车流线性化密度分布假设,并在此基础上利用几何原理解决了时空积分的困难。
     本文引入熵原理对堆场系统的有序度进行了描述,选用Lotka-Volterra模型揭示堆场堆存率与闸口数量之间的非线性关系,并对此模型进行了稳定性分析,最终得到堆存率控制阈值。
     本文通过闸口将集装箱港区的堆场与道路相连接,不仅符合实际港区的布置现状,而且将堆场与道路各项指标相关联,找到港区陆域布置的计算方法。同时,本研究运用国内大型集装箱港的数据进行了验证,得到较为满意的结果。
     本文的结论为集装箱港区堆场-道路布置提供了理论上计算依据,对港口规划及生产运营具有指导意义和参考价值。
With its more advantages in the transportation process and the ever-increase on the goods suitable for container, the container port occupies an important position in the economic development of different countries around the world. Therefore, container throughput has been the most prime criteria evaluating the competitive competence of a harbor. However, there are, at present, some universal problems concerning about the ports of container, such as over-loaded traffic flow, the heavy port blocking, both of which mainly resulted from the inappropriate planning about collecting and distributing system of port area involved, many vessels waiting in line, as well as the problem of transportation of goods that affects the increasing of the throughput of a port. On the other hand, lots of well-known container harbors home or abroad locate mostly along the developed coastal areas where an inch of land is worth an inch of gold, the land resources are more than precious. Hence, it is of urgent question about how to make the port traffic going smoothly, guaranteeing the port capacity on the basis of rational utilization of land resources.
     Up to now, the study on traffic flow lie in its primary stages, which are accordingly divided into two aspects as follows: 1. Relative isolation of research content. Although various of results achieved from different perspectives, the current researchers still limit their study in a single way regardless of its inner connections. 2. Unvaried study method. Many scholars expanded the subject from the view of management science, according to which, the flow mode was firstly assumed to be stable, and the optimization of this method will be going next. This kind of method, despised of the natural flow attributes for traffic flow, thus can not completely give the way to the perfect state of containers.
     This paper differs from the former researches in terms of content and method related. Putting into study the yard and road system of containers as a whole will be the prominent feature, especially the blank of this field, because it takes for granted that there is an interior relationship between yard and arrangement of container port area and the importance of coordinativity between the both above as well, which so far has not yet found any records in the engineering and technology regulations.
     This thesis, with its marked innovation of this subject, tends to apply the principles of entropy and hydrodynamics to the relevant analysis on the yard-road system. It firstly puts forward the relevant relationship between traffic flow and conceptual system of hydrodynamics in terms of the theory of classical hydrodynamics stimulation and study; secondly, employed by the law of conservation and momentum theory, it further carries out an analysis on the flow and the discrimination from varied fluid, which consequently leads to the optimal length expression that maintains the maximum capacity on the port road. This paper also adopts the dense traffic flow density distribution assumption, which paves the way for the problem of space integral through the application of geometric principle.
     This thesis, on one hand, introduces the entropy theory to the description of the order degree of yard system, on the other hand, uncovers the non-linearity relationship between the piling rate and the quantities of gates in the container yards by use of the model from Lotka-Volterra to get eventually the threshold value of the piling rate.
     The way that connecting both the yard and the road in container port area through the gate can not only correspond with the current arrangement of the area but associate with every index related to yard and road, hence, discovering the calculation method for the arrangement of the container port area is very useful and important. At the same time, the gratifying results were gained through large amount of data testified in container ports of Qingdao.
     Lastly, the conclusion of this paper supplies the yard-road system in container port areas with the theoretical-based calculation as well as the guiding significances or the reference to the planning and operation of port in the future.
引文
[1]刘鼎铭.国际集装箱及其标准化.北京:人民交通出版社,1998
    [2]刘伟,王学锋.国际航运实务.北京:人民交通出版社,2001
    [3]交通部水运司编.国内水路集装箱运输发展指南(第一版).北京:人民交通出版社,2000
    [4]陈家源.港口通过能力理论与计算方法(第一版).大连:大连海事大学出版社,1999
    [5]黄顺泉.关于港口吞吐量预测方法选择的探讨.集装箱化,2003 (7):17~19
    [6]张明香,张婕姝.基于三次指数平滑的青岛港集装箱吞吐量预测.集装箱化,2006, 7: 37~39
    [7]王志民,何小明.集装箱码头合理吞吐能力探讨.水运工程,2004 (3): 16~20 [8〕朱善庆.关于海港集装箱码头合理通过能力的初步分析.中国港口,2004 (7): 28~30
    [9]杨静蕾.集装箱码头吞吐能力探讨.水运工程,2003 (3): 28~30
    [10] Gambardel la, L. M., Mastrolilli, M., Rizzoli, A. E.;Zaffalon, M, An optimization methodology forintermodalterminal management, journal of Intelligent Manufacturing, 2001,12(5-6):521~534.
    [11] Kozan, E. (2000),optimising container transfers at multimodal terminals, Mathematical and Computer Modelling 31,235~243.
    [12] Gambardella L. M.,Rizzoli A. E.,Zaffalon M..Simulation and planning of an intermodal container terminal. Simulation, Special Issue on Harbour and Maritime Simulation, 1998, 7(2): 107~116.
    [13]傅新平,宋德星.排队论在集装箱码头设计中的应用.水运工程.1995,12(2):17~20
    [14]杨静营,丁以中.集装箱码头设备配里模拟研究.系统仿真学报.2003.15(8):1069~1073
    [15]张新丽.集装箱码头堆场的新装卸工艺.武汉:港口装卸.2002.4:23~24
    [16] Gasper Music, Drago Matko. Petri Net Based Control of a Modular Production System. IEEE, 1999. 1383~1388
    [17]郭晋强.熵理论在建筑工程风险评估中的应用研究:[硕士学位论文].北京:北京工业大学,2005
    [18] Ulrich Witt. Self~organization and Economics-What is New. Structure Change and Economic Dynamics,1997, 8:489~507
    [19]李红岩.论经济熵增的系统控制.山西财经大学学报,2000,22(1):11~13
    [20]刘凤军.市场—熵—宏观调控.中国人民大学学报,1998,6:21~26
    [21]杨少华.市场竞争条件下统计熵的性质与分析.运筹与管理,1997,6(3):97~100
    [22]陈智,杨体强,李曼尼.熵理思维对西部大开发中决策的启示.科学管理研究,2002,20(4):55~59
    [23]杨国政.管理系统的系统特征与新的管理研究思想的形成.科学对社会的影响,1998,2:52~60
    [24]杨国政.走进热力学运用熵原理-对管理科学的思考.自然辩证法研究,1998,14:35~38
    [25]阎植林,邱莞华.管理系统有序度评价的熵模型.系统工程理论与实践,1997,6:45~48
    [26]任佩瑜,余伟萍,杨安华.基于管理熵的中国上市公司生命周期与能力策略研究.中国工业经济,2004,10:76~82
    [27]任佩瑜,张莉,宋勇.基于复杂性科学的管理熵、管理耗散结构理论及其在企业组织与决策中的作用.管理世界,2001,6:142~147
    [28]任佩瑜,宋勇,张莉.论管理熵、管理耗散结构与我国企业文化的重塑.四川大学学报(哲学社会科学版),2000,4:45~49
    [29]曹仓.管理组织中的熵定律及其对组织管理的影响.经济问题,2000,1:13~16
    [30]戴俊.企业的自组织特征分析及其对现代企业管理的影响.现代管理科学,2002,10:4~5
    [31]李如生.非平衡热力学和耗散结构.北京:清华大学出版社,1986
    [32]沈小峰,胡岗,姜璐.耗散结构论.上海:上海人民出版社,1987
    [33] S Sivadasan, J Efstathiou, G Frizelle, R Shirazi. An information~theoretic methodology for measuring the operational complexity of supplier~customer systems. International Journal of Operations & Production Management,2002, 22(1):80~102
    [34] Christopher P Holland, Ben Light. A stage maturity model for enterprise resource planning systems use. Database for Advances in Information Systems,2001,32(2):34~46
    [35]张彦高,李纬澍.耗散结构论在供应链管理中的应用.物流技术,2004,7:42~45
    [36]高瑞霞,罗树成,高迎平.熵理论在BPR中的应用.河北工业大学学报,2002,31(1):99~103
    [37]宁方华,陈子辰,熊励.熵理论在物流协同中的应用研究.浙江大学学报(工学版),2006,10:1705~1708
    [38]程赐胜,丁祝燕.基于模糊熵的物流企业客户满意度评价模型.铁道科学与工程学报,2006,3:79~82
    [39]阎颐,汪波.大物流工程项目类制造系统物流运行模糊熵评判.中国机械工程,2006,2:157~159
    [40]张国方,包凡彪.熵权值模糊综合评判法在物流选址中的应用.武汉理工大学学报,2005,7:91~93
    [41]屈莉莉,陈燕,侯振龙.基于模糊层次熵多目标评价决策模型的物流服务商优选.大连海事大学学报,2005,3:31~35
    [42]张永,李旭宏,毛海军.基于熵权和理想解法的物流中心建设序列决策模型.东南大学学报(自然科学版),2005,6:967~971
    [43]李思志,李艳红.物流供应商选择模型研究—集对分析及熵权系数的新应用.物流技术,2005,9:95~97
    [44]李旭宏,李玉民,顾政华,杨文东.基于层次分析法和熵权法的区域物流发展竞争态势分析.东南大学学报(自然科学版),2004,34(3):398~401
    [45]李敏,许滋坤.灰熵法在物流因子对经济影响排序中的应用.山东交通学院学报,2005,2:73~75
    [46]李玉民.物流发展影响因子的灰关联熵分析.公路交通科技,2005,2:142~145
    [47]张飞军,基于熵的公路路线设计安全评价研究:[博士学位论文].长春:吉林大学,2007
    [48]谢宝臣.汽车零部件可靠性设计的最大熵法:[硕士学位论文].长春:吉林大学,2006
    [49]邹春霞.基于最大熵原理的水工建筑物可靠度分析.[硕士学位论文]:呼和浩特,2004
    [50]钱育渝.道路交通系统的熵判据.云南工业大学学报,1998年,14(3):74~81
    [51]聂伟,邵春福,杨励雅.耗散结构及熵变理论在区域交通系统中的应用探讨.公路交通科技:2006,23(10):96~98
    [52]王东山,贺国光.交通流混沌研究综述.土木工程学报,2003,36(1):68~73.
    [53]贺国光,王东山.仿真交通流混沌现象的传播特性研究.土木工程学报,2004,37(1):71~73.
    [54]贺国光,万兴义,王东山.基于跟驰模型的交通流混沌研究.系统工程2003.21(2):50~55.
    [55]贺国光,王东山.交通流的有序运动与混沌运动相互转化现象的仿真研究.2004,37(1):70~73
    [56]达庆东,张国伍,姜学峰.交通分布与熵.公路交通科技.1999,16(1):36~39
    [57]马致远.基于改进熵值评价模型的交通可持续发展研究~成都市交通可持续发展实证研究:[硕士学位论文],成都:成都理工大学,2007
    [58]刘勇.道路交通系统的熵理论应用研究:[硕士学位论文].西安:长安大学,2003
    [59]刘勇,严宝杰,陈红.基于热力学熵的交通流模型.长安大学学报,2005,25(4).62~65
    [60]陈红,刘勇.道路交通系统类热力学熵及其应用.湖南大学学报,2004,31(4):69~72
    [61]王栋.熵及其在水系统中的研究与应用:[博士毕业论文].南京:河海大学,2001
    [62]张军.非线性海浪的最大熵分布及其应用:[博士学位论文].青岛:中国海洋大学,2005
    [63]徐国宾.非平衡态热力学理论在河流动力学领域的应用:[博士学位论文].天津:天津大学,2002
    [64]徐国宾,练继建.河流调整中的熵、熵产生和能耗率的变化.水科学进展.2004,15(1):1~5
    [65]徐国宾,练继建.流体最小熵产生原理与最小能耗率原理(Ⅰ) .水利学报, 2003,(5):35~40
    [66]徐国宾,练继建.流体最小熵产生原理与最小能耗率原理(Ⅱ) .水利学报, 2003,(6):43~47
    [67] Burghes D. N.,Wood A. D. Mathematical Models in the Social Management and Life Sciences[M].NewYork:Halsted Press,1981
    [68] D.Delfino,P.J.Simmons.Infectious Disease and Economic Growth:the Case of Tuberculosis[Z].Working Paper,1999
    [69] D.Delfino,P.J.Simmons.Positive and Normative Issues of Economic Growth with Infectious Disease[Z].Working Paper,2000
    [70] Farmer.J.D.A Simple model for the nonequilibrium dynamics and evolution of a financial market[J].International Journal ofTheoretical and Applied Finance,2000,3(3):425~441
    [71] Sergey Slobodyan. On impossibility of limit cycles in certain two-dimensional continuous-time growth mode[J].Studies in Nonlinear Dynamics&Econometrics,2001,5(1):33~40
    [72]孔东民.lotka-volterra系统下市场结构的演进.管理工程学报,2005,19(3):77~81
    [73]靳城,陆玉麒,徐菁.基于Lotka-Volterra系统的旅游景点市场竞争分析.南京师范大学学报(自然科学版),2007,30(2):104~109
    [74] Pipes L.A.An operational analysis of traffic dynamics[J].Journal of Applied Physics,1953,24:274~281
    [75] Herman R.,Montorll E.W.,Potts R.B.,Rothery R.W. Traffic dynamics:analysis of stability In car fllowing [J].Operations Reseacrh,1959,7:86~106
    [76] Gazis D.C.,Herman R.,Potts R. B. Car following theoy of steady state traffic flow[J].Operations Research,1959,7:499~505
    [77] Edie L.C. Car following and steady state theory of non~congested traffic[J].Operations Research,1960,9:66~76
    [78] Gazis D.C.,Herman R.,Rothery R.W. Nonlinear follow the leader models of traffic flow[J].Operations Research,1961,9:545~567
    [79] Kikuchi,C.,Chakrobotry,P. Car following model based on a fuzzy inference system[J].Transportation Research Record,1365,82~91
    [80] Chakroborty,P.,Kikuchi,C. Evaluation of the geneal r motors based car~following models and a porpsed fuzzy inference model[J]. Transportation Researceh C,7(1999),209~235
    [81] Wu,J.,Brackstone,M.,McDonald,M. Fuzzy set and system for motorway micrscopic simulation[J],Fuzzy set and systems,2000,116,65~76
    [82] Nagel K., Schecknberg, M. A cellular automation model for freeway traffic[J].J.phys.,1992,I~2:2221~2229
    [83] Nagel K.,Paczuski M. Emergent traffic jams[J].hys.Rev.E,1995,51:2909~2918
    [84] Takayasu M., Takayasu H.l/f noise in a traffic model[J].Fractals,1993,I(4):860~886
    [85] Benjamin S.C.,Johnson N.F.,Hui P.M. Cellular automation models of traffic flow along a highway containing a junction[J].J.Phys.A.1996,29:3119~3127
    [86] Barlovic R.,Santen L., Schadschneider A., Schreckenberg M.Metastable states in cellular automation for traffic flow[J].Eur.phys.J.,1998,B5:793~800
    [87] Dietrich E.W. Cellular automata for simulations[J].Physica A,263:438~451
    [88] Xiaobai L.,Qingsong W.,Rui J.Cellular automation model considering the velocity effect of a car on the successive car[J].Phys,Rev.E,2001,64:066128
    [89] Rickert M.,Nagel K.,Scheckenberg M.,Latour A.Two lane traffic simulations using cellular automata[J].physica A,1996,231:534~550
    [90] Chowdhury D.,Wolf D.E.,Schrechenberg M.,Particle hopping models for two~lane traffic with two kinds of vehicles: Effect of lane-changing rules[J].physical A,1997,235(4):417~439
    [91] Nagel K.,Wolf D.E.,Wagner P.,Simon P. Two-lane traffic rules for cellular automata:a systematic approach[J].Phys.Rev.E,1998,58(2):1425~1437
    [92] Knospe W.,Santen L.,Schadschneider A.,Schreckenberg M.Disorder effects in cellular automata for two~lane traffic[J],Physica A,1999,265(3~4):614~633
    [93] Simon P.,Gutowitz H.A. A cellular automation model for directional traffic[J].Phys.Rev.E,1998,57(2):2441~2444
    [94] Fukui M.,Ishibashi Y. Tarffic flow in ID cellular automation model including cars moving with high speed[J].J.Phys.Soc.Japan,1996,65(6):1868~1870
    [95] Emmerich H.,Rank E. An improved cellular automation model for traffic flow simulation [J].Physica A,1997,234:676~686
    [96] Biham O.,Middleton A.A.,Levine D. Self-organzation and a dynamical transition in traffic flow models[J].Phys.Rev.,1992,A46(10):6124~6127
    [97] Cuesta,J.A.,Martnez F.,Molera J.,Sanchez.A. Phase transitions in two-dimensional traffic flow models[J].Phys.Rev.E,1993,48(6):4175~4178
    [98] Nagatani T.,Seno T. Traffic jam induced by a crosscut road in a traffic flow model[J].Phy.A.,1994,207:574~583
    [99] Freund J.,P o schel T., A statistical approach to vehicular traffic [J]Physica A,1995,219:95~113
    [100]吕晓阳,陈若航.CA交通流模型的演化方程与转向概率效应[J].物理学报,1997,46(3):435~ 441
    [101]顾国庆,许伯铭,戴世强.自动机网络和交通模拟研究[J].自然杂志,1997,19A(10): 91~98
    [102]顾国庆,许伯铭.随机化交通灯的二维元胞自动机交通模型[J].应用数学和力学,1998,19(9):753~758
    [103] Pinghua H.,Lingjiang K.,et al. A study of a main~road cellular automata traffic flow model[J].Chin.Phys,2002,11(7):678~683
    [104]汪秉宏,王雷.交通流中的自组织临界性研究[J].广西师范大学学报(自然科学版),2002,20(l):45~ 51
    [105]谭惠丽,黄乒花,李华兵.交通灯控制下主干道的交通流研究[J].物理学报,2003,52(5) :1127~ 1131
    [106] Chowdhury D.,Schadschneider A.,Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods[J].Phys.Rev.E,1999,59:1311~1314
    [107] Lighthill,M.H. and G.B. Whilham. on kinematics waves: A Theory of Traffic Flow on Long Crowded Roads Proceeding, Royal Society(London),1955,A229,No.1178:317~345
    [108] Richards,H. Shoch waves on the highway.Operations Sesearch,4(1),1956,42~51
    [109]熊烈强.交通流理论及其在高速公路中的应用:[博士学位论文].武汉:武汉理工大学,2003,38~70
    [110] Pipes L A.Vehicle accelerations in the hydrodynamic theory of traffic flow. Transpn.Res.,1969,3(2):229~234
    [111] Payne H.J. Model of freeway traffic and control. In:Bekey GA(ed) Mathematical methods of Public System,1971,Vol.I,No.1:51~61
    [112] Papageorgion M. A hieratrchical Control system for freeway traffic,Transpn.. Res. 17B,1983.251~261
    [113] Ku hne R.D. Macroscopic freeway model for dense traffic-stop-start wave and incident detection,in:Volmuller J.,hameralag R.(eds.).proc.9th .Int. Symp. on Transpn. And traffic Theory.VNU Science Press.Utrecht.,1984:21~24
    [114] Phillips W.F..A New Continuum Traffic Model obtained from Kinetic Theory.IEEE Transactions on Automatic Control,1978,AC~23:1032~1036
    [115] Hall,F.L,V.F. Hudle,and J.H. Banks. Synthesis of Recent work on the Nature of Speed~Flow and Flow~Occupancy(or Density) Relationship on Freeways.Transportation Research Record 1365,TRB National Research Council,Washingon,D.C.1992:12~18
    [116]吴正.交通流的动力学模拟与测量方法.复旦学报(自然科学版),1991,30(1),111~117
    [117]吴正.低速混合型城市交通的流体力学模型.力学学报,1994,26(2):149~157
    [118]陈戌源主编.集装箱码头业务管理.大连:大连海事大学出版社.1998
    [119]高惠璇,汪仁官,刘化荣,黄禄平.集装箱专用码头装卸系统的随机模拟,第四届全国概率统计年会论文
    [120]吴宏智,李伟民.集装箱装卸和运输机械.铁道货运.1995,5:28~31
    [121] WonYoung,Yun yong SeokChoi. A simulation model for container-terminal operationAnalysis using an object~oriented approach,Int.J.Produetion Eeonomies 59,1999
    [122]陆化普,等.城市交通管理评价体系.北京:人民交通出版社,2003.6
    [123]薛珊荣,徐吉谦,等编著.城市交通工程与街道规划设计.中国建筑工业出版社,1988.9
    [124]王炜,徐吉谦.城市交通规划理论与方法.北京:人民交通出版社,1992.8
    [125]周谟仁.流体力学泵与风机(第三版).北京:中国建筑工业出版社.1994
    [126]薛郁.随机计及相对速度的交通流跟驰模型.物理学报,2003.52(11):2750~2756
    [127]谢定预.流体力学.第一版.天津:南开大学出版社,1987
    [128]陈玉璞,等编.流体动力学.南京:河海大学出版社,1990
    [129]潘文全.工程流体力学.北京:清华大学出版社,1988
    [130]白其峥主编.数学建模案例分析(第一版).北京:海洋出版社, 2000
    [131]吴正,周炯,张旭辉,王汉云,邓红宇,李明月,李爱国.关于交通流动力学模型与交通状态指数研究.水动力学研究与进展,2003,18(4):403~407
    [132]吴正.高速公路中堵塞形成阶段的交通流模型.交通运输工程学报,2003,3 (2):61~64
    [133]吴正.交通流的动力学模拟.庆祝上海市交通工程学会成立十周年论文选编.上海市交通工程学会出版社,1989,12,26~31
    [134]刘来福,曾文艺.数学模型与数学建模(第一版).北京:北京师范大学出版社,1997
    [135]王建军,严宝杰.交通调查与分析.北京:人民交通出版社,2004
    [136]郝黎仁,樊元,等.SPSS实用统计分析.北京,中国水利水电出版社,2002
    [138]王炜,高海龙,李文权,等.公路交叉日通行能力分析方法.北京,科学出版社,2001
    [139] (美)丹尼尔L.坞洛夫,马休,丁休.交通流理论.蒋磺,任福田,肖秋生,安永溪,徐吉谦译.北京人民交通出版社:1983
    [140]冯瑞,冯少彤.溯源探幽熵的世界,北京:科学出版社,2005
    [141]王竹溪.热力学(第2版).北京:北京高等教育出版社,1960
    [142]龚茂枝.热力学.武汉:武汉大学出版社,1998
    [143] Nicolis G..,Prigogine I. Self-Organization in Non-equilibrium Systems.New York :Wiley~Interscience.1977
    [144]尼科利斯G..,普里戈京I..非平衡系统的自组织.(徐锡申,陈式刚等译).北京:科学出版社,1986
    [145]彭少方,张昭编.线性和非线性非平衡态热力学进展的应用.北京:化学工业出版社,2006
    [146] R.M.May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, New Jersey,1973.
    [147]中华人民共和国交通部.JTJ 211~99.海港总平面设计规范。北京:人民交通出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700