用户名: 密码: 验证码:
基于概率描述的宏观尺度空间均化流域水文模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的物理性流域水文模型以“点”尺度的水文过程控制方程为基础构建,与概念性模型相比有显著的优越性,但存在由于方程非线性和下垫面条件不均匀性所导致的方程适用尺度和模型应用尺度间不匹配的问题。基于对下垫面条件不均匀性的概率描述,通过空间均化构建宏观尺度的水文过程控制方程,是解决水文尺度问题的一种新途径。
     流域水文过程的数学描述是流域水文模型构建的基础,论文建立了主要水文过程的宏观尺度空间均化方程:基于概率密度函数和土壤垂向分层对饱和导水率空间变异性进行了全面描述,建立了空间均化分层土壤入渗模型和空间均化壤中流模型,能模拟饱和导水率水平和垂直方向都不均匀条件下土壤的入渗和壤中流出流过程。基于沟道参数均匀假设,改进了Yoon等建立的沟道-坡面耦合坡面流模型,使模型参数能够根据DEM确定。
     在所建立的水文过程空间均化方程的基础上,构建了具有自己特色的空间均化流域水文模型——SAWH模型。模型中流域下垫面特性的宏观不均匀性通过流域划分和模型计算单元(MCU)内分区进行考虑,土壤饱和导水率和地形的微观不均匀性通过概率密度函数进行描述。模型应用建立的宏观尺度空间均化方程描述MCU上的主要水文过程,在保持传统物理性水文模型机理性的同时从理论上避免了方程适用尺度和模型应用尺度不匹配的问题。
     空间均化流域模型在半干旱半湿润的沁河流域和湿润的美国Baron Fork River流域展开了应用,流域出口流量过程的对比表明模型具有较高的计算精度,Nash效率系数均在0.70以上,水量平衡指数在10%以内。由于SAWH模型应用了宏观尺度的水文过程控制方程,模型可在较大空间计算单元上计算,在上述两个典型流域的应用表明了模型具有较高的计算效率,为大中尺度流域的水文模拟提供了新的方法。
     在沁河流域汛期的参数敏感性分析表明了土壤的饱和导水率的不均匀性对模拟结果有较大影响,以Baron Fork River流域以两次洪水过程为例,对降雨空间分布和土壤饱和导水率统计参数的不确定性及其对模型模拟结果的影响进行了分析。
The current generation of physically based distributed hydrological models is based on the point scale equations. They have distinct advantages compared with the conceptual models, but also suffer from serious shortcomings, of which the essential one is the inconsistence between the equation applicable scale and model application scale. Such scale inconsistency makes the physical meaning of the equations as well as the parameters uninterpretable. To address this problem, Kavvas et al. proposed a new hydrological modeling approach which upscales the point scale equations to macro scale through the spatial averaging based on the probability description of landscape heterogeneity.
     The mathematical equations controlling the hydrological processes serve as the basis of watershed hydrological modeling. As the first attempt of hydrological modeling based on spatial averaging approach, the equations and hydrological model developed by Kavvas et al. have obvious deficiencies such as ignoring of soil properties variance in vertical direction and over-demanding of data. In this thesis, the equations controlling the major hillslope processes have been improved: the spatial averaging infiltration model for layered soil (SAI model) and spatial averaging interflow model (SAIF model) are developed, which incorporating spatial heterogeneity of soil properties in both horizontal and vertical aspects. Besides, the new surface flow model for the hillslope with rill-interrill configurations is developed by simplifying Yoon’s model so that the parameters can be derived from digital elevation model directly.
     Based on macro-scale equation controlling hydrological processes, a new watershed hydrological model, Spatial Averaging Hydrological Model (SAWH model), is developed. The mathematical description of watershed heterogeneity is improved and the parameters estimation is significantly simplified and can be easilier applied compared with former models based on spatial averaging approach, i.e. WEHY model. In the SAWH model, the watershed is divided into model computation units (MCU) according to topograph, and the MCU is then partitioned to several sub-regions according to land use, the heterogeneity of soil hydraulic conductivity and micro topograph is descriped by propobility density function and incorporated into the upscaled equations. The inconsistency between the equation applicable scale and the model application scale is avoided through using the upscale equations, while the physically meaning of point scale equations and their parameters are preserved.
     The SAWH model is applied at two typical watersheds with different climate, one is Qin River basin with semi-arid climate and the other is Baron Fork River basin with humid climate. The model can capture the observed streamflow pattern with high computation efficiency which suggests the macro-scale spatial averaging approach can serve as an alternative approach for continuous hydrological modeling in large watershed.
     The analysis of model parameter sensitivities in Qin River basin shows the heterogeneity of soil hydraulic conductivity have significant influence to the watershed hydroligcal responses.
     The uncertainty of SAWH model is further explored by analyzing two typical flood events in Baron Fork River Basin. The radar based rainfall data is compared with the rain gauge based data for analysis of temporal uncertainty of rainfall data. Also, the spatial uncertainty of rainfall data and its influence on SAWH predictibility are analyzed by comparing different rainfall data resolution. Finally, the model uncertainty caused by model parameters is explored by GLUE approach.
引文
[1]芮孝芳.水文学原理.北京:中国水利水电出版社, 2004.
    [2]胡和平,汤秋鸿,雷志栋,等.干旱区平原绿洲散耗型水文模型——Ⅰ模型结构.水科学进展, 2004, 15(2):140-145.
    [3]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践.北京:中国水利水电出版社, 2005.
    [4] Sivapalan M. Prediction in ungauged basins: a grand challenge for theoretical hydrology. Hydrological Processes, 2003, 17(15):3163-3170.
    [5] Sherman L K. Streamflow from rainfall by the unit-graph method,. Engineering News Record, 1932, 108:501-505.
    [6] Nash J E. The form of the instantaneous unit hydrograph. Hydrol. Sci. Bull, 1957, 3:114-121.
    [7]文康,梁庚辰.总径流线性响应模型与线性扰动模型.水利学报, 1986, 17(6):1-10.
    [8] Nash J E, Foley J J. Linear models of rainfall-runoff systems // Rainfall-Runoff Relationship (Proceedings of the International Symposium on Rainfall-Runoff Modeling). 1982. Mississippi State, MS, Can: Water Resources Publ, Littleton, Colo, USA. 51-66.
    [9] Todini E, Wallis J R. Using CLS for daily or longer period rainfall-runoff modelling // Ciriani T, Maione U, and Wallis J R, Mathematical. Models for Surface Water Hydrology. (Proc. Pisa Workshop 1974). Wiley: New York, 1977.
    [10]蔡煜东,姚林声.径流长期预报的神经网络方法.水科学进展, 1995, 6(1):61-65.
    [11] Crawford N H, Linsley R K, The synthesis of continuous streamflow hydrographs on a digital computer // Technical Report 12, Dept. of Civil Engineering, Stanford Univ. Palo Alto, Calif.1962.
    [12] Sugawara M. The flood forecasting by a series storage type model // International Symposium Floods and their Computation, IAHS. 1967. Leningrad, USSR. 1-6.
    [13]赵人俊.流域水文模拟.北京:水利水电出版社, 1984.
    [14] Zhao R-J, Zuang Y-L, Fang L-R, et al. Xinanjiang model. Hydrol Forecast Symp, Proc of the, Apr 15-18 1980, IAHS-AISH Publication (International Association of Hydrological Sciences-Association Internationale des Sciences Hydrologiques), 1980, (129):351-356.
    [15] Burnash R J C, Ferrai R L, Mcquire R A, A generalized streamflow simulation system conceptual model for digital computers // US National Weather Service. Sacramento, California,USA.1973.
    [16] Todini E. ARNO rainfall-runoff model. Journal of Hydrology, 1996, 175(1-4):339.
    [17]汤秋鸿,田富强,胡和平.干旱区平原绿洲散耗型水文模型——Ⅱ模型应用.水科学进展, 2004, 15(2):146-150.
    [18] Abbott M B, Bathurst J C, Cunge J A, et al. Introduction to the European hydrological system - Systeme Hydrologique Europeen, 'SHE', 1: history and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 1986, 87(1-2):45-59.
    [19]吴险峰,刘昌明.流域水文模型研究的若干进展.地理科学进展, 2002, 21(4):341-348.
    [20]芮孝芳.流域水文模型研究中的若干问题.水科学进展, 1997, 8(1):94-98.
    [21] Freeze R A, Harlan R L. Blueprint for a physically-based, digitally- simulated hydrologic response model. Journal of Hydrology, 1969, 9(3):237-58.
    [22] Beven K J, Calver A, Morris E M, The Institute of Hydrology distributed model //, Report No. 98, UK Institute of Hydrology. Wallingford, Oxon, United Kingdom.1987.
    [23]李兰,钟名军.基于GIS的LL-2分布式降雨径流模型的结构.水电能源科学, 2003, 21(4):35-38.
    [24]刘卓颖.黄土高原地区分布式水文模型的研究与应用[博士论文].北京:清华大学, 2005.
    [25] Yang D, Herath S, Musiake K. Developement of a geomorphology - based hydrological model for large catchments. Annual Journal of Hydraulic Engineering, JSCE, 1998, 42:169-174.
    [26] Yang D, Herath S, Musiake K. Hillslope - based hydrological model using catchment area and width functions. Hydrological Sciences Journal, 2002, 47(1):49-65.
    [27]贾仰文,王浩,王建华,等.黄河流域分布式水文模型开发和验证.自然资源学报, 2005, 20(2):300-308.
    [28]王蕾.基于不规则三角形网格的物理性流域水文模型研究[博士论文].北京:清华大学, 2006.
    [29] Arnold J G, Srinivasan R, Muttiah R S, et al. Large Area Hydrologic Modeling and Assessment Part I: Model Development. Journal of the American Water Resources Association, 1998, 34(1):73-89.
    [30]夏军,王纲胜,吕爱锋,等.分布式时变增益流域水循环模拟.地理学报, 2003, 58(5):789-796.
    [31]夏军,王纲胜,谈戈,等.水文非线性系统与分布式时变增益模型.中国科学D辑:地球科学, 2004, 34(11):1062-1071.
    [32]任立良,刘新仁.基于DEM的水文物理过程模拟.地理研究, 2000, 19(4):369-376.
    [33]刘昌明,夏军,郭生练.黄河流域分布式水文模型初步研究与进展.水科学进展, 2004, 15(4):495-500.
    [34]许继军.分布式水文模型在长江流域的应用研究[博士论文].北京:清华大学, 2007.
    [35]庞靖鹏,徐宗学,刘昌明. SWAT模型研究应用进展.水土保持研究, 2007, 14(3):31-35.
    [36]梁钟元,贾仰文,李开杰,等.分布式水文模型在洪水预报中的应用研究综述.人民黄河, 2007, 29(2):29-32.
    [37]陆桂华,吴志勇,雷Wen,等.陆气耦合模型在实时暴雨洪水预报中的应用.水科学进展, 2006, 17(6):848-852.
    [38]孙鹏森,刘世荣.大尺度生态水文模型的构建及其与GIS集成.生态学报, 2003, 23(10):2115-2124.
    [39] Jia Y, Wang H, Zhou Z, et al. Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River basin. Journal of Hydrology, 2006, 331(3-4):606-629.
    [40] Beven K. Changing ideas in hydrology - the case of physically-based models. Journal of Hydrology, 1989, 105(1-2):157-172.
    [41] Beven K. Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources, 1993, 16(1):41-51.
    [42] Beven K J. A discussion of distributed modelling // Refsgaard J C and Abbott M B, Distributed Hydrological Modelling. Kluwer: Dordrecht,Netherlands, 1996, 255-278.
    [43] Grayson R B, Moore I D, McMahon T A. Physically based hydrologic modeling II. Is the concept realistic? Water Resources Research, 1992, 28(10):2659~2666.
    [44] Refsgaard J C, Storm B, Abbott M B. Comment on "A discussion of distributed hydrological modelling" // Refsgaard J C and Abbott M B, Distributed Hydrological Modelling. Kluwer: Dordrecht,Netherlands, 1996, 279-287.
    [45] Singh V P, Woolhiser D A. Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 2002, 7(4):270-292.
    [46] Smith R E, Goodrich D R, Woolhiser D A, et al. Comment on "Physically based hydrologic modeling, 2, Is the concept realistic?" Water Resources Research, 1994, 30(3):851-854.
    [47] Woolhiser D A. Search for physically based runoff model - a hydrologic El Dorado. Journal of Hydraulic Engineering, 1996, 122(3):122-129.
    [48] Beven K J, Feyen J. The future of distributed modeling. Hydrological Processes, 2002, 16(2):169-172.
    [49] Aronica G, Hankin B, Beven K. Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data. Advances in Water Resources, 1998, 22(4):349-365.
    [50]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社, 1988.
    [51]夏军,左其亭.国际水文科学研究的新进展.地球科学进展, 2006, 21(3):256-261.
    [52] Tian F, Hu H, Lei Z, et al. Extension of the Representative Elementary Watershed approach for cold regions via explicit treatment of energy related processes. Hydrology And Earth System Sciences, 2006, 10(5):619-644.
    [53] Corradini C, Govindaraju R S, Morbidelli R. Simplified modelling of areal average infiltration at the hillslope scale. Hydrological Processes, 2002, 16(9):1757-1770.
    [54] Feddes R A, de Rooij G H, van Dam J C. Estimation of regional effective soil hydraulic parameters by inverse modeling // Russo D D G, Water flow and solute transport in soils :modeling and application. Springer Verlag: Berlin, 1993, 211-231.
    [55] Journel A G, Deutsch C, Desbarats A J. Power averaging for block effective permeability // Proceedings 15091-15149, 56th Annual California Regional Meeting, Society of Petroleum Engineers. 1986. Oakland, CA, USA: Soc of Petroleum Engineers, USA SPE 15128, Richardson, TX, USA. 329-334.
    [56] Renard P, de Marsily G. Calculating equivalent permeability: A review. Advances in Water Resources, 1997, 20(5-6):253-278.
    [57] Wen X-H, Gomez-Hernandez J J. Upscaling hydraulic conductivities in heterogeneous media: an overview. Proceedings of the 1993 18th General Assembly of the European Geophysical Society, May 1993, Journal of Hydrology, 1996, 183(1-2):24.
    [58] Boplet G, Kalma J D, Braud I, et al. Assessment of effective land surface parameterization in regional-scale water balance studies. Proceedings of the 1997 Fifth Scientific Assembley of the International Association of Hydrological Sciences, IAHS-97, Apr 28-Apr 29 1997, Journal of Hydrology, 1999, 217(3-4):225-238.
    [59]胡和平,田富强.物理性流域水文模型研究新进展.水利学报, 2007, 38(5):511-517.
    [60] Reggiani P, Sivapalan M, Hassanizadeh S M. Unifying framework for watershed thermodynamics: balance equations for mass, momentum, energy and entropy, and the second law of thermodynamics. Advances in Water Resources, 1998, 22(4):367-398.
    [61] Reggiani P, Hassanizadeh S M, Sivapalan M, et al. Unifying framework for watershed thermodynamics: constitutive relationships. Advances in Water Resources, 1999, 23(1):15-39.
    [62] Reggiani P, Schellekens J. Modelling of hydrological responses: The representative elementary watershed approach as an alternative blueprint for watershed modelling. Hydrol. Process., 2003, 17(18):3785-3789.
    [63]田富强.流域热力学系统水文模拟理论和方法研究[博士论文].北京:清华大学, 2006.
    [64] Kavvas M L, Chen Z Q, Dogrul C, et al. Watershed Environmental Hydrology (WEHY) Model Based on Upscaled Conservation Equations: Hydrologic Module. Journal of Hydrologic Engineering, 2004, 9(6):450-464.
    [65] Yang Zhiyong, Hu Huping, Tian Fuqiang. A spatial averaged hydrologcial model and its application in upper Qin River Basin. IAHS publication (in press ).
    [66] Kavvas M L. On the coarse-graining of hydrologic processes with increasing scales. Journal of Hydrology, 1999, 217(3-4):191-202.
    [67]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述.水科学进展, 1999, 10(3):311-318.
    [68]贾宏伟,康绍忠,张富仓.土壤水力学特征参数空间变异的研究方法评述.西北农林科技大学学报(自然科学版), 2004, 32(4):97-102.
    [69] Nielsen D R, Biggar J W, Erh K T. Spatial variability of field-measured soil-water properties // Hillel D, Applications of soil physics. Academic Press: New York, 1973, 215-260.
    [70]黄冠华,沈荣开.非均质土壤中二维非饱和土壤水分运动的随机分析.水科学进展, 1997, 8(2):117-121.
    [71] Govindaraju R S, Morbidelli R, Corradini C. Areal infiltration modeling over soils with spatially correlated hydraulic conductivities. Journal of Hydrologic Engineering, 2001, 6(2):150-158.
    [72] Philip J R. The theory of infiltration: 1, the infiltration equation and its solution. Soil Science, 1957, 83:345-357.
    [73] Horton R E. The role of infiltration in the hydrologic cycle. Transactions of American Geophysical Union., 1933, 14:446-460.
    [74] David R M. Handbook of Hydrology. New York: McGraw-Hill, 1993.
    [75] Dagan G, Bresler E. Unsaturated flow in spatially variable fields - 1. derivation of models of infiltration and redistribution. Water Resources Research, 1983, 19(2):413-420.
    [76] Sivapalan M, Wood E F. Spatial heterogeneity and scale in the infiltration response of catchments // Gupta V K, Rodriguez-Iturbe I, and Wood E F, Scale problem in hydrology. Reidel: Dordrecht, 1986, 81-106.
    [77] Chen Z Q, Govindaraju R S, Kavvas M L. Spatial Averaging of Unsaturated Flow Equations under Infiltration Conditions over Areally Heterogeneous Fields .1. Development of Models. Water Resources Research, 1994, 30(2):523-533.
    [78] Chen Z Q, Govindaraju R S, Kavvas M L. Spatial Averaging of Unsaturated Flow Equations under Infiltration Conditions over Areally Heterogeneous Fields .2. Numerical Simulations. Water Resources Research, 1994, 30(2):535-548.
    [79] Govindaraju R S, Kavvas M L, Jones S E, et al. Use of Green-Ampt model for analyzing one-dimensional convective transport in unsaturated soils. Journal of Hydrology, 1996, 178(1-4):337-350.
    [80] Smith R E, D.C. Goodrich. A model to simulate rainfall excess patterns on randomly heterogeneous areas. Journal of Hydrologic Engineering, 2000, 5(4):355-362.
    [81] Chen Z Q, Kavvas M L, Govindaraju R S. Upscaling of Richard's equation for soil moisture dynamics to be utilized in mesoscale atmospheric models. // Proceedings of an International Symposium on Exchange Processes at the Land Surface for a Range of Space and Time Scales, Jul 13-16 1993. 1993. Yokohama, Japan: IAHS, Wallingford, England.
    [82] Govindaraju R S, Kavvas M L. Characterization of the rill geometry over straight hillslopes through spatial scales. Journal of Hydrology, 1992, 130(1-4):339-365.
    [83] Tayfur G, Kavvas M L. Spatially averaged conservation equations for interacting rill-interrill area overland flows. Journal of Hydraulic Engineering, 1994, 120(12):1426-1448.
    [84] Tayfur G, Kavvas M L. Areally-averaged overland flow equations at hillslope scale. Hydrological Sciences Journal, 1998, 43(3):361-378.
    [85] Yoon J Y, Kavvas M L. Spatial averaging of overland flow equations for the hillslope with rill-interrill configuration // Proc. ICHE 2000. 2000.
    [86] Dogrul E C, Kavvas M L, Chen Z. Prediction of subsurface stormflow in heterogeneous sloping aquifers. Journal of Hydrologic Engineering, 1998, 3(4):258-267.
    [87] Home F E, Kavvas M L. Physics of the spatially averaged snowmelt process. Journal of Hydrology, 1997, 191(1-4):179-207.
    [88] Chen Z. Recent advances of upscaling methods for the simulation of flow transport through heterogeneous porous media. Journal of Computational Mathematics, 2006, 24(3):393-400.
    [89] Chen Z, Deng W B, H. Ye. Upscaling of a class of nonlinear parabolic equations for the flow transport in heterogeneous porous media. Communications in Mathematical Sciences, 2005, 3(4):493-515.
    [90] Kavvas M L. Nonlinear hydrologic processes: Conservation equations for determining their means and probability distributions. Journal of Hydrologic Engineering, 2003, 8(2):44-53.
    [91] Kavvas M L. General conservation equation for solute transport in heterogeneous porous media. Journal of Hydrologic Engineering, 2001, 6(4):341-351.
    [92] Kim S, Kavvas M L, Yoon J. Upscaling of vertical unsaturated flow model under infiltration condition. Journal of Hydrologic Engineering, 2005, 10(2):151-159.
    [93] Kim S, Kavvas M L, Chen II Z. Root-water uptake model at heterogeneous soil fields. Journal of Hydrologic Engineering, 2005, 10(2):160-167.
    [94] Yoon J, Kavvas M L. Probabilistic solution to stochastic overland flow equation. Journal of Hydrologic Engineering, 2003, 8(2):54-63.
    [95] Kavvas M L, Chen Z-Q, Tan L, et al. Regional-scale land surface parameterization based on areally-averaged hydrological conservation equations. Hydrological Sciences Journal, 1998, 43(4):611-632.
    [96] Sharma S, Kavvas M L. Modeling noncohesive suspended sediment transport in stream channels using an ensemble-averaged conservation equation. Journal of Hydraulic Engineering, 2005, 131(5):380-389.
    [97] Yoshitani J, Kavvas M L, Chen Z-Q. Coupled regional-scale hydrological- Atmospheric model for the study of climate impact of Japan. Soil Vegetation Atmosphere Transfer Schemes and Large Scale Hydrological Models, IAHS-AISH Publication, 2001, (270):191-198.
    [98] Chen Z Q, Kavvas M L, Yoon J Y, et al. Geomorphologic and Soil Hydraulic Parameters for Watershed Environmental Hydrology (WEHY) Model. Journal of Hydrologic Engineering, 2004, 9(6):465-479.
    [99] Chen Z Q, Kavvas M L, Fukami K, et al. Watershed Environmental Hydrology (WEHY) Model: Model Application. Journal of Hydrologic Engineering, 2004, 9(6):480-490.
    [100] Kavvas M L, Yoon J, Chen Z Q, et al. Watershed environmental hydrology model: Environmental module and its application to a California watershed. Journal of Hydrologic Engineering, 2006, 11(3):261-272.
    [101]胡克林,李保国,陈研.表层土壤饱和导水率的空间变异对农田水分渗漏的影响.水利学报, 2006, 37(10):1217-1223.
    [102] Jia Y, Ni G, Kawahara Y, et al. Development of WEP model and its application to an urban watershed. Hydrological Processes, 2001, 15(11):2175-94.
    [103] Beven K J. On subsurface stormflow: Prediction with simple kinematic theory for saturated and unsaturated flows. Water Resource Research, 1982, 18(6):1627-1633.
    [104] Jia Y, Tamai N. Modeling infiltration into a multi-layered soil during an unsteady rain. Annual Journal of Hydraulic Engieering, JSCE, 1997, 41:31-36.
    [105] Bouwer H. Infiltration of water into nonuniform soil. Peoc. ASCE, 1969, 95(IR4):451-462.
    [106] Moore L D, Eigel J D. Infiltration into two-layered soil profiles. Transaction of the ASAE, 1981, 24(10):1496-1503.
    [107] Binley A, Beven K, Elgy J. A physically-based model of heterogeneous hillslopes, I. Runoff production. Water Resource Research, 1989, 26(6):1219-1226.
    [108] Brooks R H, Corey A T. Hydraulic properties of porous media. Fort Collins: Colorado State University, 1964.
    [109] Neuman S P. Wetting front pressure head in the infiltration model of Green and Ampt. Water Resources Research, 1976, 12(3):564-566.
    [110] Abrahams A D, Parsons A J, Luk S-H. Distribution of depth of overland flow on desert hillslopes and its implications for modeling soil erosion. Journal of Hydrology, 1989, 106(1-2):177-184.
    [111] Parsons A J, Wainwright J. Depth distribution of interrill overland flow and the formation of rills. Hydrological Processes, 2006, 20(7):1511-1523.
    [112] Kirkby M J. Hillslope hydrology. Chichester ; New York: A Wiley-interscince publication, 1978.
    [113] Troutman B M, Karlinger M P. Unit hydrograph approximations assuming linear flow through topologically random channel networks. Water Resources Research, 1985, 21(5):743-754.
    [114] Yang D. Distributed Hydrologic model using hillslope discretization based on catchment area function: development and application [PhD Thesis], Tokyo: University of Tokyo, 1998.
    [115]杨大文,李翀,倪广恒,等.分布式水文模型在黄河流域的应用.地理学报, 2004, 1(59):143-154.
    [116] Sellers P J, Randall D A, Collatz G J, et al. Revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. Journal of Climate, 1996, 9(4):676-705.
    [117] Refsgaard J C, Storm B. MIKE SHE // Singh V P, Computer Models of watershed Hydrology. Water resources Publications: Littleon, Colo, 1995.
    [118] Monteith J L. Evaporation from land surfaces: progress in analysis and prediction since 1948 // Advances in Evapotranspiration, Proceedings of the National Conference. 1985. Chicago, IL, USA: ASAE, St. Joseph, MI, USA.
    [119] Penman H L. Natural evaporation from open water, bare soil and grass. Proceedings Royal Society of London, 1948, A193:120-145.
    [120] Jackson C R. Hillslope Infiltration and Lateral Downslope Unsaturated Flow. Water Resource Research, 1992, 28(9):2533-2539.
    [121] Chow V T. Applied Hydrology.9 Distributed flow routing, Chow V T, Maidment D R, and Mays. L W. New York, USA: McGraw-Hill, 1988.
    [122]罗翔宇,贾仰文,王建华,等.基于DEM与实测河网的流域编码方法.水科学进展, 2006, 17(2):259-264.
    [123] New M, Hulme M, Jones P. Representing twentieth-century space-time climate variability. Part I: Development of a 1961-90 mean monthly terrestrial climatology. Journal of Climate, 1999, 12(3):829-856.
    [124]谢贤群.遥感瞬时作物表面温度估算农田全日蒸散总量.环境遥感, 1991, 3:104-107.
    [125] Duan Q Y, Sorooshian S, Gupta V K. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resource Research, 1992, 28(4):1015-1031.
    [126] Vrugt J A, Gupta H V, Bouten W, et al. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, 2003, 39(8):11-116.
    [127] K. Ajami N, Gupta H, Wagener T, et al. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology, 2004, 298(1-4):112-135.
    [128]李致家,周轶,哈布.哈其.新安江模型参数全局优化研究.河海大学学报(自然科学版), 2004, 32(4):376-379.
    [129]马海波,董增川,张文明,等. SCE-UA算法在TOPMODEL参数优化中的应用.河海大学学报(自然科学版), 2006, 34(4):361-365.
    [130]温小国.沁河水利辑要.郑州:黄河水利出版社, 2001.
    [131]魏义长,刘作新,康玲玲.辽西淋溶褐土土壤水动力学参数的推导及验证.水利学报, 2004, 35(3):81-87.
    [132]马履一,翟明普,王勇.京西山地棕壤和淋溶褐土饱和导水率的分析.北京林业大学学报, 1999, 35(3):109-112.
    [133]王钊,骆以道,肖衡林,等.运城黄土吸力特性的试验研究.岩石力学, 2002, 23(1):51-54.
    [134]贺康宁,王斌瑞,张光灿.黄土集水造林地土壤热特性的研究.北京林业大学学报, 2000, 22(3):27-32.
    [135]王蕾,倪广恒,胡和平.沁河流域地表水与地下水转换的模拟.清华大学学报(自然科学版), 2006, 46(12):1978-1981.
    [136] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models, Part 1, a discussion of principles. Journal of Hydrology, 1970, 10(3):282-90.
    [137]李毅,邵明安,王文焰,等.土壤非饱和导水率模型中参数的敏感性分析.水科学进展, 2003, 14(5):593-597.
    [138] Smith M B, Seo D-J, Koren V I, et al. The distributed model intercomparison project (DMIP): Motivation and experiment design. Journal of Hydrology, 2004, 298(1-4):4-26.
    [139] Rawls W J, Brakensiek D L, Saxton K E. Estimation of soil water properties. Transactions of the ASAE, 1982, 25(55):1316-1320.
    [140] Sivapalan M, Takeuchi K, Franks S W, et al. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal, 2003, 48(6):857-880.
    [141]尹雄锐,夏军,张翔,等.水文模拟与预测中的不确定性研究现状与展望.水力发电, 2006, 32(10):27-31.
    [142]杨大文,夏军.中国PUB研究与发展:水问题的复杂性与不确定性研究与进展.北京:中国水利水电出版社, 2004.
    [143]郭生练,李兰,曾光明.气候变化对水文水资源影响评价的不确定性分析.水文, 1995, (6):1-5.
    [144] Goodrich D C, Faures J-M, Woolhiser D A, et al. Measurement and analysis of small-scale convective storm rainfall variability. Journal of Hydrology, 1995, 173(1-4):283.
    [145] Shah S M S, O'Connell P E, Hosking J R M. Modelling the effects of spatial variability in rainfall on catchment response. 2. Experiments with distributed and lumped models. Journal of Hydrology, 1996, 175(1-4):89.
    [146] Shah S M S, O'Connell P E, Hosking J R M. Modelling the effects of spatial variability in rainfall on catchment response. 1. Formulation and calibration of a stochastic rainfall field model. Journal of Hydrology, 1996, 175(1-4):67.
    [147] Chaubey I, Haan C T, Grunwald S, et al. Uncertainty in the model parameters due to spatial variability of rainfall. Journal of Hydrology, 1999, 220(1):48-61.
    [148] Bronstert A, Bardossy A. Uncertainty of runoff modelling at the hillslope scale due to temporal variations of rainfall intensity. Physics and Chemistry of the Earth, 2003, 28(6-7):283-288.
    [149]郝芳华,陈利群,刘昌明,等.降雨的空间不均性对模拟产流量和产沙量不确定的影响.地理科学进展, 2003, 22(5):446-453.
    [150]张雪松,郝芳华,张建永.降雨空间分布不均匀性对流域径流和泥沙模拟影响研究.水土保持研究, 2004, 11(1):9-12.
    [151] Beven K, Binley A. The future of distributed models:model calibration and uncertainty prediction. Hydrological Processes, 1992, 6:279-298.
    [152] Montanari A, Brath A. A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 2004, 40(1):011061-0110611.
    [153] Freer J, Beven K, Ambroise B. Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach. Water Resources Research, 1996, 32(7):2161-2174.
    [154] Zak S K, Beven K J. Equifinality, sensitivity and predictive uncertainty in the estimation of critical loads. The Science of the Total Environment, 1999, 236(15):191-214.
    [155]莫兴国,刘苏峡. GLUE方法及其在水文不确定性分析中的应用//夏军,水问题的复杂性与不确定性研究与进展.中国水利水电出版社:北京, 2004, 143-150.
    [156]熊立华,郭生练.三水源新安江模型异参同效现象的研究//夏军,水问题的复杂性与不确定性研究与进展.中国水利水电出版社:北京, 2004, 151-155.
    [157]黄国如,解河海.基于GLUE方法的流域水文模型不确定性分析.华南理工大学学报(自然科学版), 2007, 35(3):137-149.
    [158]李胜,梁忠民. GLUE方法分析新安江模型参数不确定性的应用研究.东北水利水电, 2006, 24(2):31-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700