用户名: 密码: 验证码:
喀斯特地区六种苗木水分生理与抗旱性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究设置了3种土壤干旱胁迫强度和对照,共4个处理,每一个处理五个重复,采用生理生态学试验方法探讨6个树种苗木对水分亏缺的适应方式、途径,并评价其耐旱适应性,试图为我国西南喀斯特石漠化山地的植被恢复与重建提供理论依据。主要结果如下:
     1.通过对6种苗木在正常供水和干旱胁迫条件下苗木叶片水势的测定,运用隶属函数累加法综合评价6种苗木的吸水潜能,其大小排序为:侧柏>滇柏>刺槐>香樟>构树>杜英。
     2.在正常供水和干旱胁迫条件下,对6种苗木4个水力结构参数进行测定,并运用隶属函数累加法综合评价6种苗木的水分运输效率,其大小排序为:刺槐>构树>香樟>侧柏>杜英>滇柏。
     3.在正常供水和干旱胁迫条件下,对6种苗木叶片含水量和叶片相对含水量进行测定,运用隶属函数法对6种苗木叶片保水能力进行评价,其结果大小排序为:香樟>滇柏>杜英>刺槐>构树>侧柏。
     4.通过对6种苗木在正常供水和干旱胁迫条件下苗木耗水量的测定,运用隶属函数法对其耗水能力进行综合评价,其结果大小排序为:刺槐>构树>香樟>杜英>滇柏>侧柏。
     5.应用隶属函数累加法和多维空间坐标综合评定法两种方法对6个树种苗木进行了综合评价,并进行综合比较,认为在被评价树种数量较少的情况下,可采用多维坐标综合评价法对树种抗旱性进行评价,其适用性较好。
In this experiment, three intensities of soil drought stress treatments and four control treatments have been set up, and each treatment has five repeats, adopting method of physiological ecology to explore the adaptive mode and way of 6 tree species seedlings with water deficiency. Moreover, their drought-enduring adaptability has been evaluated in order to provide theoretical basis for vegetation restoration and reconstruction in southwest karst rocky desertification of mountainous region. Main results are as follows.
     1. Leaf water potential of six tree species was measured under normal and drought tress, then its potential of absorption was evaluated by subordinate function method. The result showed Orientalis>Cipressus duclouxiana >pseudoacacia >Cinnamonum campora > Broussonetia papyrifera >Elaeocarpus sylvestris.
     2. Parameter of hydraulic architecture of six tree species was measured under normal and drought tress, and water transportation efficiency’s characteristic was evaluated by subordinate function method. The result showed pseudoacacia > Broussonetia papyrifera >Cinnamonum campora >Orientalis > Elaeocarpus sylvestris > Cipressus duclouxiana.
     3. leaf water content and leaf water relative content of six tree species was measured under normal and drought tress, and the holding water capability of seedlings was evaluated by subordinate function method. The result showed Cinnamonum campora > Cipressus duclouxiana> Elaeocarpus sylvestris.> pseudoacacia > Broussonetia papyrifera > Orientalis.
     4. Water consumption of six tree species was measured under normal and drought tress, and the capability of water consumption of seedlings was evaluated by subordinate function method. The result showed: Cinnamonum campora > Cipressus duclouxiana> Elaeocarpus sylvestris.> pseudoacacia > Broussonetia papyrifera > Orientalis.
     5. Six tree species seedlings’drought resistance was evaluated by method of subordinate function and coordinate composite evaluation of multiple dimension space and the result was compared. Coordinate composite evaluation of multiple dimension space method is better if the amount of tree species is less.
引文
[1]安锋,兰国玉,赵平娟.2004.木质部空穴和栓塞化对植物的影响.热带农业科学,24 (6) : 53-67.
    [2]白瑞琴,孙丽华,吕占江等.2000.不同砧木苹果树水势日变化的研究.内蒙古农业大学学报,21(1):63-68
    [3]陈志强,许春辉,匡廷云. 1994.叶绿体类囊体膜脂膜蛋白的相互作用.植物学通报, 11(1):20-26
    [4]曹仪植,吕忠恕. 1985.水分胁迫下植物体内游离脯氨酸的累积及ABA在其中的作用.植物生理学报, 11(1):9-16
    [5]董学军,杨宝珍,郭柯等. 1994.几种沙生植物水分生理生态的研究.植物生态学报, 18 (1) : 86-94.
    [6]冯显逵. 1981.宁夏干旱地区叶片旱生结构的研究.林业科技通讯, (11):13-17
    [7]郭连生. 1989.对几种阔叶树种耐旱性生理指标的研究.林业科学, 25(5):389-394
    [8]郭连生,田有亮.1992.9种针阔叶幼树的蒸腾速率、叶水势与环境因子关系的研究.生态学报, 12(1):47-52
    [9]韩建民.1990.抗旱性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系.河北农业大学学报, 13(1):17-21
    [10]季孔庶,孙志勇,方彦林. 2006.木抗旱性研究进展.南京林业大学学报, 30(6):123-128
    [11]高俊凤.1999.植物生理学实验技术.世界出版社。
    [12]冠纪烈. 1983.土壤含水量对苗木造林成活率的影响.林业科技通讯(2):5-8
    [13]冠纪烈. 1986.有机酸对造林苗木成活的影响.林业科技通讯(6):5-8
    [14]金鉴明.1991环境科学大辞典.北京:中国环境科学出版社。
    [15]顾亚东2000.华北落叶松人工林生物量和生产力的研究.北京林业大学博士论文
    [16]蒋进. 1992.几种旱生植物盐栽苗术的水分关系和抗旱性排序.干旱区研究, 9(4):81-3
    [17]李晶,高玉葆,郑志荣等. 2007.内蒙古高原不同生境三种锦鸡儿属植物的水力结构特征及其对环境因子的响应.生态学报,27(3):837-845
    [18]李卫国,杨吉华,冀宪领,等.2003.不同桑树品种水分生理特性的研究.蚕业科学.29(1):24-27
    [19]李博.1995.现代生态学讲座.北京:科学出版社.10-23
    [20]李吉跃. 1990.太行山区主要造林树种耐旱特性的研究.北京林业大学博士论文. 1-105
    [21]李吉跃. 1991.植物耐旱性及其机理.北京林业大学学报,13,(3):92-100
    [22]李吉跃,翟洪波. 2000.木本植物水力结构与抗旱性.应用生态学报,11(2):301-305
    [23]李吉跃, 1991.太行山主要造林树种抗旱特性的研究(Ⅰ)~(Ⅵ)北京林业大学学报.增刊(1-2):1-24; 230-280
    [24]李吉跃,周平,招礼军. 2002.干旱胁迫对苗木蒸腾耗水的影像.生态学报,22(9):1380-1386
    [25]李德全,邹琦,程炳嵩. 1989.植物在逆境下的渗透调节.山东农业大学学报, 20(2):75-80
    [26]李吉跃,张建国,姜金璞. 1993.北方主要造林树种耐旱机理及其分类模型的研究(Ⅰ)北京林业大学学报. 15,(3):1-9
    [27]李吉跃,翟洪波. 2002.树木水力结构特征昼夜变化规律.北京林业大学学报, 24,(4):39-44
    [28]李青,郁永英.1995.建立在管道模型理论基础上的树冠结构分析.国外林业,25(1):18-20.
    [29]李兴中,李双岱.1987.茂兰喀斯特森林区地貌景观.贵阳:贵州人民出版社.
    [30]廖光瑶.1999.SPAC的水势热力学系统.四川林业科技, 12(1):47-52.
    [31]刘晓燕,李吉跃,翟洪等. 2003.从树木水力结构特征探讨植物耐旱性.北京林业大学学报, 25,(3):48-54
    [32]刘奉觉. 1992.杨树水分生理研究.北京:北京农业大学出版社.
    [33]刘建伟. 1993.水分胁迫下不同杨树无性系苗期的光合作用.林业科学研究, 6(1):65-69
    [34]刘建伟. 1994.不同杨树无性系光合作用与其抗旱能力的初步研究.林业科学, 30(1):83-87
    [35]刘盛,李国伟2006.基于管道模型理论的树形结构分析.东北林业大学学报,34(6):15-16.
    [36]刘盛,刘成,张士民2002.基于管道模型的榆树水分年轮输导模式研究.北华大学学报(自然科学版),5(3):438-440
    [37]刘盛,刘成2005.长白落叶松水分疏导模式及叶生物量估测方法.东北林业大学学报,33(5):35-37
    [38]潘瑞炽2002植物生理学(第四版)高等教育出版社:22-23
    [39]彭立新,李德全,束怀瑞. 2002.园艺植物水分胁迫生理及耐旱机制研究进展.西北植物学报,22, (5):1275-1281
    [40]裴保华. 1993.三种灌木耐旱性的研究.林业科学研究, 6(8):597-602
    [50]权宏,施和平,李玲. 2003.脱落酸诱导气孔关闭的信号转导研究.植物学通报,20(6):664-670
    [51]邱全胜. 1999.植物细胞质膜H+-ATPase的结构与功能.植物学通报, 16,(2):122-126
    [52]申卫军. 1999.木本植物木质部空穴和栓塞化研究(综述).热带亚热带植物学报, 7 (3) : 257-266.
    [53]孙丽,吴忠义,李学东等. 2006.植物气孔运动过程中的信号转导机制.植物生理学通讯,42,(6):1203-1201
    [54]石文玉. 1982.对侧柏某些特性的观察.北京林业,(3):17-21
    [55]汤章诚.1983.植物干旱生理生态研究.生态学报.3:196-204
    [56]王明珠. 1997.我国南方季节性干旱研究. 13,(2):6-10
    [57]温国胜,张国盛,张明如等.2003.干旱胁迫条件下臭柏的气孔蒸腾与角质层蒸腾.浙江林学院学报, 20(3):268-27
    [58]王洪亮,张承烈. 1999.河西走廊不同生态型芦苇质膜特性的比较研究.植物学报英文版, 35,(7):533-540
    [59]王九龄. 1981.北京西山树木耐旱能力的初步观察.北京林业, (2):10-21
    [60]王世绩. 1982.十种杨树苗木水分关系的研究.林业科学, 18(1):6-13
    [61]王洪春, 1981.植物抗性生理.植物生理学通讯,(6):72-81
    [62]谢东锋,马履一,王华田. 2004.七种造林树种木质部栓塞脆弱性研究.浙江林学院学报, 21 (2) : 138-143.
    [63]奚如春,马履一,王瑞辉等.2006.林木耗水调控机理研究进展.生态学杂志,25 (6) :692-697
    [64]徐化成,易宗文. 1982.华北低山地区土壤水分季节变化与林木生长的关系.林业科学, 18(2):97-104
    [65]许振柱,周广胜. 2004.植物氮代谢及其环境调节研究进展.应用生态学报, 15(3):511-516
    [66]袁力行,傅骏骅.2001.RFLP和SSR标记划分玉米自交系杂种优势群研究.作物学报, 27 (2) : 149 1561
    [67]张硕新,申卫军,张迎远. 1997.几个抗旱树种木质部栓塞脆弱性的研究.西北林学院学报, 12 (2) :l-6.
    [68]张远迎. 1998.几个抗旱树种木质部栓塞脆弱性模型的探讨.西北林学院学报, 13 (3) : 28-30.
    [69]张岁岐,李金虎,山仑. 2001.干旱下植物气孔运动的调控.西北植物学报,21,(6):1263-1270
    [70]赵一宇. 1982.花棒某些抗旱特性的观察.林业科学, 18(2):120-125
    [71]郑希伟. 1990.辽西地区主要造林树种抗旱性的研究.林业科学, 26(4):253-35
    [72]张硕新,申卫军,张远迎. 1997.几个抗旱树种木质部栓塞脆弱性的研究.西北林学院学报, 12,(2):1-6
    [73]赵秀莲,江泽平,李慧卿等.2004林木抗旱性鉴定研究进展.内蒙古林业科技,4:18-21
    [74]植物生理学专题讲座—纪念罗宗洛教授.1987:364-366
    [75]翟洪波,姜金璞. 2002.干旱胁迫对油松侧柏苗木水力结构特征的影响.北京林业大学学报, 24,(5):45-49
    [76]翟洪波,李吉跃. 2003.油松的水力结构特征..林业科学, 39(2):14-20
    [77]翟洪波,李吉跃. 2006.应用热扩散技术对油松栓皮栎比导率的研究.林业科学,42(8):14-18
    [78]翟洪波,李吉跃. 2002.油松、侧柏苗木水力结构特征的对比研究.生态学报, 22(11):1890-1895
    [79]朱守谦等.1997.喀斯特森林生态研究Ⅱ.贵州科技出版社.42-46.
    [80] Agarwal S,Sairam RK,Srivastava GC.et al.2005,Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes.Biol Plant, 49(4):541-55
    [81] Alscher RG, Donahue JL, Cramer CL 1997.Reactive oxygen species and antioxidants:relationship in green cells.Physiol Plant, 100:224-233
    [82] Apelbaum A. and Yang SF 1981. Biosynthesis of Stress Ethylene Induced by Water Deficit. Plant Physiol. 68, 594-596
    [83] Atklnson C J,Policarpo,Webster M,et a1. 2000. Drought tolerance of clonal M alus determined from m easurements of stomatal conductance and leaf water potential.Tree Physio1.20:557-563
    [84] Becker D, Hoth S, Ache P, et al 2003.Regulation of the ABA sensitive Arabidopsis potassium channel gene GORK in response to water stress.FEBS Lett, 554:119-126
    [85] Bahari ZA Pallardy SG. Parker WC. 1985.Photosynthesis, Water Relations, and Drought Adaptation in Six Woody Species of Oak-Hickory Forests in Central Missouri.Forest.Sci 31, (3):557-569
    [86] Barlow EWR, Ching TM, Boersma L. 1976.Leaf growth in relation to ATP levels in water stressed corn plants. Crop Sci. 16:405-7
    [87] Barnet NM.and Naylor AW. 1966.Amino Acid and Protein Metabolism in Bermuda Grass During Water Stress .Plant Physiol. 41, 1222-1230
    [88] Bohnert H.J,Jensen R.G.1996.Strategies for engineering water-stress tolerance in plants.Trends in Biotechnology, 14:89-97
    [89] Bowler, C., Van Montagu, M., Inze, D 1992.Superoxide dismutase and stress tolerance . Annu Rve plant Physiol Mol Biol, 43:83-116.
    [90] Boyer, J.S. 1982.Plant productivity and environment. Science 218, 443–448.
    [91] Buckley TN. 2005.The control of stomata by water balance.New Phytol l68(2):275-29264.
    [92] Caemmerer SV, Baker N, Editors G 2007.The Biology of Transpiration. From Guard Cells to Globe. Plant Physiology,143:3-3
    [93] Costa P, Bahrman N, Frigerio JM, Kremer A et a1.1998.Water-deficit-responsive proteins in maritime pine.Plant Mol Biol, 38:587-596.
    [94] David W, Fred TDJ. 1993. Water use efficiency and growth analysis of selected woody ornamentalspecies under a non-limiting water regime . Sci . Hortic, 53 : 213-223.
    [95] Donovan I A,Grise D J,West J B,et a1. 1999. Predawn disequi Librium between plant and soil water potentials in two colddesert Shrubs. Oecologia.120:209-217.
    [96] Desikan R,Cheung M K,Bright J .2004.ABA、hydrogen peroxide and nitric oxide signalling in stomatal guard cells.J Exp Bot55:205-2l2
    [97] Foyer CH, Lopez-Delgado H, Dat JF, et al 1997.Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signakking.Physiol Plant, 100:241-254.
    [98] Gamble PE,John J. Burke,1984.Effect of water stress on the chloroplast antioxidant system I.Alterations in glutathione reductase activity.Plant Paysiol, 76:615-62151.
    [99] Gowing DJG, DaviesWJ, Jones HG. 1990. A positive root - sourced signal as an indicator of soil drying in app le M alusxdom estica Borkh..J Exp Bot, 41: 1535-1540
    [100] Hanson AD, Nelsen CE. 1977. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars.Crop Science, 17:720-726
    [101] Handa S 1986.Proline Accumulation and the Adaptation of Cultured Plant Cells to Water Stress.Plant Physiol. 80, 938-945
    [102] Hiromi T , Ninomiya I , Koike T , et al 1999.Regulation of transpiration by patchy stomatal opening in canopy tree species of dipterocarpaceae in tropical rain forest , Sarawak , Malaysia.Jpn. J . Ecol. , 49 : 83-90.
    [103] Holmberg.N, Bulow.L,1998.Improving stress tolerance in plants by gene transfer.Trends in Plant Sci, 3:1361- 1366.
    [104] Hsiao T C. 1973. Plant responses to water stress Ann Rev. Plant Physiol. 24:519-570
    [105] Hsiao TC. 1970.Rapid Changes in Levels of Polyribosomes in Zea mays in Response to Water Stress .Plant Physiol. 46:281-285
    [106] Itai.C, Vaadia Y. 1965.Kinetin-like activity in root exudate of water-stressed sunflower plants .Physiol Plant 18:941-944
    [107] Itai. C, Vaadia Y., 1971.Cytokinin activity in water-stressed shoots.Plant Physiol 47:87-90
    [108] Ingram J, Bartels D,1996.The molecular basis of dehydration tolerance in plants.Annu Rev Plant Physiol Plant Mol Biol, 47:377- 403.
    [109] Jarmila Pittermann, John S. Sperry. 2006. Analysis of Freeze-Thaw Embolism in Conifers.The Interaction between Cavitation Pressure and Tracheid Size, Plant Physiology, January.140, 374-382
    [110] John J. Burke, Patricia E. Gamble,et a1.1985.Plant morphological and biochemical responses to field water deficits I.Responses of glutathione reductase activity and paraquat sensitivity.Plant Physiol, 79:415-419
    [111] Jones MM. 1978.Osmotic Adjustment in Leaves of Sorghum in Response to Water Deficits.Plant Physiol. 61, 122-126
    [112] Jones HG, 1991.Sutherland RA Stomatal control of xylem embolism.Plant, Cell and Environment, 14:607-612
    [113] Jordi Martínez-Vilalta, 2002.Drought-induced mortality and hydraulic architecture in pine populationof the Iberian Peninsula.Forest Ecology and Management, 161:247-256
    [114] Kader.JC.1996.Lipid-transfer proteins in plants.Annu Rev Plant Physiol Mol Biol, 47:627-654
    [115] Kisher.PBK,Hong Z,Miao,GH,et a1. 1995.overexpression ofΔ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants.Plant Physiol, 108:1387-1394.Kramer PJ.1983. Water Relations of Plants. Academic Press LNC.New York.
    [116]Kramer PJ. 1974.Fifty Years of Progress in Water Relations Research. Plant Physiol. 54, 463-471
    [117]Lewis .AM, 1988A Test of the Air-Seeding Hypothesis Using Sphagnum Hyalocysts[J] Plant Physiol. 87:577-582
    [118]Marshall JG,Scarratt JB, Dumbroff EB.1991.Induction of drought resistance by abscisic acid and paclobutrazol in jack pine. Tree Physiol , 8: 415-422
    [119]Mccuk.KF.Havson.AD. 1990.Drought and salt tolerance:towards understanding and application.Trends in Biotechnology, 8:358-362.
    [120]Mcmichale BL, WR Jordan, RD 1972.An effect of water stress on ethylene production by intact cotton petioles.Plant Physiol,49: 658-660
    [121]McKersie BD, Bowley SR, Harjanto E, et a1. 1996. Water-deficit tolerance and field performance of transgenic Alfalfa over expressing superoxide dismutase.Plant Paysiol,111: 1177-1181
    [122]Milburn JA 1973. Cavitation in Ricinus by acoustic detection: induction in excised leaves by various factors. Planta 110: 253-265
    [123]Morte A,Lovisolo C,Schubert.2000 A.Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense—Terfezia claveryi.Mycorrhiza.10:115-119.
    [124]Morgan.JM,1984.Osmoregulation and water stress in higher plants.Ann Rev Plant Physiol, 35:299-319.
    [125]Munsr, RE Sharp. 1993. Involvement of abscisic acid in controlling plant growth in soil of low water potential.Aust. J. Plant Physiol., 20: 425- 437.
    [126]Pickard WF 1981 The ascent of sap in plants. Prog Biophys Mol Biol,37:181-229
    [127]Plant A L,Cohev A,Moses M S, et al 1991.Nucleotide sequence and spatial expression pattern of a dmught-and abscisic acid-induced gene of tomato.Plant Physiol, 97:900-906
    [128]Rhodes D, Hanson AD,1993.Quaternary ammonium and tertiary sulfonium compounds in higher plants.Annu Rev Plant Physiol Plant Mol Biol, 44:357-384.
    [129]Rizhsky.L,Liang HJ,Shuman J, et a1 2004. When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress.Plant Physiol. 134:1683-1696
    [130]Russell BL, Rathinasabapathi B, Hanson AD.1998.Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth.Plant Physiol, 116:859-865
    [131]Saliendra NZ , Sperry J S , Comstock J P. 1995.Influence of leaf water status on stomatal responses to humidity , hydraulic conductance and soil drought in Bet ula occi dentalis .Planta , 196 : 357-366.
    [132]Seel, W.E., Hendry, G.A.F. and Lee, J.E.1992.Effects of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses.J Exp Bot.43:1031-1037
    [133]Scholander PF, 1958.The rise of sap in lianas. In Thimann KV (ed.) The Physiology of Forest Trees.Ronald Press, New York,. 3-17
    [134]Shinzaki K, Yamaguchi-Shinozaki K. 1997.Gene expressing and signal transduction in water-stress response.Plant Physiol, 115: 327- 334.
    [135]Shinozaki K, Yoda K, Hozumi K ,Kira T,1964, A Quantitative Analysis of Plant Form the Pipe Model Theory I:Basic Analysis,Jap.J.Ecol,14(3):97-105.
    [136]Shinozaki K, Yoda K, Hozumi K ,Kira T,1964, A Quantitative Analysis of Plant Form the Pipe Model Theory II:Further evidence of the theory and its application in forest ecology. [J],Jap.J.Ecol,14(4):133-139.
    [137]Sperry, JS., Donelly JR. and Tyree .MT, 1988b. A method for measuring hydraulic conductivity and embolism in xylem. [J] Plant Physiol. 11:35-40
    [138]Singh 1972.proline accumulation and variatal adaptability to drought iv barley:a potential metabolic measure of drought resistance..Nature New biology. 236:188-190
    [139]Sivamani E, Bahieldin A, Wraith JM, et al 2000.Improved biomass p roductivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene.Plant Sci, 155: 1-9
    [140]Stewart CR., Morris CJ., and Thompson JF. 1966.Changes in Amino Acid Content of Excised Leaves During Incubation: II. Role of Sugar in the Accumulation of Proline in Wilted Leaves.Plant Physiol. 41, 1585-1590
    [141]Tardieu F,Davies W J. 1992.Stomatal response to abscisic acid is a function of current plant water status.Plant Physio1.98:540-545.
    [142]Tschaptinski T J.1989.Water stress tolerance and late- senson organic solute accumulation in hybrid poplar, Can J Bot,67:1981-1988
    [143]Tyree MT, Dixon MA. 1983. Cavitation events in Thuja occidentalis L. ultrasonic acoustic emissions from sapwood can be measured[J], Plant Physiol. 72: 1094-1099
    [144]Tyree MT, Dixon MA, 1986Water-stress induced cavitation and embolism in some woody-plants. [J] Physiol Plant, 66:397-400
    [145]Tyree MT, Yang SD 1990.Water-storage capacity of Thuja, Tsuga and Acer stems measured by dehydration isothermsPlanta, 82:420-426
    [146]Tyree MT,Ewers FW,1991.The hydraulic architecture of tree and other woody plants.New Phytol, 119:345-360
    [147]Tyree MT., Snyderman DA., 1991.Water Relations and Hydraulic Architecture of a TropicalTree (Schefflera morototoni).Plant Physiol. 96:1105-1113
    [148]Tognetti R, Michelozzi M and Alessio G 1997.Geographical variation in water relations, hydraulic architecture and terpene composition of Aleppo pine seedlings from Italian provenances.Tree Physiology, 17:241-250
    [149]Wright GC, Smith RCG, Morgan JM 1983 Differences between two grain sorghum genotypes in adaptation to drought stress. III. Physiological responses. Australian Journal of Agricultural Research 34, 637–651
    [150]Wright STC. 1969. An increase in the“inhibitor-B”content of detached wheat leaves following a period of wilting.Planta 86:10-20
    [151]Yasemin EKMEK?? 2005. The effects of drought on plants and tolerance mechanisms.G.U.Journal of Science. 18(4): 723-740
    [152]Yoshiba Y, Kiyosue T 1995.Correlation between the induction of a gene forΔ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidepsis thaliana under osmotic stress .Plant J, 7:75l-760
    [153]Zimmermann MH, 1978.Hydraulic architecture of some diffuse-porous trees.Can.J.Bot, 56:2286-2295
    [154]Zimmermann MH , 1983.Xylem Structure and the Ascent of Sap.Springer-Verlag, Berlin.
    [155]Zhu I H,Peppel A V D,IA X Y,et a1. 2004. Changes of leaf water potential and endogenous cytokinins in young apple trees treated with orwithout paclobutrazol under drought conditions.Scientia Horticulturae .99(2):133-141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700