用户名: 密码: 验证码:
智能变形飞行器结构实现机制与若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能变形飞行器通过在飞行过程中自主改变气动外形来提高飞行效率,增强机动性,优化不同飞行环境和任务条件下的适应性,被广泛认为是实现未来航空技术新突破的革命性概念和技术。本文围绕智能变形飞行器结构实现机制与关键技术,开展了飞行器智能变形结构设计基本理论与方法、形状记忆合金(SMA)智能材料多物理场耦合特性与表征、基于SMA智能材料的新型高性能致动器设计原理与实验、具有柔顺变形能力的超弹性复合蒙皮结构原理与优化设计方法等一系列研究工作。主要研究内容和成果如下:
     1.尝试提出“智能变形飞行器结构力学”基本研究框架,并建立具有时变边界条件的智能伸缩翼悬臂梁结构动力学模型,通过无量纲化处理和Galerkin法给出了该时变非线性四阶双曲型方程的近似解。设计了基于SMA全向偏转致动器和双电机差动斜面全向偏转机构的头部智能变形结构,分别建立了系统动力学模型和非线性控制系统模型,进行了头部智能变形结构的系统仿真和原理样机实验,并通过风洞实验测试了头部偏转变形的气动特性。提出了采用单曲柄双摇杆机构的可变后掠翼结构设计方案,并针对单曲柄双摇杆机构两侧摇杆的同步性问题,建立了单曲柄双摇杆机构的统一模型和同步性能优化问题的数学模型,通过引入摇杆偏差小量假设和极限位置一致性假设,并结合大量系统的机构学实验,给出了单曲柄双摇杆机构同步性能优化解的近似经验公式和设计曲线图。该工作为智能变形飞行器的结构设计分析提供了理论依据和相关技术参考。
     2.在深入研究SMA智能材料准静态热/力耦合特性的基础上,探究了SMA智能材料的约束态热/力耦合特性、不完全相变热/力耦合特性和中低应变率动态加载热/力耦合特性。实验发现SMA首次加载约束态与持续加载约束态存在较大特性差异,即马氏体去孪晶化塑性变形和应力诱发马氏体相变塑性变形对马氏体逆相变起止温度点的影响差别较大。实验测得SMA不完全马氏体逆相变过程存在“温度记忆”效应,且重新开始相变的温度与上次热循环中断的温度之间总是约滞后3K。实验测得SMA在中低应变率拉伸条件下存在应变率相关性,准静态拉伸条件下的应力屈服平台消失,且发现塑性段应力-应变曲线斜率与应变率成明显正相关函数关系。上述研究成果对于SMA智能材料在复杂热/力耦合载荷条件下的特性建模和应用开发具有重要的理论意义和应用价值。同时,基于Tanaka系列本构模型和多体动力学理论,建立了SMA智能机电系统的一般动力学模型,通过给出相关设计实例说明了该系统动力学建模方法的便捷性;并给出SMA智能机电系统的复合控制方法,有效的提高了SMA致动单元的动作速率和稳态精度。
     3.提出了结合SMA致动器和电机各自优点的“SMA智能材料-电机混合致动器”概念,对其中的并联模式和混联模式进行了系统动力学建模与分析,并研制了SMA-电机混联直线致动器原理样机。针对其中较粗SMA丝致动器电阻小、电热困难的问题,发明了缠绕漆包线同时通电加热的新型复合电热驱动技术,并建立了简化的热力学模型,通过与实验对比表明,该理论模型的计算结果与实验吻合较好,可为采用新型复合电热驱动技术的SMA丝致动器控制模型的建立提供参考。
     4.针对智能变形飞行器对具有柔顺大变形性能的蒙皮结构的迫切需求,将柔性机构思想引入多孔固体设计中,提出了“超弹性蜂窝芯复合蒙皮结构”原理及其优化设计方法。基于线弹性理论,给出了对称六边形超弹性蜂窝芯结构的等效模量公式,通过尺寸参数优化和结构工艺优化,设计了具有单轴柔顺大变形特性的类蛇形环构型超弹性蜂窝芯结构和具有负泊松比特性的内凹六边形构型超弹性蜂窝芯结构。给出了类蛇形环构型超弹性蜂窝芯结构和负泊松比超弹性蜂窝芯结构的等效模量公式和优化设计方法,并通过实验测试验证了理论的正确性。
The smart morphing aircraft which can autonomicly change its aerodynamic shape in flight to improve flight efficiency, increase maneuverability and optimize adaptability in different flight environments with variable tasks, is widely considered as an revolutionary concept and technique which could achieve new breakthrough of the future aviation technology. Surrounding the realization mechanism and key technologies of smart morphing aircraft structures, this dissertation carried out a series of studies including the basic design theory and method of smart morphing structures for aicrafts, the multi-physics coupling properties and characterizations of smart materials, the design principles and experimentations of new high-performance actuators based on smart materials, the mechanism and optimum design of superelastic composite skin structures with compliant deformation ability, and so on. The main research contents and contributions are listed as follows:
     1. A basic research framework of "Smart Morphing Aircraft Structural Mechanics" was proposed. And we established the smart extension cantilever wing model with time-varying boundary conditions, which is a time-varying nonlinear fourth order hyperbolic equation with approximate solution solved through dimensionless processing and Galerkin method. The smart morphing structures of head section based on SMA all-azimuthal deflectable actuator and two-motors differential bevels all-azimuthal deflectable mechanism were designed. And we built their system dynamic models and nonlinear control system models, made system simulations and prototype experiments of the smart morphing head section structures, and tested its aerodynamic characteristics through wind tunnel experiments. A variable swept wing structural scheme was proposed by using the single-crank and double-rockers mechanism. And aim at the synchronization problem of its both sides of rockers, we established a unified model of the single-crank and double-rockers mechanism and a mathematical optimization model of its synchronization performance. The approximate empirical formulas and design curves of this synchronization performance optimization solution of the single-crank and double-rockers mechanism was obtained by introducing the rockers synchronism hypothesis and symmetry assumptions of utmost position, and combined with a large number of systematic mechanism simulation studies. This work provided some theoretical references and technological suggests for structural design and analysis of smart morphing aircraft.
     2. The thermo-mechanical coupling characteristics of shape memory alloy (SMA) smart materials under constraint condition, incomplete phase transformation and dynamic loading within a range of middle and low strain rates were respectively explored, based on the in-depth research of SMA quasi-static thermo-mechanical coupling characteristics. The experiments indicated that the characters were different between the first time constraint loading and the followed persistent loading, that means the impact of starting and ending temperatures of martensitic reverse transformation after martensite detwinning plastic deformation is greatly variant with that after stress-induced martensite transformation plastic deformation. Some experiments also measured the "temperature memory effect" existed in the SMA incomplete martensite reverse transformation process, and found that the restarted phase transition temperature always defered for 3K to the break temperature of last heat cycle. Besides, some experiments tested the strain rate relativity of SMA under tensile loading with the middle and low strain rates, and observed that the stress yield plateau under quasi-static tensile loading disappeared and there was significant positive correlated function between the stress-strain curve slope of plastic deformation segment and strain rates. These research results have important theoretical significance and application value for the properties modeling and application development of SMA smart materials under complex thermo-mechanical coupling loading. Further more, we built the unified dynamics model of SMA smart electromechanical systems based on the Tanaka-serial constitutive models and multi-bodies dynamics theory, and its convenience illustrated by giving some design examples. The SMA action velocity and steady state accuracy were also effectively improved by gives a composite control method for SMA smart electromechanical system.
     3. The "SMA smart materials-electric motor hybrid actuator" concept was proposed by combination of respective merits of SMA actuators and motors. And through system dynamics modeling and analysis of the parallel pattern and the series-to-parallel pattern, a SMA-motor hybrid linear actuator prototype was developed. Aim at the electric-thermal heating difficulties of thick SMA wire actuators for its small resistance, a new type of composite electric-thermal heating technology was invented by electrifying both the SMA wire and the enameled wire winded around the SMA wire. And a simplified thermodynamic model which showed a good agreement with experiment results was established to provide a method for control system modeling of SMA wire actuators using this new type of composite electric-thermal heating technology.
     4. For the urgent need of flexible skin with large compliant deformation properties of smart morphing aircraft, a "superelastic honeycomb composite skin structure" principle and optimum design was presented by introducing compliant mechanism idea to the design of cellular structures. Based on linear elastic theory, some equivalent elastic modulus formulas of symmetrical hexagonal honeycomb core structure were obtained, and the snake-like ring configuration superelastic honeycomb structures with single-axis large compliant deformation characters and the concave hexagonal configuration honeycomb structures with negative Poisson's ratio characters were designed through size parameters optimization and structural technical optimization. The equivalent modulus formulas and optimal design methods of the snake-like ring configuration superelastic honeycomb structures and the negative Poisson's ratio superelastic honeycomb structure was gained, and its theoretical correctness verified through the experimental tests.
引文
[1]W.W.Richard, C.H. Garnett, R.M. Anna-Maria, et al., Aircraft morphing program [C]. SPIE-3326,1998:176-187.
    [2]R.M. Anna-Maria, E.W. Anthony, G.H. Lucas, et al., Recent results from NASA's morphing project [C]. Proceedings of Smart Structures and Materials 2002:Industrial and Commercial Applications of Smart Structures Technologies, SPIE-4698,2002:97-111.
    [3]崔尔杰,白鹏,杨基明,智能变形飞行器的发展道路[J].航空制造技术,2007(8):38-41.
    [4]张颖,未来航空器:变形飞机[J].国外科技动态,2006(1):43-48.
    [5]温杰,NASA的主动气动弹性机翼计划[J].国际航空杂志,2004(10):61-62.
    [6]R. Barrett, Adaptive aerostructures:The first decade of flight on uninhabited aerial vehicles [C]. Proceedings of Smart Structures and Materials 2004:Industrial and Commercial Applications of Smart Structures Technologies, SPIE-5388, Bellingham, WA,2004:190-201.
    [7]R. Barrett, All-moving active aerodynamic surface research [C]. Proceedings of Active Materials and Smart Structures, SPIE-2427,1995.
    [8]J. Kudva, P. Jardine, C. Martin, et al., Overview of the arpajwl "Smart structures and materials development-smart wing" Contract [C]. SPIE-2721,1996:10-16.
    [9]J.N. Kudva, B. Sanders, J. Pinkerton-Florance, et al., Overview of the DARPA/AFRL/NASA smart wing phase 2 program [C]. Proceedings of Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, SPIE-4332,2001: 383-389.
    [10]R. Barrett, P. Frye, M. Schliesman, Design, development and testing of a solid state adaptive rotor [C]. SPIE-3321,1998:424-435.
    [11]R. Barrett, P. Frye, M. Schliesman, Design, construction and characterization of a flightworthy piezoelectric solid state adaptive rotor [J]. Smart Mater. Struct.,1998(7):42-431.
    [12]陶宝祺 主编,智能材料结构[M].北京:国防工业出版社,1997.
    [13]R. Barrett, J. Melkert, UAV visual signature suppression via adaptive materials [C]. Proceedings of Smart Structures and Materials 2005:Industrial and Commercial Applications of Smart Structures Technologies, SPIE-5762, Bellingham, WA,2005.
    [14]K. Bandyopadhyay, Smart materials and aerospace structures [C]. SPIE-3903,1999:312-324.
    [15]K.J. Akhilesh, N.K. Jayanth, Morphing aircraft concepts, classifications, and challenges [C]. Proceedings of Smart Structures and Materials 2004:Industrial and Commercial Applications of Smart Structures Technologies, SPIE-5388, Bellingham, WA,2004:213-224.
    [16]王光远,论时变结构力学[J].土木工程学报,2000,33:105-108.
    [17]秦荣,智能结构力学[M].北京:科学出版社,2005.
    [18]杨杰,董二宝,张世武等,智能飞行器可变形结构的构想与实现[C].航空飞行器发展与空气动力学研讨会,杭州千岛湖,2006.
    [19]M.Justin, G. Ephrahim, M.W. Adam, et al., Adaptive structural systems and compliant skin technology of morphing aircraft structures [C]. Proceedings of Smart Structures and Materials 2004:Smart Structures and Integrated Systems, SPIE-5390, Bellingham, WA,2004:225-234.
    [20]J.E. Manzo, Analysis and design of a hyper-elliptical cambered span morphing aircraft wing [D]. Cornell University,2006.
    [21]K. Sridhar, A.H.Joel, O. Russell, et al., Design and application of compliant mechanisms for morphing aircraft structures [C]. Proceedings of Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technologies, SPIE-5054,2003: 24-33.
    [22]A.L. Emily, E.M. Justin, G. Ephrahim, Analysis of bat wings for morphing [C]. Proceedings of Active and Passive Smart Structures and Integrated Systems 2008, SPIE-6928,2008.
    [23]温坤.英国研究弯度和扭矩可变的翼梢小翼.国防科技信息网2009-02-24; Available from: http://www.dsti.net/Information/News/51894.
    [24]杨开天,直升机主动控制技术发展研究[J].航空科学技术,2006(5):21-25.
    [25]蒋海涛,颜令辉,智能材料在飞行器冀面结构中的应用探索[J].飞航导弹,2008(1):56-60.
    [26]全贵燮,浅淡主动柔性机翼技术[J].飞机设计,1998(4):25.
    [27]李玉璞,孙铿,张宏,自适应机翼控制技术新进展[J].国际航空杂志,2001(9):56-57.
    [28]杨智春,解江,自适应机翼技术的分类和实现途径[J].飞行力学,2008,26(5).
    [29]P.A. Toensmeier,美国开始试验“变形”飞机[J].国际航空杂志,2005(7):50-51.
    [30]A.M. Wickenheiser, E. Garcia, M. Waszak, Evaluation of bio-inspired morphing concepts with regard to aircraft dynamics and performance [C]. Proceedings of Smart Structures and Materials, SPIE-5390,2004:202-211.
    [31]B.S. Lazos, K.D. Visser, Aerodynamic comparison of hyper-elliptic cambered span (HECS) wings with conventional configurations [J]. American Institute of Aeronautics and Astronautics,2006:1-18.
    [32]J. Manzo, E. Garcia, A. Wickenheiser, et al., Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism [C]. Proceedings of Smart Structures and Materials, SPIE-5764,2005:232-240.
    [33]M. Justin, G. Ephrahim, W. Adam, et al., Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism [C]. SPIE-5764,2005:232-240.
    [34]E.A. Leylek, J.E. Manzo, E. Garcia, Analysis of bat wings for morphing [C]. Proceedings of Active and Passive Smart Structures and Integrated Systems 2008, SPIE-6928,2008:1-11.
    [35]E. Leylek, J. Manzo, E. Garcia, Bat-inspired wing aerodynamics and optimization [J]. Journal of Aircraft 2010,47(1):323-328.
    [36]M. Abdulrahim, H. Garcia, R. Lind, Flight characteristics of shaping the membranewing of a micro air vehicle [J]. JOURNAL OF AIRCRAFT,2005,42(1):131-137.
    [37]M. Abdulrahim, R. Lind, Control and simulation of a multi-role morphing micro air vehicle [C]. Proceedings of AIAA Guidance, Navigation and Control Conference, San Francisco, CA, USA,2005.
    [38]孟令涛,刘莉,周思达等,翼面翘曲控制技术的研究与发展[J].飞航导弹,2008(3):33-37.
    [39]J.N. Kudva, A. Martin, L.B. Scherer, et al., Overview of the DARPA/AFRL/NASA smart wing program [C]. Proceedings of SPIE Conference on Industrial and Commercial Applications of Smart Structures Technologies, SPIE-3674, Newport Beach, California,1999: 230-236.
    [40]乐挺,王立新,艾俊强,变体飞机设计的主要关键技术[J].飞行力学,2009,27(5):6-10.
    [41]D.M. Pitt, J.P. Dunne, E.V. White, et al., Wind tunnel demonstration of the sampson smart inlet [C]. SPIE-4332,2001:345-356.
    [42]J.H. Mabe, F.T. Calkins, M.B. Alkislar, Variable area jet nozzle using shape memory alloy actuators in an antagonistic design [C]. Proceedings of Industrial and Commercial Applications of Smart Structures Technologies 2008, SPIE-6930, San Diego, California, USA, 2008.
    [43]L.T. Travis, H.C. Randolph, J.C. Roberto, et al., Design, fabrication, and testing of a SMA hybrid composite jet engine chevron [C]. SPIE-6173,2006.
    [44]L.T. Travis, H.C. Randolph, J.C. Roberto, et al., Development of a SMA hybrid composite jet engine chevron concept [C]. SPIE-6525,2007.
    [45]L.T. Travis, H.C. Randolph, J.C. Roberto, et al., Testing of SMA-enabled active chevron prototypes under representative flow conditions [C]. Proceedings of Active and Passive Smart Structures and Integrated Systems 2008, SPIE-6928,2008.
    [46]T.C. Frederick, H.M. James, W.B. George, Boeing's variable geometry chevron:Morphing aerospace structures for jet noise reduction [C]. SPIE-6171,2006.
    [47]高昕欣,偏头控气动特性研究[C].航空飞行器发展与空气动力学研讨会,杭州千岛湖,2006.
    [48]M.G. Landers, L.H. Hall, L.M. Auman, et al., Deflectable nose and canard controls for a fin-stabilized projectile at supersonic and hypersonic speeds [C]. Proceedings of the 21st Applied Aerodynamics Conference, AIAA-2003-3805, Orlando, Florida,2003.
    [49]R. Barrett, G. Lee, Design and testing of piezoelectric flight control actuators for hard-launch munitions [C]. Proceedings of Smart Structures and Materials 2004:Smart Structures and Integrated Systems, SPIE-5390, Bellingham, WA,,2004:459-470.
    [50]杨杰,董二宝,李永新,飞行器智能变形结构的设计优化新思路[C].总装备部智能变形飞行器若干技术问题研讨会,北京,2007.
    [51]高原,谷良贤,龚春林等,一种偏转弹头控制系统方案研究[J].弹箭与制导学报,2006.
    [52]R. Barrett, J. Stutts, Modeling, design, and testing of a barrel-launched adaptive munition [C]. SPIE-3041,1997:578-589.
    [53]王飞,王志军,吴国东等,基于智能材料的弹箭增程数值仿真[J].弹箭与制导学报,2004,20(4).
    [54]王飞,吴国东,王志军等,有头部攻角的弹丸气动性能的数值计算[J].华北工学院学报,2005,26(3).
    [55]魏方海,王志军,吴国东,控制火箭弹头部偏角的弹道修正技术[J].弹箭与制导学报,2006,26(2).
    [56]魏方海,.王志军,尹建平,有头部偏角的尾翼火箭弹气动性能数值计算[J].弹箭与制导学报,2006,26(1).
    [57]王旭刚,周军,偏转头导弹动力学及数学模型[J].弹箭与制导学报,2007.
    [58]杨杰,董二宝,导弹智能变形机构初探[C].智能飞行器技术学术研讨会,广西北海,2005.
    [59]朱锐,董二宝,张杰等,头部可偏转飞行器气动仿真与外形优化[J].机械与电子,2008(8):6-8.
    [60]J.N. Kudva, B.P. Sanders, J.L. Pinkerton-Florance, et al., Overview of the DARPA/AFRL/NASA smart wing phase II program [C]. Proceedings of Industrial and Commercial Applications of Smart Structures Technologies, SPIE-4332,2001:383-389.
    [61]刘芙群,顾仲权,智能旋翼——直升机减振降噪的治本技术[J].国际航空杂志,2001(8):25-27.
    [62]A.D. Jacot, Smart structures for rotorcraft control (SSRC) [C]. SPIE-3044,1997:114-122.
    [63]J.S. Flanaganl, R.C. Strutzenberg, R.B. Myers, et al., Development and flight testing of a morphing aircraft, the NextGen MFX-1 [C]. Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA-2007-1707, Honolulu, Hawaii,2007.
    [64]F. Autin, M. J.Siclari, N. Van William, et al., Comparison of smart-wing concepts for transonic cruise drag reduction [C]. SPIE-3044,1997:33-40.
    [65]R. Barrett, Modeling techniques and design principles of a low aspect ratio active aeroservoelastic wing [C]. Proceedings of SPIE Conference on Smart Structures and Intelligent Systems, SPIE-1917,1993:107-118.
    [66]R. Barrett, D. Law, Design, fabrication and testing of a new twist-active wing design [C]. Proceedings of SPIE Conference on Smart Structures and Integrated Systems, SPIE-3329, San Diego, California,1998:33-41.
    [67]徐祖耀,形状记忆材料[M].上海:上海交通大学出版社,2000.
    [68]杨杰,吴月华,形状记忆合金及其应用[M].合肥:中国科学技术大学出版社,1993.
    [69]R.Orlando, N.Ronald, B. Tiffany, et al., Characterization of ternary nitipt high-temperature shape memory alloys [C]. SPIE-5761,2005:376-387.
    [70]N. Ronald, G. Darrell, P. Santo, Ⅱ, et al., Properties and potential of two (Ni,Pt)Ti alloys for use as high-temperature actuator materials [C]. SPIE-5761,2005:364-375.
    [71]K.K. Parikshith, C.L. Dimitris, J.Z. Kevin, et al., Thermomechanical characterization of high temperature sma actuators [C]. SPIE-6170,2006.
    [72]N.Ronald, P. Santo, Ⅱ, B. Glen, et al., Properties of a Ni19.5PdboTi50.5 high-temperature shape memory alloy in tension and compression [C]. SPIE-6170,2006.
    [73]S. Aaron, A.P. Santo, D.N. Ronald, et al., Characterization of Ni19.5Ti55.5Pd25Pt5 high-temperature shape memory alloy springs and their potential applications in aeronautics [C]. SPIE-6928,2008.
    [74]S.B. Glen, A.P. Santo, G. Anita, et al., Correlation between mechanical behavior and actuator-type performance of Ni-Ti-Pd high-temperature shape memory alloys [C]. SPIE-6526, 2007.
    [75]K.K. Parikshith, C.L. Dimitris, Thermomechanical characterization of a TiPdNi high temperature SMA under tension [C]. SPIE-6526,2007.
    [76]R.Q. Todd, F.C. Bernie, H.B. Alexander, et al., Development and test of an HTSMA supersonic inlet ramp actuator [C]. SPIE-6930,2008.
    [77]M. Geoff, M. Leslie, C. Don, et al. Miniature thin-film NiTi hydraulic actuator with MEMS microvalves [C]. SPIE-5762.2005:187-195.
    [78]A.M. Leslie, C. Donald, P.C. Gregory, et al. Compact hybrid actuator device (chad) for ultracompact navigation, guidance, and control [C]. Proceedings of Smart Structures and Materials 2003:Industrial and Commercial Applications of Smart Structures Technologies, SPIE-5054,2003:85-95.
    [79]L. Marcin, W. Rafal, K. Waldemar, et al. Modification of the properties of Ni-Mn-Ga magnetic shape memory alloys by minor addition of terbium [C]. SPIE-6170,2006:61702C.
    [80]M. Yunqing, Y. Shuiyuan, D. Yuxia, et al. Shape memory effect and magnetic properties of co-fe ferromagnetic shape memory alloys [C]. SPIE-6423,2007.
    [81]E.F. LeAnn, J.D. Marcelo, N.W. Gregory, A homogenized strain model for Ni-Mn-Ga driven with collinear field and stress [C]. SPIE-6170,2006.
    [82]T. Honghao, H.E. Mohammad, Dynamics modeling of ferromagnetic shape memory alloys (FSMA) actuators [C]. SPIE-6173,2006.
    [83]N.S. Neelesh, J.D. Marcelo, Sensing behavior of ferromagnetic shape memory Ni-Mn-Ga [C]. SPIE-6170,2006.
    [84]N.C. Ronald, S. Jayant, C. Inderjit, Testing and modeling of NiMnGa ferromagnetic shape memory alloy for static and dynamic loading conditions [C]. SPIE-6173,2006.
    [85]W. Fengxiang, L. Jun, X. Liuke, Study on structure and control strategy of MSMA actuators [C]. SPIE-6423,2007.
    [86]杨大智主编,智能材料与智能系统[M].天津:天津大学出版社,2000.
    [87]J.C.Victor, T. Minoru, L. Jae Kon, et al., Design of torque actuator based on ferromagnetic shape memory alloy composite [C]. SPIE-5390,2004:309-316.
    [88]N.S. Neelesh, J.D. Marcelo, Magnetomechanical characterization and unified actuator/sensor modeling of ferromagnetic shape memory alloy Ni-Mn-Ga [C]. SPIE-6526,2007.
    [89]W.M. Huang, B. Yang, N. Liu, et al., Water-responsive programmable shape memory polymer devices [C]. SPIE-6423,2007.
    [90]Y. Yuemin, L. Xinbo, Z. Wei, et al., Investigation on adaptive wing structure based on shape memory polymer composite hinge [C]. Proceedings of International Conference on Smart Materials and Nanotechnology in Engineering 2007, SPIE-6423, Harbin, P.R. China,2007.
    [91]李敏,管德,李维等,利用压电驱动器控制高空无人机的滚转性能[C].航空飞行器发展与空气动力学研讨会,杭州千岛湖,2006.
    [92]S.B. Glenn, A. Darin, R. Robert, Shape control of a morphing structure (rotor blade) using a shape memory alloy actuator system [C]. SPIE-6928,2008.
    [93]H. Yudi, C.P. Hoon, S.G. Nam, et al., Design and demonstration of a small expandable morphing wing [C]. Proceedings of Smart Structures and Materials 2005:Smart Structures and Integrated Systems, SPIE-5764,2005:224-231.
    [94]R. Lind, M. Abdulrahim, K. Boothe, et al., Morphing for flight control of micro air vehicles [C]. AIAA,2004.
    [95]T.A. Weisshaar, B. Sanders, Morphing wing technology [C]. Proceedings of NATO RTO conference on Advanced Flight Concepts, Vilnius, Lithuania,2006.
    [96]B. Smita, F. Mary, L. George, et al., Tendon actuated cellular mechanisms for morphing aircraft wing [C]. Proceedings of Modeling, Signal Processing, and Control for Smart Structures, SPIE-6523,2007.
    [97]M. Filippo, M.W.Paul, D.P. Kevin, et al., The application of thermally induced multistable composites to morphing aircraft structures [C]. Proceedings of Industrial and Commercial Applications of Smart Structures Technologies, SPIE-6930,2008.
    [98]J. Terrence, G. Farhan, F. Mary, Bistable mechanisms for morphing rotors [C]. Proceedings of Smart Structures and Materials 2008:Active and Passive Smart Structures and Integrated Systems, SPIE-6928, San Diego, CA,2008.
    [99]C.P.Henry, G.P. McKnight, A. Enke, et al.,3D FEA simulation of segmented reinforcement variable stiffness composites [C]. Proceedings of Behavior and Mechanics of Multifunctional and Composite Materials, SPIE-6929,2008.
    [100]M. Geoff, D. Robert, H. Guillermo, et al., Bill armstrong memorial session:Elastic modulus and strain recovery testing of variable stiffness composites for structural reconfiguration applications [C]. Proceedings of Behavior and Mechanics of Multifunctional and Composite Materials, SPIE-6526,2007.
    [101]M. Geoff, H. Chris, Variable stiffness materials for reconfigurable surface applications [C]. Proceedings of Smart Structures and Materials 2005:Active Materials:Behavior and Mechanics, SPIE-5761, Bellingham, WA,2005:119-126.
    [102]John L. Reed, Jr., D.H. Christopher, M.P. Bryan, et al., Adaptive wing structures [C]. Proceedings of Smart Structures and Materials 2005:Industrial and Commercial Applications of Smart Structures Technologies, SPIE-5762, Bellingham, WA,2005:132-142.
    [103]M.K. Michelle, S.B. Robert, S. Brian, et al., Mechanical properties of shape memory polymers for morphing aircraft applications [C]. Proceedings of Smart Structures and Materials 2005:Industrial and Commercial Applications of Smart Structures Technologies, SPIE-5762, Bellingham, WA,2005:143-151.
    [104]G.P. McKnight, C.P. Henry, Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins [C]. Proceedings of Behavior and Mechanics of Multifunctional and Composite Materials, SPIE-6929,2008.
    [105]S. Nemat-Nasser, J.Y. Choi, W.-G. Guo, et al., High strain-rate, small strain response of a NiTi shape-memory alloy [J]. Journal of Engineering Materials and Technology,2005,127(1): 83-89.
    [106]C. Bouvet, S. Calloch, C. Lexcellent, Mechanical behavior of a Cu-Al-Be shape memory alloy under multiaxial proportional and nonproportional loadings [J]. Journal of Engineering Materials and Technology,2002,124(2):112-124.
    [107]T.J. Lim, D.L. McDowell, Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading [J]. Journal of Engineering Materials and Technology,1999,121(1):9-18.
    [108]P. Sittner, V. Novak, Anisotropy of Cu-based shape memory alloys in tension/compression thermomechanical loads [J]. Journal of Engineering Materials and Technology,1999,121(1): 48-55.
    [109]H. Tobushi, T. Hachisuka, T. Hashimoto, et al., Cyclic deformation and fatigue of a TiNi shape-memory alloy wire subjected to rotating bending [J]. Journal of Engineering Materials and Technology,1998,120(1):64-70.
    [110]M.H. Elahinia, H. Ashrafiuon, Nonlinear control of a shape memory alloy actuated manipulator [J]. Journal of Vibration and Acoustics,2002,124(4):566-575.
    [111]C. Liang, C.A. Rogers, Design of shape memory alloy actuators [J]. Journal of Mechanical Design,1992,114(2):223-230.
    [112]H. Ashrafiuon, V.R. Jala, Sliding mode control of mechanical systems actuated by shape memory alloy [J]. Journal of Dynamic Systems, Measurement, and Control,2009,131(1).
    [113]J. Jayender, J. Jayender, R.V. Patel, et al., Modeling and control of shape memory alloy actuators [J]. IEEE Transactions on Control Systems Technology,2008,16(2):279-287.
    [114]K.K. Leang, S. Ashley, G. Tchoupo, Iterative and feedback control for hysteresis compensation in sma [J]. Journal of Dynamic Systems, Measurement, and Control,2009, 131(1).
    [115]M. Moallem, V.A. Tabrizi, Tracking control of an antagonistic shape memory alloy actuator pair [J]. Ieee Transactions on Control Systems Technology,2009,17(1):184-190.
    [116]G. Song, D.D. Quinn, Experimental study of the robust tracking control of a shape memory alloy wire actuator [J]. Journal of Dynamic Systems, Measurement, and Control,2004,126(3): 674-677.
    [117]M.H. Elahinia, H. Ashrafiuon, M. Ahmadian, et al., A temperature-based controller for a shape memory alloy actuator [J]. Journal of Vibration and Acoustics,2005,127(3):285-291.
    [118]M. Dan, L. Ion, N. Simona, et al., New actuation systems based on shape memory alloys [C]. Proceedings of Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies IV, SPIE-7297,2009.
    [119]A. Omid, K. Mervyn, H. Tasnim, et al., Large deformation polymer optical fiber sensors for civil infrastructure systems [C]. Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, SPIE-6932,2008.
    [120]G. Lanzara, J. Feng, F.-K. Chang, A large area flexible expandable network for structural health monitoring [C]. Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, SPIE-6932, San Diego, California, USA,2008.
    [121]M. Bowen, Adjustable wing aircraft:US.2822995 [P].1958-2-11.
    [122]M.L. Bouchard, P. Gogineni, R.A. Eisentraut, et al., Winged vehicle with variable-sweep cantilevered wing mounted on a translating wing-support body. US.7185847B1 [P].2007-5-6.
    [123]W. Voigt, Swept wing with unswept spar:US.3018985 [P].1962-1-30.
    [124]C.F. Toms, Aeroplanes having wings capable of adjustment in sweep:US.3206146 [P].1965-9-14.
    [125]H.A. Dethman, Bearing arrangement for variable sweep wing aircraft:US.3279721 [P]. 1966-10-18.
    [126]C.A. Barton, Aircraft having variable sweep-back wings:US.3565369 [P].1971-2-23.
    [127]A. Arena, Segmented variable sweep wing aircraft:US.5312070 [P].1994-5-17.
    [128]R. Madangopal, Z. Khan, S. Agrawal, Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics [J]. Journal of Mechanical Design,2005,127(4):809-816.
    [129]徐一村,宗光华,毕树生等,空间曲柄摇杆扑翼机构设计分析[J].航空动力学报,2009,24(1):204-208.
    [130]张亚锋,宋笔锋,马红萍等,仿生扑翼机构的优化设计[J].机械设计与研究,2008,24(4):23-25.
    [131]张光澄主编,非线性最优化计算方法[M].北京:高等教育出版社,2005.
    [132]S.H. Joycelyn, A.W. Stephanie, G.B. Robert, et al., Innovative materials for aircraft morphing [C]. SPIE-3326,1998:240-249.
    [133]M.T. Ruth, K.P. Mohanchandra, P.C. Gregory, Smart material actuators for airfoil morphing applications [C]. Proceedings of Smart Structures and Materials 2004:Smart Structures and Integrated Systems, SPIE-5390, Bellingham, WA,2004:235-246.
    [134]J.S. Andreas, D. Thomas, B. Bent, et al., Overview on macrofiber composite applications [C]. Proceedings of Smart Structures and Materials 2006:Active Materials:Behavior and Mechanics, SPIE-6170,2006.
    [135]H.J. Qi, L.D. Martin, L. Kevin, et al., Thermomechanical indentation of shape memory polymers [C]. Proceedings of Behavior and Mechanics of Multifunctional and Composite Materials, SPIE-6526,2007.
    [136]M. Justin, G. Ephrahim, Optimization and implementation of the smart joint actuator [C]. Proceedings of Active and Passive Smart Structures and Integrated Systems, SPIE-6928,2008.
    [137]K. Tanaka, A phenomenological description on thermomechanical behavior of shape memory alloys [J]. Journal of Pressure Vessel Technology,1990,112(2):158-163.
    [138]C. Liang, C.A. Rogers, Design of shape memory alloy actuators [J]. Journal of Intelligent Material Systems and Structures,1997,8(4):303-313.
    [139]L.C. Brinson, One dimensional constitutive behavior of shape memory alloys:Thermo-mechanical derivation with non-constant material functions [J]. Journal of Intelligent Material Systems & Structures,1993,4(2):229-242.
    [140]L.C. Brinson, R. Lammering, Finite element analysis of the behavior of shape memory alloys and their applications [J]. International Journal of Solids and Structures,1993,30(23):3261-3280.
    [141]L.C. Brinson, M.S. Huang, Simplifications and comparisons of shape memory alloy constitutive models [J]. J. Intell. Matl. Syst.& Struct.,1995, (7):108-114.
    [142]L.C. Brinson, S. Hwang, A. Bekker, Temperature induced deformation in shape memory alloys under load [J]. Journal of Intelligent Material Systems& Structures,1996, (7):97-107.
    [143]M. Huang, L.C. Brinson, A multivariant model for single crystal shape memory alloy behavior [J]. Journal of the Mechanics and Physics of Solids,1998,46(8):1379-1409.
    [144]郑雁军,崔立山,TiNi合金不完全相变的温度记忆效应[J].金属学报,2004,40(9):915-919.
    [145]余华军,封向东,王治国等,TiNi和TiNiCu记忆合金薄膜的温度记忆效应研究[J].电子科技大学学报,2008,37(1):128-130.
    [146]杨宜民,新型驱动器及其应用[M].北京:机械工业出版社,1997.
    [147]M. Leester-Schadel, B. Hoxhold, S. Demming, et al., SMA micro actuators for active shape control, handling technologies, and medical applications [C], SPIE-6589.2007.
    [148]M. Mertmann, G. Vergani, Design and application of shape memory actuators [J]. The European Physical Journal Special Topics,2008,158:221-230.
    [149]H. Shinno, H. Yoshioka, M. Hayashi, A high performance tilting platform driven by hybrid actuator [J]. Manufacturing Technology,2009,58:363-366.
    [150]H. Higo, Y. Sakurai, T. Nakada, et al., Dynamic characteristic and power consumption on an electro-pneumatic hybrid positioning system [C]. Proceedings of the 6th JFPS international symposium on fluid power,2005:363-368.
    [151]H. Yoon, G. Washington, A millimeter-stroke piezoelectric hybrid actuator using hydraulic displacement amplification mechanism [C]. Proceedings of IEEE-ISIE,2006:2809-2813.
    [152]E. Anderson, J. Lindler, M. Regelbrugge, Smart material actuator with long stroke and high power output [C]. Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference,2002.
    [153]E. Anderson, G. Bales, E. White, Application of smart material-hydraulic actuators [C]. Proceedings of SPIE conference on industrial and commercial applications of smart structure technologies,2003.
    [154]T. Brian, K. Sridhar, Adaptive and controllable compliant systems with embedded actuators and sensors [C]. Proceedings of Active and Passive Smart Structures and Integrated Systems 2007, SPIE-6525,2007.
    [155]L. Kerr-Jia, K. Sridhar, Synthesis of shape morphing compliant mechanisms using a load path representation method [C]. Proceedings of Smart Structures and Materials 2003:Modeling, Signal Processing, and Control, SPIE-5049,2003:337-348.
    [156]L.S. Sergio, W. Ju, M.M. Robert, et al., Design and demonstration of a high-authority shape morphing structure [C]. Proceedings of Smart Structures and Materials 2004:Smart Structures and Integrated Systems, SPIE-5390, Bellingham, WA,2004:175-182.
    [157]W.M. Keith, B.-S. Hilary, The analysis of tensegrity structures for the design of a morphing wing [C]. Proceedings of Smart Structures and Materials 2005:Smart Structures and Integrated Systems, SPIE-5764, Bellingham, WA,2005:253-261.
    [158]E. DONG, Y. ZHANG, J. YANG, Design of the deformable nose based on negative poisson's ratio honeycomb structures with shape memory alloy actuators [C]. Proceedings of the 2nd international conference on Smart Materials& Structures in Aerospace Engineerin, Nanjing, China,2006.
    [159]E.B. Dong, Y.X. Li, J. Yang, Design and optimization of compliant cellular structures for morphing aircraft skins [C]. Proceedings of the 19th International Conference on Adaptive Structures and Technologies, Ascona, Switzerland,2008.
    [160]L.J. Gibson, M.F. Ashby, Cellular solids:Structure and properties (second edition): Cambridge University Press,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700