用户名: 密码: 验证码:
高温高压下液态饱和烃的拉曼光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前对石油的稳定界限和压力的作用仍存在很大争议,而且以前的研究者在用热模拟实验等方法来研究原油或者烷烃的裂解时,很少有人曾考虑到压力因素,即使考虑了,由于受实验技术本身的限制,只能固定压力来升温且多为低压,这和实际的地质条件相差深远。同时对于在油气成因、油气包裹体及其高温高压实验研究等地质科学领域应用较广泛的压力标定方面也有很多工作需要去探索,目前基本上还没有对有机物作为压标进行详细研究的。针对上述三方面的问题,作者采用金刚石压腔高温高压实验技术,对主要液态饱和烃(正己烷、正庚烷、正十五烷、环己烷)及其二元混合物(环己烷-正庚烷混合物、环己烷-正十五烷混合物)和两相混合物(水-正庚烷混合物、水-环己烷混合物、水-正十五烷混合物)等三大类共九种物质进行了高温高压下激光拉曼散射光谱的研究。
     三种不同体系(纯态、混合态和水体系)中的液态饱和烃,无论是在常温或是高温下以及其是否结晶,它的CH3、CH2伸缩振动和环呼吸振动的拉曼峰均随压力增大而向高频方向移动,且一般情况下,反对称伸缩振动趋向于高频的速度明显快于相对应的对称伸缩振动,同时常温下的上述所有振动趋向于高频的速度明显快于相对应的高温下的振动。
     在加热过程中,均伴随着温度和压力两种相反的效应,但压力效应占据主导地位。它在液态饱和烃的加热分解过程中起了抑制作用,对于其在高温下的稳定起了重要作用。
     不同体系中的液态饱和烃在各自实验的温度和压力条件下,均保持了稳定,没有出现明显的分解现象。它们在300MPa以内,最高的稳定温度可以达到280-315℃,这可以代表石油稳定的最低界限,但它仍然高于以前的研究结果。
     液态饱和烃混合后,虽然环烷烃的拉曼位移和压标公式发生了一定的变化,但其稳定性、压力的作用及P-T之间的关系(等容线)并没有受到影响;平均C-H伸缩振动的拉曼位移也受到了混合作用的影响,但其P-p-T关系式并不改变。
     平均C-H伸缩振动的拉曼光谱可作为压力计应用于流体包裹体,特别是油气包裹体。其关系式为:P=75.56+0.3508T+60.7(23≤T≤405、P<2160MPa)。
     水-液态饱和烃的两相混合物中,水对液态饱和烃的分解起到了一种抑制作用,从而可以使液态饱和烃在更高的温度下保持稳定。另外,水对油气的运移可能起着一定的作用。
     液态饱和烃的液/固平衡线和等容线结合起来除可以估算烃类流体包裹体的最小捕获压力外,还可被用来大致确定流体包裹体特别是油气包裹体中的烃类组成。
     环己烷可以作为压标使用,且在三种不同的体系中有相对应的校正公式,它们分别为:
     纯环己烷体系:
     P=60.337(Δ p)2933+0.818T+4.999(20℃≤T≤315℃、P≤1100MPa)
     P=79.488(Δ p)802+1.910T-44.910(20℃≤T≤315℃、P≤1100MPa)
     环己烷-正庚烷混合体系:
     P=144.865(Δ p)801+1.954T-75.355(20℃≤T≤315℃、P≤2100MPa)
     环己烷-正十五烷混合体系:
     P=135.484(Δ p)803+1.721T+64.045(20℃≤T≤405℃、P≤2100MPa)
     水体系:
     P=154.55(Δ p)2855+338.35(常温,0<(Δ p)2855≤2.3cm-1)
     P=75.425(Δ p)2933+0.462T+20.285(20℃≤T≤300℃、P≤1550MPa)
     P=98.424(Δ p)802+1.99T-67.58(20℃≤T≤300℃、P≤1550MPa)
     正庚烷也可以作为压标使用,且在两种不同的体系中有相对应的校正公式,分别为:
     纯正庚烷体系:
     P=159.73(Δ p)2880-55.457(常温,0.35≤(Δ p)2880≤6.9cm-1)
     P=157.81(Δ p)2935+36.798(常温,-0.23≤(Δ p)2935≤6.4cm-1)
     P=70.476(Δ p)2965+0.0628T+29.036(20℃≤T≤315℃、P≤2000MPa)。
     水体系:
     P=122.13(Δ p)2880+1.3328(常温,-0.01<(Δ)12880≤9.5cm-p)
     P=148.09(Δ p)2857-11.301(常温,-0.8≤(Δ p)2857≤7.8cm-1)
     P=126.72(Δ p)2935+171.66(常温,-1.35≤(Δ p)2935≤7.7cm-1)
     P=81.264(Δ p)2965+0.397T+96.691(20℃≤T≤315℃、P≤2200MPa)
     *注在以上各关系式中:P为压力,单位MPa;T为温度,单位℃;Δ p、 p为一定温度压力下,样品某振动的拉曼位移的偏移量(cm-1),即Δ p=p-0和=p-0, p、为某一温度压力下的拉曼位移,0、0为常温常压下的拉曼位移。
At present the temperature of petroleum stability and pressure effect are still uncertain. Whenprevious scholar investigated cracking of oil or alkanes by thermal simulation experiment, fewpeople ever considered the role of pressure. Those people who thought pressure effect existed onlyincreased temperature at a constant pressure which was basically low because of limitedexperimental technologies. It is far from real geological condition. In addition, the issue is thepressure gauge extensively used in geology science such as the origin of petroleum, hydrocarboninclusion and experimental study under high temperature and high pressure, and at present,organic matter as a pressure gauge have not been nearly investigated. Mainly aiming at the abovethree scientific questions, we have studied the laser Raman scattering spectra of some liquidsaturated hydrocarbons, which can be commonly found in the petroleum, such as n-hexane、n-heptane、n-pentadecane、cyclohexane,and their mixture such as cyclohexane-n-heptaneblends、cyclohexane-n-pentadecane blends, and water-n-heptane blends、water-cyclohexaneblends、water-n-pentadecane blends by the experimental technique of diamond anvil cell. Wehave got some achievements as following.
     Whether at room temperature or at high temperature, and whether the liquid saturatedhydrocarbons became crystallized or not, the Raman bands of CH3and CH2stretchings and thering breathing mode of the liquid saturated hydrocarbons in ternary system (pure system、twoblends system of liquid hydrocarbon samples and water system) shifted to higher wavenumberswith increasing pressure, in general, not only the asymmetric stretching shifted to higherwavenumbers more quickly than corresponding to the symmetric stretching, but also at ambienttemperature above all these Raman bands shifted to higher wavenumbers more quickly thancorresponding to the vibrational mode at high temperature.
     In the process of increasing temperature, there were two opposite effects which weretemperatures and pressures, but pressure effects exert larger influence than temperature effects inliquid saturated hydrocarbons. Increasing pressure can retard thermal destruction of liquidsaturated hydrocarbons, so it is important for liquid saturated hydrocarbons to keep stable at hightemperature.
     Any visible changes didn’t occur in the liquid saturated hydrocarbons where were in ternarysystem and they kept their own usual state under their experimental temperatures and pressures.Their maximum stable temperature range from280℃to315℃below300MPa which imply theminimum stable temperature of petroleum, and it is higher than the results of previous studies.
     Although Raman shift and equation of pressure gauge of cyclohexane changed in two blendssystem of liquid hydrocarbons, the stability of liquid hydrocarbon and the role of pressure weren’taffected. The Raman shift of a mean C-H stretching vibrational mode was affected by mixture liquid hydrocarbons, but the equation of P-p-T wasn’t varied.
     The Raman spectrum of a mean C-H stretching vibrational mode can be used as a barometerof fluid inclusions, especially hydrocarbon inclusion, and its equation is as following:
     P=75.56+0.3508T+60.7(23≤T≤405、P<2160MPa)
     Water retard the decomposition of liquid saturated hydrocarbons in water system, so liquidsaturated hydrocarbons can be kept stable at higher temperature. Moreover, water may play acertain role during primary migration of petroleum.
     The liquid/solid equilibrium line and isometric line of liquid saturated hydrocarbons can beused as not only estimating the minimum captured pressure of hydrocarbons, but also roughlydetermining the hydrocarbon component of fluid inclusions, especially hydrocarbon inclusion.
     Cyclohexane can be used as a pressure gauge, and it has different equations in three systemsas following:
     Pure cyclohexane system: P=60.337(Δ p)2933+0.818T+4.999(20℃≤T≤315℃、P≤1100MPa)and P=79.488(Δ p)802+1.910T-44.910(20℃≤T≤315℃、P≤1100MPa).
     Cyclohexane-n-heptane blends system: P=144.865(Δ p)801+1.954T-75.355(20℃≤T≤315℃、P≤2100MPa).
     Cyclohexane-n-pentadecane blends system: P=135.484(Δ p)803+1.721T+64.045(20℃≤T≤405℃、P≤2100MPa).
     Water system: P=154.55(Δ p)2855+338.35(ambient temperature,0<(Δ p)2855≤2.3cm-1),and P=75.425(Δ p)2933+0.462T+20.285(20℃≤T≤300℃、P≤1550MPa), and P=98.424(Δ p)802+1.99T-67.58(20℃≤T≤300℃、P≤1550MPa).
     n-Heptane can be used as a pressure gauge, and it has different equations in two systems asfollowing:
     Pure n-heptane system: P=159.73(Δ p)2880-55.457(ambient temperature,0.35≤(Δ p)2880≤6.9cm-1), P=157.81(Δ p)2935+36.798(ambient temperature,-0.23≤(Δ p)2935≤6.4cm-1)and P=70.476(Δ p)2965+0.0628T+29.036(20℃≤T≤315℃、P≤2000MPa).
     Water system: P=122.13(Δ p)2880+1.3328(ambient temperature,-0.01<(Δ p)2880≤9.5cm-1), P=148.09(Δ p)2857-11.301(ambient temperature,-0.8≤(Δ p)2857≤7.8cm-1), P=126.72(Δ p)2935+171.66(ambient temperature,-1.35≤(Δ p)2935≤7.7cm-1), and P=81.264(Δ p)2965+0.397T+96.691(20℃≤T≤315℃、P≤2200MPa).
     Note: P-Pressure (MPa);T-Temperature (℃). Δ p、 are wavenumber shifts relative tothe line position at room temperature and pressure(in cm-1). i.e. Δ pis p-0and is p-0. pand are Raman shifit at a certain temperature and pressure,0and are Ramanshifit at room temperature and pressure.
引文
1陈国珍等.荧光分析法(第二版).北京:科学出版社,1990.1-6.
    2陈红汉,董伟良,张树林,杨计海.流体包裹体在古压力模拟研究中的应用.石油与天然气地质,2002,23(3):207-211.
    3陈建平,邓春萍,王汇彤.煤系烃源岩不同极性溶剂抽提物生物标志物特征.地质学报,2006,80(6):916-922.
    4陈晓东,王先彬.压力对有机质成熟和油气生成的影响.地球科学进展,1999,14(1):31-36
    5崔永芳.实用有机物波谱分析.北京:中国纺织出版社,1994.5-6.
    6戴金星.云南省腾冲县硫磺塘天然气的碳同位素组成特征和成因.科学通报,1988,33(15):1168~1170.
    7段体玉,孙樯,郑海飞.碳硅石压腔在高温高压拉曼光谱研究中的应用.光谱学与光谱分析,2005,25(6):902-905.
    8范善发,周中毅,解启东.深部碳酸盐岩油气生成和保存的特征及其模拟实验研究..沉积学报,1997,15(2):114-117.
    9高岗.油气生成模拟方法及其石油地质意义.天然气地球科学,2000,11(2):25-29.
    10高芸,朱晓兰,林辉,杨艳.加速溶剂萃取-气相色谱法分析土壤中菊酯类农药.分析仪器,2005,(3):34-36.
    11顾仁敖,刘国坤,仇立群等.苯在光滑铂电极上的电化学还原行为的共焦显微拉曼研究.光谱学与光谱分析,2003,23(2);297-299.
    12郭玉高,马沛生,夏淑倩.甲烷在烃类混合溶剂中高压溶解度的测定.天津大学学报,2005,38(11):960-965.
    13侯读杰,曾凡刚,沈仁福.低熟油气成因理论与勘探实践.勘探家,1997,2:5-8.
    14黄第藩.成烃理论的发展——(Ⅰ)未熟油及有机质成烃演化模式.地球科学进展,1996,11(4):327-335.
    15黄健全.盆地深部油气形成的高温高压模拟实验研究(摘要).地质地球化学,1992,(6):B62-B63, B78.
    16姜峰,杜建国,王万春,曹正林.高温超高压模拟实验研究—Ⅰ.温压条件对有机质成熟作用的影响.沉积学报,1998a,16(3):153-155.
    17姜峰,杜建国,王万春,曹正林.高温超高压模拟实验研究——高温高压下烷烃产物的演化特征.沉积学报,1998b,16(4):145-148.
    18江奎,汪雨,支辛辛,杨永亮,张玲金.加速溶剂萃取/GC-ECD分析土壤中多氯联苯的研究.青岛大学学报,2006,21(1):18-22.
    19金丽梅,宋丽娜,吴天法,袁旭,张爱武,王芹.溶剂法提取万寿菊籽油的工艺研究.化学与生物工程,2005(12):26-28.
    20居红芳,徐桦,邵艳芳,殷文宇.水-环己烷-乙醇体系的液液平衡研究.高校化学工程学报,2006,20(4):643-647.
    21库德梁采夫(Кудрявцев)Н. А.著,“反对石油有机起源假说”,在反对石油有机起源假说,北京地质勘探学院石油教研室译(科学出版社,北京,1958a),p.1-18.
    22库德梁采夫(Кудрявцев) Н. А.著,“石油起源问题的现状”,在反对石油有机起源假说,北京地质勘探学院石油教研室译(科学出版社,北京,1958b),p.19-75.
    23库德烈雅夫采夫(Кудрявцев) Н. А.著,“研究石油生成问题的现状”,在石油生成与游移问题讨论集, В.Б..Порфиръев著,周家珩译(科学出版社,北京:1962), p.30-82.
    24库德良采夫(Кудрявцев) Н. А.著,张广祥译.“石油深部起源的现代资料”,在石油地质学论文集(第二集),中国科学院兰州地质研究所译(科学出版社,北京,1965), p.48-68.
    25李军,袁淑琴,武刚.歧北地区下第三系深层异常压力与油气分布.石油勘探与开发,2001,28(4):22-24.
    26李敏,郑海飞.常温高压下水的拉曼谱峰标定压力的研究.高压物理学报,2004,18(4):374-378.
    27李清华,柳云骐,刘春英,刘晨光.环己烷在Pt/HY-Al2O3双金属催化剂上加氢转化反应的研究.分子催化,2004,18(5):332-338.
    28李清华,柳云骐,刘春英,刘晨光.环己烷在Pt-Ir双金属催化剂上加氢转化反应规律的研究.分子催化,2005,19(3):193-198.
    29李生杰.褐煤煤化作用的加压加热模拟实验及其意义.石油实验地质,1988,10(1):72~79.
    30李小地.中国深部油气藏的形成与分布初探.石油勘探与开发,1994,21(1):34-39.
    31刘洛夫,王伟华,,毛东风.中国油气地球化学理论研究进展.1997,43(1):58-63.
    32刘娜,王学营,史作义等.水环己烷二元体系的热力学研究.河北师范大学学报(自然科学版),2006,30(3):310-314.
    33刘文汇,黄第蕃,熊传武,徐永昌.成烃理论的发展及国外未熟-低熟油气的分布与研究现状.天然气地球科学,1999,10(1~2):1-22.
    34刘扬,张华丽.测量数据处理及误差理论.北京:原子能出版社,1997.125-132.
    35卢焕章,范宏瑞,倪培等.流体包裹体.北京:科学出版社,2004.132-143.
    36卢双舫,薛海涛,钟宁宁.石油保存下限的化学动力学研究.石油勘探与开发,2002,29(6):1-3.
    37卢双舫,赵锡嘏,黄第藩,王子文,刘晓艳.煤成烃的生成和运移的模拟实验研究——I.气态和液态产物特征及其演化.石油实验地质,1994,16(3):290~302.
    38吕苗,王仁远.从甲基萘油中萃取吲哚的研究.宝钢技术,2006,(3):51-55.
    39孟令芝.有机波谱分析(第二版).武汉:武汉大学出版社,2003.260.
    40南军,谢海峰,刘晨光.贵金属选择性加氢催化剂Pd/Al2O3的研究.石油炼制与化工,2004,35(8):37-40.
    41潘钟祥.石油地质学.北京:地质出版社,1986,11-13,109-135,162-165.172-179.
    42乔二伟,段体玉,郑海飞.流体包裹体压力计研究之一:高温高压下Na2SO4溶液的拉曼光谱.矿物学报,2005,26(1):89-92.
    43乔二伟,郑海飞.高压下正戊烷的稳定性研究.高压物理学报,2005,19(4):371-376.
    44乔二伟,郑海飞.高温下正十五烷的拉曼光谱研究.光谱学与光谱分析,2007,27(1):78-80.
    45乔二伟,郑海飞,孙樯.甲醇作为压标的拉曼研究.高压物理学报,2004,18(4):368-373.
    46乔二伟,郑海飞,孙樯.293-563K下甲醇结构的研究.光谱学与光谱分析,2005,25(9);1429-1431.
    47秦建中,刘井旺,刘宝泉等.加温时间、加水量对模拟实验油气产率及地化参数的影响.石油实验地质,2002,24(2):152-157.
    48曲佳燕,王振平,付晓泰,卢双舫.油藏热破坏的化学动力学定量研究.河北工业大学学报,2003,32(4):35-40.
    49申中兰,蔡继宝,高芸,朱晓兰,苏庆德.基质固相分散-加速溶剂萃取-气相色谱法测土壤中有机氯农药残留.分析化学,2005,33(9):1318-1320.
    50史密斯P. V.著.王丹阳,胡伯良译.“石油起的研究”,在石油地质学论文集(第二集),中国科学院兰州地质研究所译(科学出版社,北京,1965), p.173-207.
    51石昕,戴金星,赵文智.深层油气藏勘探前景分析.中国石油勘探,2005,(1):1-10.
    52苏玉山,王生朗,张联盟,王德仁.超压异常对东濮凹陷深层油气成藏的控制作用.石油勘探与开发,2002,29(2):49-52.
    53孙樯,郑海飞.金刚石压腔(DAC)实验技术.地学前缘,2005,12(1):131-136.
    54孙樯,郑海飞.陈晋阳.立方氧化锆压腔下冰Ⅵ-Ⅶ相变的Raman散射光谱研究.自然科学进展,2002,12(6):656-658.
    55唐恢同.有机化合物的光谱鉴定.北京:北京大学出版社,1992.192-195.
    56田春志,卢双舫,李启明,付晓泰,薛海涛.塔里木盆地原油高压条件下裂解成气的化学动力学模型及其意义.沉积学报,2002,20(3):488-492.
    57妥进才.深层油气研究现状及进展.地球科学进展,2002,17(4):565-571.
    58王传远,杜建国,王万春等.深部岩石圈温压条件下烃类存在的实验研究.2006,科学通报,51(1):75-79.
    59王丽梅,贺爱华,董金勇,韩志超,黄雅钦.剥离型聚丙烯-蒙脱土纳米复合材料Ⅰ.Ziegler-Natta/有机改性蒙脱土复合催化剂催化丙烯聚合.石油化工,2006,35(9):881-885.
    60王屿涛,范光华,蒋少斌.准噶尔盆地腹部高压和异常高压对油气生成和聚集的影响.石油勘探与开发,1994,21(5):1-7.
    61王淮,郑海飞,孙樯.23℃和0.04~2.0GPa下正己烷的Raman光谱研究.自然科学进展,2004,14(12):1442-1446.
    62王屿涛,潘长春,范善发.通过高压模拟实验探讨准噶尔盆地天然气生成演化及勘探方向.天然气地球科学,1995,6(31):1-7.
    63王振平,付晓泰,卢双舫,曲佳燕.原油裂解成气模拟实验产物特征及其意义.天然气工业,2001,21(3):12-15.
    64Williams D.H., Fleming I.有机化学中的光谱分析方法.王剑波等译.北京:北京大学出版社,2001.3.
    65谢鸿森,徐济安,周文戈.制作高压压砧的新材料―――碳化硅宝石.高压物理学报,2004,18(1):1-3.
    66刑其毅等.基础有机化学.北京:高等教育出版社,1993.11,第二版,36-58,66.
    67徐济安,谢鸿森,侯渭.碳化硅压腔和高压下的中子衍射.物理,2006,35(7):579-584.
    68杨天宇,王涵云.岩石中有机质高温高压模拟实验.石油与天然气地质,1987,8(4):380~390.
    69杨玉峰,张秋,黄海平等.松辽盆地徐家围子断陷无机成因天然气及其成藏模式.地学前缘,2000,7(4):523-533.
    70杨玉萍,郑海飞.常温和压力0.1~1300MPa下硬石膏的拉曼光谱研究.矿物学报,2005,25(3):299-302.
    71杨玉萍,郑海飞,孙樯.高压下水的Raman光谱不连续性的发现.自然科学进展,2006,16(1):116-119.
    72查明,曲江秀,张卫海.异常高压与油气成藏机理.石油勘探与开发,2002,29(1):19-23.
    73张厚福等.石油地质学.北京:石油工业出版社,1999.9,17-18,62-70.130-133.
    74张景廉,张平中,吕锡敏等.油气无机成因学说的新进展.地球科学进展,1998,13(1):44-50.
    75张之一.更新勘探观念,开拓深层油气新领域.石油与天然气地质,2005,26(2):193-196.
    76赵长伟,李继定,赵之平等. PDMS有机硅膜的制备及其渗透汽化脱硫的研究.膜科学与技术,20006,26(5):72-75.
    77赵金,郑海飞.0.1~800MPa压力下方解石拉曼光谱的实验研究.高压物理学报,2003,17(3):226-229.
    78赵孟军,张水昌,刘丰忠.油藏演化的两个极端过程.石油勘探与开发,2003,30(5):21-23.
    79赵文智,王兆云,张水昌等.有机质“接力成气”模式的提出及其在勘探中的意义.石油勘探与开发,2005,32(2):1-7.
    80赵文智,王兆云,张水昌,王红军,王云鹏.油裂解生气是海相气源灶高效成气的重要途径.科学通报,2006,51(5):589-595.
    81郑海飞,段体玉,孙樯,乔二伟.一种潜在的地质压力计:流体包裹体子矿物的激光拉曼光谱测压法.地球科学进展,2005,20(7):804-808.
    82郑海飞,孙樯,Andy Shen等.水性质的不连续证据:高温高压下水的红外光谱研究.光谱学与光谱分析,2004,24(4):411-413.
    83郑海飞,孙樯,赵金,段体玉.金刚石压腔高温高压实验的压力标定方法及其现状.高压物理学报,2004,18(1):78-82.
    84朱海欧,刘雪斌,李文钊,葛庆杰,徐恒泳.十氢萘和环己烷气相氧化裂解过程的研究.石油学报(石油加工),2006,22(4):7-13.
    85周义明.热液金刚石压腔在地质流体研究中的应用.岩石学报,2003,19(2):213–220.
    86邹艳荣,帅燕华,孔枫,彭平安.油气生成过程实验研究的思考与展望.石油实验地质,2004,26(4):375-382.
    87Castano J R著,“商业性非生物成因气开采前景:据瑞典锡利扬环状构造区作出的判断”在能源气的未来,Howell D G编辑,杨登维、李大艮译.北京:石油工业出版社,1999,152-176.
    88Abdulagatov I M, Bazaev A R, and Gasanov R K, et al. Measurement of the PVTx properties ofn-heptane in supercritical water. The Journal of Supercritical Fluids,1997,10(3):149-173.
    89Abuin E, Lissi E, and Jara P. Effect of the organic solvent on the interfacial micropolarity ofAOT-water reverse micelles. Journal of the Chilean Chemical Society,2007,52(1):1082-1087.
    90Aicart E, Tardajos G, and Pe a M D. Isothermal compressibility of cyclohexane+n-tridecaneand+n-pentadecane at298.15,308.15,318.15, and333.15K. The Journal of ChemicalThermodynamics,1981,13(8):783-788.
    91Allian A D, Widjaja E, Garland M. Experimental Raman spectra of dilute andlaser-light-sensitive [Rh-4(CO)(9)(mu-CO)(3)] and [(mu (4)–eta (2)-3-hexyne) Rh-4(CO)(8)(mu-CO)(2)]. Comparison with theoretically predicted spectra. Dalton Transactions,2006(35):4211-4217.
    92Antosik M, Galka M, and Malanowski S K. Vapor-Liquid Equilibrium in a Ternary SystemCyclohexane+Ethanol+Water. J. Chem. Eng. Data,2004,49(1):7-10.
    93Bahramiana A, Daneshb A, Gozalpourb F, Tohidib B, andToddb A C. Vapour–liquid interfacialtension of water and hydrocarbon mixture at high pressure and high temperature conditionsFluid Phase Equilibria,2007,252(1-2):66-73.
    94Barnett J P, Black S. An optical fluorescence system for quantitive pressure measurement in thediamond anvil cell. Review of Scientific Instruments,1973,44:1-9.
    95Bassett W A, Shen A H, Bucknum M. A new diamond cell for hydrothermal studies to2.5GPaand from-190℃to1200℃. Rev. Sci. Instrum.1993,64(8):2340-2345.
    96Bassett W A, Wu T C, Chou I M, et al. The hydrothermal diamond anvil cell (HDAC) and itsapplications, Dgar M D, Camon C M, Schaefer M W, ed. The Geochemical Society: SpecialPublication,1996,5:261–272.
    97Boppart H, Straaten J, Silvera I F. Raman spectra of diamond at high pressures. PhysicalReview B,1985,32:1423-1425.
    98Borras E, Tortajada-Genaro L A. Characterisation of polycyclic aromatic hydrocarbons inatmospheric aerosols by gas chromatography-mass spectrometry. ANALYTICA CHIMICAACTA,2007,583(2):266-276.
    99Braun R L, Burnham A K. Mathematical model of oil generation, degradation and expulsion.Energy&Fuels,1990,4(2):132~146.
    100Bruno S M, Pereira C C L, Balula M S, et al. New chloro and triphenylsiloxy derivatives ofdioxomolybdenum(VI) chelated with pyrazolylpyridine ligands: Catalytic applications inolefin epoxidation. Journal of Molecular Catalysis A: Chemical,2007,26(1):79-87.
    101Burnham A K, Gregg H R, Ward R L, Knauss K G, Copenhaver S A, Reynolds J G andSanborn R. Decomposition kinetics and mechanism of n-hexadecane-1,2-13C2anddodec-1-ene-1,2-13C2doped in petroleum and n-hexadecane. Geochimica et CosmochimicaActa,1997,61(17):3725-3737.
    102Chan W S, Ma C, Kwok W M, et al. Time-Resolved Resonance Raman and DensityFunctional Theory Study of Hydrogen-Bonding Effects on the Triplet State ofp-Methoxyacetophenone. J. Phys. Chem. A.,2005,109(15):3454-3469.
    103Charlou J L, et al. Hydrothermal methane venting betweening12°N and26°N along theMid-Atlantic Ridge. Journal of Geophysical Research,1993,98:9625-9642.
    104Claypool G E, Mancini E A. Geochemical relationships of petroleum in Mesozoic reservoirsto carbonate source rocks of Jurassic Smackover Formation, Southwest Alabama. AAPG Bull,1989,73(7):904-924.
    105Colthup N B, Daly L H, and Wiberley S E. Introduction to Infrared and Raman Spectroscopy.Boston: Academic Press,1990,216-232.
    106Craubner H. Densitometer for absolute measurements of the temperature dependence ofdensity, partial volumes, and thermal expansivity of solids and liquids. Review of ScientificInstruments,1986,57(11):2817-2826.
    107Cui Z Q, Qian RY, Yun Z, Shi M R. Vapor-Liquid Equilibria in Alcohol+Cyclohexane+Water Systems. J. Chem. Eng. Data,2004,49(2):212-217.
    108Das M L, Bhattacharya P K, and Moulik S P. Phase behavioural studies of the quaternarysystem of water/TX100/n-butanol/(n-heptane+cholesteryl benzoate). Colloids and Surfaces,1990,49:47-258.
    109Dharmalingam K, Ramachandran K, and Sivagurunathan P. Hydrogen bonding interactionbetween acrylic esters and monohydric alcohols in non-polar solvents: An FTIR study.Spectrochimica Acta Part a-Molecular and Biomolecularl Spectroscopy,2007a,66(1):48-51.
    110Dharmalingam K, Ramachandran K, and Sivagurunathan P, et al. Dielectric relaxationproperties of alcohols and acrylic esters. ACTA PHYSICO-CHIMICA SINICA,2007b,23(1):50-54J.
    111Dharmalingam K, Ramachandran K, and Sivagurunathan P, et al. Molecular associations inalcohol-methyl methacrylate mixtures. JOURNAL OF CHEMICAL AND ENGINEERINGDATA,2007c,52(1):265-269.
    112Dick R D. Shock compression data for liquids. I. Six hydrocarbon compounds. J. Chem.Phys.1979,71(8):3203-3212.
    113Dieckmann V, Schenk H J, Horsfield B, and Welte D H. Kinetics of petroleum generation andcracking by programmed-temperature closed-system pyrolysis of Toarcian Shales. Fuel,1998,77(1-2):23-31.
    114Domańska U, Morawski P and Wierzbicki R. Phase diagrams of binary systems containingn-alkanes, or cyclohexane, or1-alkanols and2,3-pentanedione at atmospheric and highpressure. Fluid Phase Equilibria,2006,242(2):154-163.
    115Eggert J H, Goettel K A, Silvera I F. Ruby at high pressure. I. Optical line shifts to156GPa.Physical Review B,1989,40:5724-5732.
    116Forman R A, Piermarini G J, Barnett J D, et al. Pressure measurement made by the utilizationof Ruby shape-line luminescence. Science,1972,176:284-285.
    117Gold T.“The origin of methane in the crust of the earth”. in The future of energy gases (ed.Howell D). US Geological Survey Professional Paper,1993,1570:57~80.
    118Goncharov A F, Zaug J M, Crowhurst J C, and Gregoryanz E. Optical calibration of pressuresensors for high pressures and temperatures. J. Appl. Phys.,2005,97(9):094917(5pages).
    119Grüneis A, Kramberger C, Grimm D, et al. Eutectic limit for the growth of carbon nanotubesfrom a thin iron film by chemical vapor deposition of cyclohexane. Chemical Physics Letters,2006,425(4-6):301-305.
    120Gurzadyan G G, Reynisson J, Steenken S. Photoionization versus photoheterolysis ofall-trans-retinol.The effects of solvent and laser radiation intensity. PHYSICAL CHEMISTRYCHEMICAL PHYSICS,2007,9(2):288-298.
    121Hanfland M, Syassen K, Faby S, et al. Pressure dependence of the first-order Raman mode indiamond. Physical Review B,1985,31:6896-6899.
    122Hao Fang, Sun Yongchuan,Li Sitian, and Zhang Qiming. Overpressure retardation oforganic-matter maturation and petroleum generation: a case study from the Yinggehai andQiongdongnan Basin, South China Sea. AAPG Bulletin,1995,79(4):551-562.
    123Hao Fang, Li Sitian, Sun Yongchuan and Zhang Qiming. Characteristics and origin of the gasand condensate in the Yinggehai Basin, offshore South China Sea: evidence for effects ofoverpressure on petroleum generation and migration. Organic Geochemistry,1996,24(3):363-375.
    124Horsfield B., Schenk H. J., Mills N. and Welte D. H. An investigation of the in-reservoirconversion of oil to gas: compositional and kinetic findings from closed-systemprogrammed-temperature pyrolysis. Organic Geochemistry,1992,19(1~3):191-204.
    125Hunt J M. Petroleum geochemistry and geology. San Francisco: W.H.Freeman and Co,,1979,143-149,273-350,466-467.
    126Hunt J M. Petroleum Geochemistry and Geology.2nd ed. NewYork: W H Freeman and Co,1996.27-40,128-129,412-437.
    127Itoh K, Nishikawa M, Holroyd R A. Electron mobility in liquid n-hexane/2,2-dimethylbutanemixtures under high pressure. The Journal of Chemical Physics,1996,104(4):1545-1548
    128Jackson K J, Burnham A K, Braun R L, et al. Temperature and pressure dependence ofn-hexadecane cracking. Org Geochem,1995,23(10):941-953.
    129Jamieson J C, Lawson A W, Nachtrieb N D. New device for obtaining x-ray diffractionpatterns from substances exposed to high pressure. Review of Scientific Instruments,1959,30:1016-1019.
    130Kano H, Shibutani S, Hayashi K, Iijima Y, Doi S. Effect of high-temperature drying processeson termite resistance of Sugi (Cryptomeria japonica) heartwood. Mokuzai Okuzai Gakkaishi,2004,50(2):91-98.
    131Kavitha G, Narayana C. Raman Scattering Studies on n-Heptane under High Pressure. J. Phys.Chem. B,2006,110(17):8777-8781.
    132Kawamoto T, Matsukage K N, Nagai T, Nishimura K, Mataki T, Ochiai S, and Taniguchi T.Raman spectroscopy of cubic boron nitride under high temperature and pressure conditions: Anew optical pressure marker. Review of Scientific Instruments,2004,75,(7):2451-2454.
    133Kennedy L J, Vijaya J J, Sekaran G, et al. Bulk preparation and characterization ofmesoporous carbon nanotubes by catalytic decomposition of cyclohexane on sol–gel preparedNi–Mo–Mg oxide catalyst. Materials Letters,2006,60(29-30):3735-3740.
    134Kim C J, Won D B, Han K J and Park S J. Phase behavior and extraction characteristics ofpolycyclic aromatic hydrocarbon mixtures with hexane in sub-and supercritical state. FluidPhase Equilibria,2002,198(1):51-65.
    135Kim D C, Hwang W I, In M J. In vitro antioxidant and anticancer activities of extracts from afermented food. Journal of Food Biochemistry,2003,27(6):449–459.
    136Kim I H, Kim H, Lee K T, Chung S H, Ko S N. Lipase-catalyzed acidolysis of perilla oil withcaprylic acid to produce structured lipids. Journal of The American Of Chemistry Society,2002,79(4):363-367.
    137Kitzberger C S G, Smania A, Pedrosa R C, Ferreira S R S. Antioxidant and antimicrobialactivities of shiitake (Lentinula edodes) extracts obtained by organic solvents andsupercritical fluids. Journal of Food Engineering,2007,80(2):631-638.
    138Krishnan M, Balasubramanian S. n-Heptane under Pressure: Structure and Dynamics fromMolecular Simulations. J. Phys. Chem. B,2005,109(5):1936-1946.
    139Lambert J B, Shurvell H F, Lightner D A, et al. Organic Structural Spectroscopy. New Jersey:Prentice Hall,1998,196.
    140Landais P, Michels R and Elie M. Are time and temperature the only constraints to thesimulation of organic matter maturation? Organic Geochemistry,1994,22(3-5):617-630.
    141Lay E N, Taghikhani V, Ghotbi C. Measurement and correlation of CO2solubility in thesystems of CO2plus toluene, CO2plus benzene, and CO2plus n-hexane at near-critical andsupercritical conditions. Journal of Chemical and Engineering Data,2006,51(6):2197-2200.
    142Levering L M, Hayes C J, Callahan K M, et al. Non-Aqueous Solvation of n-Octanol andEthanol: Spectroscopic and Computational Studies. J. Phys. Chem. B.,2006,110(12):6325-6331.
    143Lewan M D. Experiments on the role of water in petroleum formation. Geochimica etCosmochimica Acta,1997,61(17):3691-3723.
    144Lin-Vien D, Colthup N B, Fateley W G, et al. The Handbook of Infrared and RamanCharacteristic Frequencies of Organic Molecules. Boston: Academic Press,1991,10-14.19-25.
    145Longo A, Ruggirello A, and Liveri V T. Physicochemical investigation of nanostructures inliquid phases: Ytterbium nitrate ionic clusters confined in ytterbium bis(2-ethylhexyl)sulfosuccinate reversed micelles and liquid crystals. CHEMISTRY OF MATERIALS,2007,19(5):1127-1133.
    146Lorenzana H E, Bennahmlas M, Radousky H. Producing diamond anvil cell gaskets forultrahigh-pressure applications using an inexpensive electric discharge machine. Review ofScientific Instruments,1994,65(11):3540-3543.
    147Mao H K, Bell P M, Shaner J W, and Steinberg D J. Specific volume measurements of Cu,Mo, Pd and Ag and calibration of the ruby fluorescence pressure gauge from0.06to1Mbar,1978, Journal of Applied Physics,49(6):3276-3283.
    148Mao H K, Bell P M. Design and Varieties of the Megabar cell. Carnegie Institute WashingtonYearbook,1978,77:904-908.
    149Marche C, Delepine H, Ferronato C, Jose J. Apparatus for the On-line GC Determination ofHydrocarbon Solubility in Water: Benzene and Cyclohexane from70C to150C. J. Chem.Eng. Data,2003,48(2):398-401.
    150McCain Jr, W D, Holditch S A, et al. Volatile oils and retrograde gases-What’s the difference?Petroleum Engineer international,1994,66(1):35-36.
    151McClure D S. Optical spectra of transition-metal ions in corundum. The Journalof ChemicalPhysics,1962,36:2757-2779.
    152McKinney D E, Behar F and Hatcher P G. Reaction kinetics and n-alkane product profilesfrom the thermal degradation of13C-labeled n-C25in two dissimilar oils as determined bySIM/GC/MS. Org Geochem,1998,29(1-3):119-136.
    153Mctavish R. A. Pressure retardation of vitrinite diagenesis, offshore north-west Europe.Nature,1978,271,648–650.
    154Mirskaya V A. The isochoric heat capacity of n-heptane–water mixtures. Fluid PhaseEquilibria,1998,150-151:739-743.
    155Morawski P, Coutinho J A P, and Domańska U. High pressure (solid+liquid) equilibria ofn-alkane mixtures: experimental results, correlation and prediction. Fluid Phase Equilibria,2005,230(1-2):72-80.
    156Mu oz R C, and Holroyd R A. The effect of temperature and pressure on excess electronmobility in n-hexane,2,2,4-trimethylpentane, and tetramethylsilane. The Journal of ChemicalPhysics,1986,84(10):5810-5815.
    157Oguchi S, Matsuda A, Kondo K, et al. Time-resolved coherent anti-Stokes Raman scatteringof cyclohexane under shock compression. JAPANESE JOURNAL OF APPLIED PHYSICSPART1-REGULAR PAPERS BRIEF COMMUNICATIONS&REVIEW PAPERS,2006,45(7):5817-5820.
    158Pasteris J D, Wopenka B, and Seitz J C. Practical aspects of quantitative laser Ramanmicroprobe spectroscopy for the study of fluid inclusions. Geochimica et Cosmochimica Acta,1987,52:979-988.
    159Pepper A S and Dodd T A. Simple kinetic models of petroleum formation. Part II: oil-gascracking. Marine and Petroleum Geology,1995,12(3):321-340.
    160Price L C and Wenger L M. The influence of pressure on petroleum generation and maturationas suggested by aqueous pyrolysis. Organic Geochemistry,1992,19(1-3):141-159.
    161Qiao EW and Zheng HF, Raman scattering spectroscopic study of n-pentane under highpressure, Applied Spectroscopy,2005,59(5):650-653
    162Ragan D D, Gustavsen R, and Schiferl D. Calibration of the ruby R1and R2fluorescenceshifts as a function of temperature from0to600K. Journal of Applied Physics.1992,72(12):5539-5544.
    163Randzio S L, Grolier J P E, and Quint J R. An isothermal scanning calorimeter controlled bylinear pressure variations from0.1to400MPa. Calibration and comparison with thepiezothermal technique. Review of Scientific Instrument,1994,65(4):960-965.
    164Rautanen P A, Aittamaa JR, Krause A O I. Solvent Effect in Liquid-Phase Hydrogenation ofToluene. Ind. Eng. Chem. Res.,2000,39(11):4032-4039.
    165Ray S C, Bose B, Chiou J W, Tsai H M, Jan J C, Kumar K, Pong W F, DasGupta D, FanchiniG, Tagliaferro A. Deposition and characterization of diamond-like carbon thin films byelectro-deposition technique using organic liquid. Journal of Materials Research,2004,19(4):1126-1132.
    166Richard A J. The effect of pressure on refractive index of liquids, calculated up to100MPa.The Journal of Chemical Physics,1980,72(7):4063-4065.
    167Sahu P C, Thomaskutty K V, Shekar N V C, et al. Simple device for drilling holes in metalgaskets for diamond anvil cell experiments. Review of Scientific Instruments,1993,64(10):3030-3031.
    168SajgóCs, McEvoy J, Wolff and G A,and Horváth Z A. Influence of temperature and pressureon maturation processes—I. Preliminary report. Organic Geochemistry,1986,10(1-3):331-337.
    169Sanchez-Valle C, Daniel I, Reynard B, Abraham R and Goutaudier C. Optimization of Sm3+fluorescence in Sm-doped yttrium aluminum garnet: Application to pressure calibration indiamond-anvil cell at high temperature. Journal of Applied Physics.2002,92(8):4349-4353.
    170Schenk H J, Di Primio R, and Horsfield B. The conversion of oil into gas in petroleumreservoirs. Part1: Comparative kinetic investigation of gas generation from crude oils oflacustrine, marine and fluviodeltaic origin by programmed-temperature closed-systempyrolysis. Org Geochem,1997,26(7-8):467-481.
    171Schmidt C, Chou I-Ming, Bodnar B J, et al. Microthermometric analysis of synthetic fluidinclusions in the hydrothermal diamond-anvil cell. American Mineralogist,1998,83:995-1007.
    172Schmidt C, Ziemann MA. In-situ Raman spectroscopy of quartz: A pressure sensor forhydrothermal diamond-anvil cell experiments at elevated temperatures. AmericanMineralogist,2000,85:1725-1734.
    173Sharma S K, Mao H K and Bell P M, and Xu J A. Measurement of stress in diamond anvilswith micro-Raman spectroscopy. J. Raman. spectrosc.,1985,16(5):350-352.
    174Silva A C, Fernandez T L, Carvalho N M F, et al. Oxidation of cyclohexane catalyzed bybis-(2-pyridylmethyl)amine Cu(II) complexes. Applied Catalysis A-General,2007,317(2):154-160.
    175Sterin K E. Raman spectra of hydrocarbons. Oxford: Pergamon Press,1980,328.
    176Susilo R, Lee J D, and Englezos P. Liquid–liquid equilibrium data of water with neohexane,methylcyclohexane, tert-butyl methyl ether, n-heptane and vapor–liquid–liquid equilibriumwith methane. Fluid Phase Equilibria,2005,231(1):20-26.
    177Tabata H, Fujii M, Hayashi S, Doi T and Wakabayashi T. Raman and surface-enhancedRaman scattering of a series of size-separated polyynes. Carbon,2006,44(15):3168-3176.
    178Tian H, Wang ZM, Xiao ZY, et al. Oil cracking to gases: kinetic modeling and geologicalsignificance. Chinese Science Bulletin,2006,51(22):2763-2770.
    179Tissot B. P. and Welte D. H.. Petroleum formation and occurrence: a new approach to oil andgas exploration. Berlin:Heidelberg: New York: Springer-Verlag,1978, p.92-99.
    180Tissot B. P. and Welte D. H.. Petroleum formation and occurrence. Berlin:Heidelberg:NewYork: Springer-Verlag,1984, Second Revised and Enlarged Edition,93-98,223,379-393.
    181Tkachev S N, et al. Brillouin scattering study of pentane at high pressure. The Journal ofChemical Physics,1996,104(24):10059-10060.
    182Torres-Garcia, E, Rodriguez-Gattorno G, and Ascencio J A, et al. New Insights onMolybdenum Suboxide: Nature of Carbons in Isomerization Reactions. J. Phys. Chem. B.,2005,109(37):17518-17525.
    183Tumuluri V S, Kemper M S, Sheri A, et al. Use of Raman Spectroscopy to CharacterizeHydrogenation Reactions. Org. Process Res. Dev.,2006,10(5):927-933.
    184Vedam K, and Limsuwan P. Optical interferometry in liquids at high pressures to14kilobars.Review of Scientific Instruments,1977,48(3):45-246.
    185Vedam K, and Limsuwan P. Piezo-and elasto-optic properties of liquids under high pressure. I.Refractive index vs pressure and strain. The Journal of Chemical Physics,1978,69(11):4762-4771.
    186Wang H, Zheng H F, Sun Q. Raman spectroscopic studies of the phase transitions in hexane athigh pressure. Applied Spectroscopy,2005,59(12):1498-150.
    187Weir C E, Block S, and Piermarini G J. Compressibility of Inorganic Azides. The Journal ofChemical Physics,1970,53(11):4265-4269.
    188Welhan J A, and Craig H. Methane and hydrogen in east pacific rise hydrothermal fluids.Geophysical Research Letters,1979,6(11):829-831.
    189Wiberg K, Sporring S, and Haglund P, et al. Selective pressurized liquid extraction ofpolychlorinated dibenzo-p-dioxins, dibenzofurans and dioxin-like polychlorinated biphenylsfrom food and feed samples. JOURNAL OF CHROMATOGRAPHY A,2007,1138(1-2):55-64.
    190Xu Ji-an, Huang Eufene. Graphite-diamond transition in gem anvil cell. Review of ScientificInstruments,1994,65(1):204-207.
    191Yamaguchi M, Serafin S V, Morton T H, and Chronister E L. Infrared Absorption Studies ofn-Heptane under High Pressure. J. Phys. Chem. B,2003,107(12):2815-2821.
    192Yoon S, McCamant D W, Kukura P, et al. Dependence of line shapes in femtosecondbroadband stimulated Raman spectroscopy on pump-probe time delay. J. Chem. Phys.2005,122,024505(1-9).
    193Zhaodong Nan, Qing-Zhu Jiao, Zhi-Cheng Tan and Li-Xian Sun. Thermodynamicinvestigation of the azeotropic system: The binary system of (water+cyclohexane).Thermochimica Acta,2003,407(1-2):41-48.
    194Zhao Wenzhi, Wang Zhaoyun, Zhang Shuichang, Wang Hongjun,&Wang Yunpeng. Oilcracking: An importantway for highly efficient generation of gas from marine source rockkitchen. Chinese Science Bulletin,2005,50(22):2628—2635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700