用户名: 密码: 验证码:
热解稻壳炭基多孔材料的制备、表征及应用基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质快速热解液化是一种高效的生物质转化利用技术,而生物质热解炭的高值化利用,是该技术产业化应用的关键影响因素之一。快速热解稻壳炭(PRH)是一种典型的生物质热解炭,但目前关于PRH高值化利用的研究报道较为少见。本文针对PRH制备多孔炭及多孔二氧化硅,开展的主要研究及取得的创新性结果包括:(1)提出了CO_2活化—碱液常压沸煮工艺高效利用PRH,可以在无机碱不需加热至高温且用量较小的情况下制得中孔率达79%、50%的活性炭,还可以联产硅酸钠或多孔二氧化硅;(2)研究了中孔率不同的两种自制活性炭对亚甲基蓝的吸附特性;(3)采用聚乙二醇为模板剂,H3PO4为酸化剂,在10 h内制得了比表面积高达1018 m~2/g的稻壳炭基多孔二氧化硅;(4)首次研究了稻壳炭基多孔二氧化硅对Cu(Ⅱ)的吸附特性。具体内容如下:
     1、CO_2活化-碱液常压沸煮工艺制备高中孔率的稻壳活性炭
     提出先用CO_2活化PRH的炭化物,再用碱液常压沸煮,制取活性炭;通过正交试验考察了制备条件对活性炭碘值的影响;探讨了孔隙发育机理。结果表明,采用该工艺,无机碱不需经历高温过程,利于降低耗碱量,并可制得中孔率高达79%的稻壳活性炭,其孔容积、比表面积分别达到0.783 cm~3/g、899 m~2/g;CO_2活化时间对活性炭碘值的影响最大;孔隙发育机理主要在于CO_2脱除了炭基体中的C,使得孔隙初步发育,之后,碱液沸煮脱除了二氧化硅,使得孔隙进一步发育。
     2、热解稻壳炭联产硅酸钠和活性炭
     为以较低的耗碱量在常压下联产出二氧化硅含量高、模数大的硅酸钠,以及比表面积大于800 m~2/g的活性炭,采用Doehlert实验设计、Derringer渴求函数、响应面模型相结合的方法优化CO_2活化-碱液常压沸煮工艺。结果表明,最佳联产条件为取用1 mol/L的NaOH溶液、9.7 mL/g的液固比;该条件下可得模数为2.6的硅酸钠,以及比表面积为897 m2/g、中孔率为50%的活性炭;该活性炭对苯酚及Ni~(2+)的吸附量均显著超越了优质商业活性炭。
     3、不同中孔率的稻壳活性炭对亚甲基蓝(MB)的吸附特性
     通过批量吸附实验,考察了中孔率为79%、50%的自制活性炭对MB的吸附特性,结果表明,当MB的初始浓度不大于280 mg/L时,两种自制活性炭的吸附量均达到了优质商业活性炭的水平;在MB初始浓度为310-380 mg/L时,两种自制活性炭的脱除效率均高于86%。
     4、热解稻壳炭快速制备大比表面积多孔二氧化硅
     利用最佳联产条件下所得的硅酸钠,以聚乙二醇(PEG)为模板剂,制得了多孔二氧化硅;研究了PEG用量及pH值对多孔二氧化硅孔隙结构的影响规律及影响机理。结果表明,在较短的时间内(<10 h),可以制得比表面积高达709-1018 m2/g的稻壳炭基多孔二氧化硅;增大PEG用量、降低pH值均能显著提高多孔二氧化硅的比表面积,其机理在于,增大PEG用量或降低pH值,均能显著提高PEG-二氧化硅复合材料中的PEG含量,致使更多PEG被烧除,形成更为发达的孔隙。
     5、稻壳炭基多孔二氧化硅对Cu(Ⅱ)的吸附特性
     以稻壳炭基多孔二氧化硅为吸附剂,在对其进行表征的基础上,通过批量吸附实验,考察了它对重金属离子Cu(Ⅱ)的吸附特性,并探讨了吸附机理。研究表明,在Cu(Ⅱ)初始浓度为20-120 mg/L时,稻壳炭基多孔氧化硅对Cu(Ⅱ)的最大吸附量、最高脱除效率分别达到77 mg/g、97 %;多孔二氧化硅对Cu(Ⅱ)的吸附较好地符合Freundlich等温线和准二级动力学模型;多孔二氧化硅表面硅羟基与Cu(Ⅱ)之间的相互作用,是Cu(Ⅱ)被吸附的重要原因。
High value-added utilization of char from biomass pyrolysis is a key factor for industrialization of fast pyrolyzing biomass, a promising technique for efficient conversion of biomass into a liquid product known as biooil. Fast pyrolyzed rice husk (PRH) is a typical char produced by fast pyrolyzing biomass, but currently few researches have been conducted on high value-added utilization of PRH. This study aims to prepare active carbon and porous silica from PRH. The main research and innovative results can be divided into four aspects. (1) A novel process, namely combination of CO_2 activation and boiling in alkaline solution under normal pressure, was proposed to efficiently utilize PRH. By using this process, active carbons with mesopore fraction up to 79% and 50% can be prepared without requiring inorganic alkali to undergo high temperature treatment or consume a large amount of alkali. The process also allows producing sodium silicate or porous silica. (2) The adsorption of methylene blue (MB) onto the active carbons with different mesopore fraction was studied. (3) Porous silica with specific surface area (SSA) up to 1018 m2/g was produced within 10 h by using polyethylene glycol (PEG) as a template and H3PO4 as a acidulant. (4) The adsorption of Cu(Ⅱ) onto porous silica prepared from PRH was studied for the first time. More detailed research contents were given as follows.
     1 Preparation of PRH-based active carbon with high mesopore fraction by combination of CO_2 activation and boiling in alkaline solution under normal pressure.
     A new process, namely combination of activating carbonized PRH with CO_2 and then boiling it in alkaline solution under normal pressure, was proposed to prepare active carbon. Effects of process variables on iodine number of active carbons were studied using an orthogonal experimental design, followed by discussion on pore development mechanism. The results indicated that by using the proposed research, PRH-based active carbon with mesopore fraction, pore volume and SSA up to 79%, 0.783 cm~3/g and 899 m~2/g can be successfully produced without requiring inorganic alkali to undergo high temperature treatment or consume a large amount of alkali. The effect of CO_2 activation time on iodine number was more significant than any other process variable studied. The pore development of active carbons can be attributed to initial pore development resulting from removal of carbon from the precursor by CO_2 activation, and further pore development caused by dissolution of silica in alkaline solution.
     2 Co-production of sodium silicate and active carbon from PRH
     To produce sodium silicate with large silica content and high modulus, and active carbons with SSA higher than 800 m~2/g under normal pressure by using a small quantity of alkali, the proposed process was optimized by using Doehlert experimental design, Derringer desirability function and surface response model. The optimum co-production condition was found to be using 1 mol/L NaOH solution and 9.7 mL/g liquid-solid ratio, under which sodium silicate with modulus reaching 2.6, and active carbon with 897 m~2/g SSA and 50% mesopore fraction can be manufactured. The adsorption quantities of phenol and Ni~(2+) by the active carbon were both significantly higher than the corresponding values of excellent commercial active carbon.
     3 Adsorption characteristics of MB onto PHR-based active carbon with different mesopore fraction
     The adsorption characteristics of MB onto PHR-based active carbon with different mesopore fraction were studied using batch adsorption experiments. The results showed that the MB adsorption amounts of the two active carbons were both comparable to that of excellent commercial active carbon at intial MB concentration not larger than 280 mg/L. The removal efficiency of the two active carbons was both higher than 86% at initial MB concentration of 310-380 mg/L.
     4 Short-period production of high SSA silica from PRH
     Porous silica was prepared from the sodium silicate produced under the optimum co-production condition by using PEG as a template. Effects of PEG dosage and pH on the textural properties of porous silica were investigated, including the mechanism of the effects. The results showed that PRH-based porous silica with SSA ranging from 709 m~2/g to 1018 m~2/g was prepared with 10h. Increasing the PEG dosage or reducing pH can significantly enhance the SSA of porous silica. The reason was that more PEG was incorporated into the PEG-silica composites when the PEG dosage increased or the pH decreased, and hence more pores were created after PEG was removed from the composites.
     5 Adsorption characteristics of Cu(Ⅱ)onto PRH-based porous silica
     The adsorption characteristics of Cu(Ⅱ)onto PRH-based porous silica was studied by batch adsorption experiments after characterization of the adsorbent. The largest adsorption capacity and highest removal efficiency for Cu(Ⅱ)at initial Cu(Ⅱ) concentrations of 20-120 mg/L were 77 mg/g and 97 %, respectively. The adsorption of Cu(Ⅱ) onto the silica could be described by the Freundlich isotherm and the pseudo-second-order model. Interaction of silanol group on porous silica surface with Cu(Ⅱ)was an important reason for adsorption of Cu(Ⅱ).
引文
[1]张秀玲. 1993.稻壳的物化特性与利用研究[J].中国资源综合利用, 3(3):10-11.
    [2] Chang YY, Lin CI, Chen HK. 2001. Rice hull ash structure and bleaching performance produced by ashing at various times and temperatures[J]. Journal of the American Oil Chemists Society, 78(6):657-660.
    [3]冉景煜,艳曾,力张,等. 2009.几种典型农作物生物质的热解及动力学特性[J].重庆大学学报, 32(1):76-81.
    [4]杨素文,丘克强. 2009.益阳地区7种生物质热解动力学特性研究[J].林产化学与工业, 29(4):39-44.
    [5]张振华,汪华林,陈于勤,等. 2008.典型废弃生物质的热解特性研究[J].农机化研究, 8(3):211-216.
    [6]刘琼琼,丛后罗,柳峰,等. 2008.稻壳灰在橡胶工业中的应用[J].橡胶工业, 55(7):444-447.
    [7]黎良青,蒋正武. 2010.稻壳灰在混凝土中应用研究进展评述[J].商品混凝土, 2010(5):22-26.
    [8]欧阳东,陈楷. 2003.稻壳灰显微结构及其中纳米SiO2的电镜观察[J].电子显微学报, 22(5):390-394.
    [9]胡恒,章春梅. 1990.稻壳灰的活性[J].上海建材学院学报, 3(3):289-296.
    [10]任素霞. 2009.稻壳资源的综合利用研究[D]: [博士].吉林大学.
    [11]肖刚,刘继驰,金保升,等. 2010.稻类秸秆高温炭化焦炭的特性研究[J].燃烧科学与技术, 16(1):1-4.
    [12] Hu S, Xiang J, Sun LS, et al. 2008. Characterization of char from rapid pyrolysis of rice husk[J]. Fuel Processing Technology, 89(11):1096-1105.
    [13]肖刚,金保升,刘继驰,等. 2009.稻壳焦炭导电特性的影响因素[J].环境科学学报, 29(6):1220-1226.
    [14] Yalcin N, Sevinc V. 2001. Studies on silica obtained from rice husk[J]. Ceramics International, 27(2):219-224.
    [15] Krishnarao RV, Subrahmanyam J, Kumar TJ. 2001. Studies on the formation of black particles in rice husk silica ash[J]. Journal of the European Ceramic Society, 21(1):99-104.
    [16] Chandrasekhar S, Satyanarayana KG, Pramada PN, et al. 2003. Processing, properties and applications of reactive silica from rice husk - an overview[J]. Journal of Materials Science, 38(15):3159-3168.
    [17] Takahashi N, Kato Y, Isogai A, et al. 2006. Silica distribution on the husk epidermis at different parts of the panicle in rice (Oryza sativa L.) Determined by X-Ray microanalysis[J]. Plant Production Science, 9(2):168-171.
    [18] Sun LY, Gong KC. 2001. Silicon-based materials from rice husks and their applications[J]. Industrial & Engineering Chemistry Research, 40(25):5861-5877.
    [19] Krishnarao RV, Godkhindi MM. 1992. Distribution of silica in rice husks and its effect on the formation of silicon-carbide[J]. Ceramics International, 18(4):243-249.
    [20]王卫星. 2001.稻壳制硅化合物的结构、性能及应用研究[D]: [博士].华南理工大学.
    [21] Kalapathy U, Proctor A, Shultz J. 2000. A simple method for production of pure silica from rice hull ash[J]. Bioresource Technology, 73(3):257-262.
    [22] Benke DJ, Wainwright MS, Nigam KDP, et al. 2006. Kinetics of silica dissolution from ricehusk char[J]. Canadian Journal of Chemical Engineering, 84(6):688-692.
    [23] Goncalves MRF, Bergmann CP. 2007. Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure[J]. Construction and Building Materials, 21(12):2059-2065.
    [24] Prasad CS, Maiti KN, Venugopal R. 2001. Effect of rice husk ash in whiteware compositions[J]. Ceramics International, 27(6):629-635.
    [25] stephens Dk, Dickinson. 2000. Highly activated carbon from caustic digestion of rice hull ash and method. United States, 6114280 [P].
    [26] Nair DG, Fraaij A, Klaassen AAK, et al. 2008. A structural investigation relating to the pozzolanic activity of rice husk ashes[J]. Cement and Concrete Research, 38(6):861-869.
    [27] Mukunda, Hanasoge, Suryanarayana, et al. 2004. A novel process and appratus for the manufacture of precipitated silica from rice husk ash. US, [P].
    [28] Chandrasekhar S, Pramada PN. 2006. Rice husk ash as an adsorbent for methylene blue-effect of ashing temperature[J]. Adsorption-Journal of the International Adsorption Society, 12(1):27-43.
    [29] Srivastava VC, Mall ID, Mishra IM. 2007. Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA)[J]. Chemical Engineering Journal, 132(1-3):267-278.
    [30] Dahlan I, Lee KT, Kamaruddin AH, et al. 2008. Analysis of SO2 sorption capacity of rice husk ash (RHA)/CaO/NaOH sorbents using response surface methodology (RSM): Untreated and pretreated RHA[J]. Environmental Science & Technology, 42(5):1499-1504.
    [31] Doner G, Akman S. 2003. The removal of copper, cadmium and lead by rice husk ash[J]. Fresenius Environmental Bulletin, 12(7):736-739.
    [32] Srivastava VC, Mall ID, Mishra IM. 2006. Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA[J]. Journal of Hazardous materials, 134(1-3):257-267.
    [33] Wang LH, Lin CI. 2008. Adsorption of lead(II) ion from aqueous solution using rice hull ash[J]. Industrial & Engineering Chemistry Research, 47(14):4891-4897.
    [34] Feng QG, Lin QY, Gong FZ, et al. 2004. Adsorption of lead and mercury by rice husk ash[J]. Journal of Colloid and Interface Science, 278(1):1-8.
    [35] Wang LH, Lin CI. 2008. Adsorption of chromium (III) ion from aqueous solution using rice hull ash[J]. Journal of the Chinese Institute of Chemical Engineers, 39(4):367-373.
    [36] Wang LH, Lin CI, Wu FC. 2010. Kinetic study of adsorption of copper (II) ion from aqueous solution using rice hull ash[J]. Journal of the Taiwan Institute of Chemical Engineers,41(5):599-605.
    [37] Chou KS, Tsai JC, Lo CT. 2001. The adsorption of Congo red and vacuum pump oil by rice hull ash[J]. Bioresource Technology, 78(2):217-219.
    [38] Mane VS, Mall ID, Srivastava VC. 2007. Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash[J]. Journal of Environmental Management, 84(4):390-400.
    [39] Adam F, Chua JH. 2004. The adsorption of palmytic acid on rice husk ash chemically modified with Al(III) ion using the sol-gel technique[J]. Journal of Colloid and Interface Science, 280(1):55-61.
    [40] Villar JC, Canete RE, Manganelly EA. 2004. Why adding rice hull ash can benefit beer clarification[J]. Filtration & Separation, 41(6):32-33.
    [41] Lee KT, Mohtar AM, Zainudin NF, et al. 2005. Optimum conditions for preparation of flue gas desulfurization absorbent from rice husk ash[J]. Fuel, 84(2-3):143-151.
    [42]马云肖. 1995.一种新型油脂吸附脱色剂—酸化稻壳灰[J].食品科技, 2(1):9-9.
    [43]洪庆慈. 2002.新型吸附剂稻壳灰性能研究[J].中国油脂, 27(1):29-30.
    [44] Proctor A, Clark PK, Parker CA. 1995. RICE HULL ASH ADSORBENT PERFORMANCE UNDER COMMERCIAL SOY OIL BLEACHING CONDITIONS[J]. Journal of the American Oil Chemists Society, 72(4):459-462.
    [45] Saraswathy V, Song HW. 2007. Corrosion performance of rice husk ash blended concrete[J]. Construction and Building Materials, 21(8):1779-1784.
    [46] Chindaprasirt P, Kanchanda P, Sathonsaowaphak A, et al. 2007. Sulfate resistance of blended cements containing fly ash and rice husk ash[J]. Construction and Building Materials, 21(6):1356-1361.
    [47] Ganesan K, Rajagopal K, Thangavel K. 2008. Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete[J]. Construction and Building Materials, 22(8):1675-1683.
    [48] Sakr K. 2006. Effects of silica fume and rice husk ash on the properties of heavy weight concrete[J]. Journal of Materials in Civil Engineering, 18(3):367-376.
    [49] Chandrasekhar S, Pramada PN, Raghavan P, et al. 2002. Microsilica from rice husk as a possible substitute for condensed silica fume for high performance concrete[J]. Journal of Materials Science Letters, 21(16):1245-1247.
    [50] Nair DG, Jagadish KS, Fraaij A. 2006. Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing[J]. Cement and Concrete Research, 36(6):1062-1071.
    [51] Romano JS, Rodrigues FA, Bernardi LT, et al. 2006. Calcium silicate cements obtained fromrice hull ash: A comparative study[J]. Journal of Materials Science, 41(6):1775-1779.
    [52] Rodrigues FA. 2003. Low-temperature synthesis of cements from rice hull ash[J]. Cement and Concrete Research, 33(10):1525-1529.
    [53] Nehdi M, Duquette J, El Damatty A. 2003. Performance of rice husk ash produced using a new technology as a mineral admixture in concrete[J]. Cement and Concrete Research, 33(8):1203-1210.
    [54]王象民. 2002.稻壳灰在硅橡胶中的应用[J].橡胶参考资料, 32(1):21-23.
    [55] Ferro WP, Silva LGAE, Wiebeck H. 2007. Study of the use of rice husk ash as filler in polyamide 6 and polyamide 6.6 matrices[J]. Polimeros-Ciencia E Tecnologia, 17(3):240-243.
    [56] Sereda L, Visconte LLY, Nunes RCR, et al. 2003. Effect of silica and rice husk ash fillers on the modulus of polysiloxane networks[J]. Journal of Applied Polymer Science, 90(2):421-429.
    [57] Sereda L, Pereira HL, Nunes RCR, et al. 2001. Rice husk ash in polysiloxane compounds - Physico-mechanical, processability and morphological aspects[J]. Kautschuk Gummi Kunststoffe, 54(9):474-476.
    [58] Sae-oui P, Rakdee C, Thanmathorn P. 2002. Use of rice husk ash as filler in natural rubber vulcanizates: In comparison with other commercial fillers[J]. Journal of Applied Polymer Science, 83(11):2485-2493.
    [59] Arayapranee W, Na-Ranong N, Rempel GL. 2005. Application of rice husk ash as fillers in the natural rubber industry[J]. Journal of Applied Polymer Science, 98(1):34-41.
    [60] da Costa HM, Visconte LLY, Nunes RCR, et al. 2003. Rice husk ash filled natural rubber. I. Overall rate constant determination for the vilcanization process from rheometric data[J]. Journal of Applied Polymer Science, 87(8):1194-1203.
    [61] Siriwardena S, Ismail H, Ishiaku US. 2003. A comparison of the mechanical properties and water absorption behavior of white rice husk ash and silica filled polypropylene composites[J]. Journal of Reinforced Plastics and Composites, 22(18):1645-1666.
    [62] Chaudhary DS, Jollands MC, Cser F. 2004. Recycling rice hull ash: A filler material for polymeric composites?[J]. Advances in Polymer Technology, 23(2):147-155.
    [63] Moustafa SF, Morsi MB, El-Din AA. 1997. Formation of silicon carbide from rice hulls[J]. Canadian Metallurgical Quarterly, 36(5):355-358.
    [64]王华. 1997.云南省应用基础研究基金资助项目—用稻壳制备氮化硅超微粉的研究[M].云南科技出版社, 93-135.
    [65] Sujirote K, Leangsuwan P. 2003. Silicon carbide formation from pretreated rice husks[J]. Journal of Materials Science, 38(23):4739-4744.
    [66] Martinez V, Valencia MF, Cruz J, et al. 2006. Production of beta-SiC by pyrolysis of rice huskin gas furnaces[J]. Ceramics International, 32(8):891-897.
    [67] Nayak BB, Mohanty BC, Singh SK. 1996. Synthesis of silicon carbide from rice husk in a dc arc plasma reactor[J]. Journal of the American Ceramic Society, 79(5):1197-1200.
    [68] Real C, Alcala MD, Criado JM. 2004. Synthesis of silicon nitride from carbothermal reduction of rice husks by the constant-rate-thermal-analysis (CRTA) method[J]. Journal of the American Ceramic Society, 87(1):75-78.
    [69] Thuadaij N, Nuntiya A. 2008. Preparation of nanosilica powder from rice husk ash by precipitation method[J]. Chiang Mai Journal of Science, 35(1):206-211.
    [70] Sanchez-Flores NA, Pacheco-Malagon G, Perez-Romo P, et al. 2007. Mesoporous silica from rice hull ash[J]. Journal of Chemical Technology and Biotechnology, 82(7):614-619.
    [71] Della VP, Kuhn I, Hotza D. 2002. Rice husk ash as an alternate source for active silica production[J]. Materials Letters, 57(4):818-821.
    [72] Tang Q, Wang T. 2005. Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying[J]. Journal of Supercritical Fluids, 35(1):91-94.
    [73] Pech-Canul MI, Escalera-Lozano R, Pech-Canul MA, et al. 2007. Degradation processes in Al/SiCp/MgAl2O4 composites prepared from recycled aluminum with fly ash and rice hull ash[J]. Materials and Corrosion-Werkstoffe Und Korrosion, 58(11):833-840.
    [74] Escalera-Lozano R, Gutierrez CA, Pech-Canul MA, et al. 2008. Degradation of Al/SiCp composites produced with rice-hull ash and aluminum cans[J]. Waste Management, 28(2):389-395.
    [75] Naskar MK, Chatterjee M. 2004. A novel process for the synthesis of cordierite (Mg2Al4Si5O18) powders from rice husk ash and other sources of silica and their comparative study[J]. Journal of the European Ceramic Society, 24(13):3499-3508.
    [76] Romano JS, Marcato PD, Rodrigues FA. 2007. Synthesis and characterization of manganese oxide-doped dicalcium silicates obtained from rice hull ash[J]. Powder Technology, 178(1):5-9.
    [77] Romano JS, Rodrigues FA. 2007. Titanium-bearing dicalcium silicates from rice hull ash: Synthesis and properties[J]. Journal of the American Ceramic Society, 90(7):2259-2261.
    [78] Ozgul-Yucel S, Tolay M, Erdag S, et al. 2004. Magnesium silicate synthesis from rice hull ash[J]. Journal of the American Oil Chemists Society, 81(6):619-620.
    [79] Kalapathy U, Proctor A, Shultz J. 2000. Production and properties of flexible sodium silicate films from rice hull ash silica[J]. Bioresource Technology, 72(2):99-106.
    [80]延国宁,马登民,隋桂花. 1997.以稻壳为原料制取氟硅酸钠[J].沈阳化工学院学报, 11(3):173-178.
    [81] Wang HP, Lin KS, Huang YJ, et al. 1998. Synthesis of zeolite ZSM-48 from rice husk ash[J]. Journal of Hazardous materials, 58(1-3):147-152.
    [82] Dalai AK, Pradhan NC, Rao MS, et al. 2005. Synthesis and characterization of NaX and Cu-exchanged NaX zeolites from silica obtained from rice husk ash[J]. Indian Journal of Engineering and Materials Sciences, 12(3):227-234.
    [83] Fernandes AA, Frajndlich EU, Riella HG. 2005. A low cost ZSM-5 zeolite obtained rice hull ash[J]. Advanced Powder Technology Iv, 498-499(676-680.
    [84] Chareonpanich M, Namto T, Kongkachuichay P, et al. 2004. Synthesis of ZSM-5 zeolite from lignite fly ash and rice husk ash[J]. Fuel Processing Technology, 85(15):1623-1634.
    [85] Mohamed MM, Zidan FI, Thabet M. 2008. Synthesis of ZSM-5 zeolite from rice husk ash: characterization and implications for photocatalytic degradation catalysts[J]. Microporous and Mesoporous Materials, 108(1-3):193-203.
    [86] Vempati RK, Borade R, Hegde RS, et al. 2006. Template free ZSM-5 from siliceous rice hull ash with varying C contents[J]. Microporous and Mesoporous Materials, 93(1-3):134-140.
    [87]张术根. 2003.廉价矿物原料沸石分子筛合成研究[M].中南大学出版社, 84-182.
    [88] Adylov GT, Kulagina NA, Mansurova EP, et al. 2005. Lightweight dinas refractories based on rice husk ash[J]. Refractories and Industrial Ceramics, 46(3):187-188.
    [89] Kalapathy U, Proctor A, Shultz J. 2003. Silicate thermal insulation material from rice hull ash[J]. Industrial and Engineering Chemistry Research, 42(1):46-49.
    [90]宋冬生,方春霖,吴文鹤,等. 1990.高强轻质稻壳灰保温砖及其制法.中国, CN 1041648A [P].
    [91]程俊华. 2002.胶结稻壳灰制备钢铁厂用绝热材料的研究[J].环境工程, 20(5):49-51.
    [92] Adam F, Kandasamy K, Balakrishnan S. 2006. Iron incorporated heterogeneous catalyst from rice husk ash[J]. Journal of Colloid and Interface Science, 304(1):137-143.
    [93] Chang FW, Kuo MS, Tsay MT, et al. 2003. Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation[J]. Applied Catalysis a-General, 247(2):309-320.
    [94] Chang FW, Kuo MS, Tsay MT, et al. 2004. Effect of calcination temperature on catalyst reducibility and hydrogenation reactivity in rice husk ash-alumina supported nickel systems[J]. Journal of Chemical Technology and Biotechnology, 79(7):691-699.
    [95] Chang FW, Kuo WY, Lee KC. 2003. Dehydrogenation of ethanol over copper catalysts on rice husk ash prepared by incipient wetness impregnation[J]. Applied Catalysis a-General, 246(2):253-264.
    [96] Chang FW, Kuo WY, Yang HC. 2005. Preparation of Cr2O3-promoted copper catalysts onrice husk ash by incipient wetness impregnation[J]. Applied Catalysis a-General, 288(1-2):53-61.
    [97] Chang FW, Tsay MT, Liang SP. 2001. Hydrogenation of CO2 over nickel catalysts supported on rice husk ash prepared by ion exchange[J]. Applied Catalysis a-General, 209(1-2):217-227.
    [98] Chang FW, Yang HC, Roselin LS, et al. 2006. Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange[J]. Applied Catalysis a-General, 304(1):30-39.
    [99] Radhika T, Sugunan S. 2006. Influence of surface and acid properties of vanadia supported on ceria promoted with rice husk silica on cyclohexanol decomposition[J]. Catalysis Communications, 7(8):528-533.
    [100] Wu JJ, Chen SH, Muruganandham M. 2008. Catalytic ozonation of oxalic acid using carbon-free rice husk ash catalysts[J]. Industrial & Engineering Chemistry Research, 47(9):2919-2925.
    [101]王立,王领军,姚惠源. 2006.稻壳硅综合利用[J].粮食与油脂, 1(4):14-16.
    [102]李燕红,欧阳峰,梁娟. 2008.农业废弃物稻壳的综合利用[J].广东农业科学, 6):90-93.
    [103] Prasad CS, Maiti KN, Venugopal R. 2003. Effect of substitution of quartz by rice husk ash and silica fume on the properties of whiteware compositions[J]. Ceramics International, 29(8):907-914.
    [104] Bondioli F, Andreola F, Barbieri L, et al. 2007. Effect of rice husk ash (RHA) in the synthesis of (Pr,Zr)SiO4 ceramic pigment[J]. Journal of the European Ceramic Society, 27(12):3483-3488.
    [105] Berkin G Heat absorbing glass from rice husk ash for a sustainable environment. 4th International Conference on Waste Management and the Environment. 2008. 521-527 (Wit Press).
    [106] Ismail SA, Ezz-Eldin FM. 2004. Corrosion behaviour of vitrified rice husk ash[J]. Glass Technology, 45(5):220-226.
    [107] Fey GTK, Chen CL. 2001. High-capacity carbons for lithium-ion batteries prepared from rice husk[J]. Journal of Power Sources, 97-8(47-51.
    [108] Maiti S, Dey S, Purakayastha S, et al. 2006. Physical and thermochemical characterization of rice husk char as a potential biomass energy source[J]. Bioresource Technology, 97(16):2065-2070.
    [109]鹿保鑫,张丕智. 2005.稻壳的综合利用技术[J].农机化研究, 1(4):195-197.
    [110]李俊飞,王德汉,刘承昊,等. 2007.生物质气化灰渣和粉煤灰的农业化学行为比较[J].华南农业大学学报, 28(1):27-30.
    [111]陈永. 2010.多孔材料制备与表征[M].中国科学技术大学出版社, 3-113.
    [112]日本炭素材料学会. 1984.活性炭基础与应用[M].中国林业出版社, 1-263.
    [113]邓梅根. 2005.电化学电容器电极材料研究[D]: [博士].电子科技大学.
    [114]解强,张香兰,李兰廷,等. 2005.活性炭孔结构调节:理论、方法与实践[J].活性炭材料, 20(2):183-190.
    [115]刘振宇. 2001.活性炭纤维的微结构解析及其改性研究[D]: [博士].中国科学院山西煤炭化学研究所.
    [116]古可隆. 1999.活性炭的应用[J].林产化工通讯, 33(4):37-40.
    [117]凯利H. 1990.活性炭及其工业应用[M].北京中国环境科学出版社, 1-65.
    [118]沈曾民,张文辉,张学军. 2006.活性炭材料的制备与应用[M].化学工业出版社, 1-21.
    [119]张辉. 2007.稻壳基无机纳米材料的提取及应用[D]: [博士].吉林大学.
    [120] Paraskeva P, Kalderis D, Diamadopoulos E. 2008. Production of activated carbon from agricultural by-products[J]. Journal of Chemical Technology and Biotechnology, 83(581-592.
    [121] Rodriguezreinoso F, Molinasabio M, Gonzalez MT. 1995. THE USE OF STEAM AND CO2 AS ACTIVATING AGENTS IN THE PREPARATION OF ACTIVATED CARBONS[J]. Carbon, 33(1):15-23.
    [122]任素霞. 2009.稻壳资源的综合利用研究[D]: [博士].吉林大学.
    [123]刘洋,张香兰,王启宝,等. 2005.煤半焦催化活化制备多孔活性炭[J].煤炭加工与综合利用, 6):
    [124]王玉新. 2007.毛竹活性炭的制备及其应用研究[D]: [博士].天津大学.
    [125]郏其庚,罗启云,郑国炉. 2002.活性炭的应用[M].华东理工大学出版社, 3-120.
    [126] Pendyal B, Johns MM, Marshall WE, et al. 1999. Removal of sugar colorants by granular activated carbons made from binders and agricultural by-products[J]. Bioresource Technology, 69(1):45-51.
    [127] Jain A, Rao TR, Sambi SS, et al. Energy and chemicals from rice husk. Symposium on Fast Pyrolysis - Processes, Technologies and Products, at the 205th ACS National Meeting and Exposition Program. 1993. 285-289.
    [128] Guo Y, Rockstraw DA. 2007. Activated carbons prepared from rice hull by one-step phosphoric acid activation[J]. Microporous and Mesoporous Materials, 100(1-3):12-19.
    [129] Kalderis D, Koutoulakis D, Paraskeva P, et al. 2008. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse[J]. Chemical Engineering Journal, 144(1):42-50.
    [130] Kalderis D, Bethanis S, Paraskeva P, et al. 2008. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times[J]. Bioresource Technology, 99(15):6809-6816.
    [131] Guo YP, Yang SF, Zhao JZ, et al. 2000. Preparation of active carbon with high specific surface area from rice husks[J]. Chemical Journal of Chinese Universities, 21(3):335-338.
    [132] Guo YP, Yu KF, Wang ZC, et al. 2003. Effects of activation conditions on preparation of porous carbon from rice husk[J]. Carbon, 41(8):1645-1648.
    [133] Yalcin N, Sevinc V. 2000. Studies of the surface area and porosity of activated carbons prepared from rice husks[J]. Carbon, 38(14):1943-1945.
    [134]徐如人. 2004.分子筛与多孔材料化学[M].科学出版社, 1-742.
    [135] Ahmed YMZ, Ewais EM, Zaki ZI. 2008. Production of porous silica by the combustion of rice husk ash for tundish lining[J]. Journal of University of Science and Technology Beijing, 15(3):307-313.
    [136] Chareonpanich M, Nanta-Ngern A, Limtrakul J. 2007. Short-period synthesis of ordered mesoporous silica SBA-15 using ultrasonic technique[J]. Materials Letters, 61(29):5153-5156.
    [137] Adam F, Ahmed AE, Min SL. 2008. Silver modified porous silica from rice husk and its catalytic potential[J]. Journal of Porous Materials, 15(4):433-444.
    [138] Li T, Wang T. 2008. Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure[J]. Materials Chemistry and Physics, 112(2):398-401.
    [139] Kamath SR, Proctor A. 1998. Silica gel from rice hull ash: Preparation and characterization[J]. Cereal Chemistry, 75(4):484-487.
    [140]李晓瑄,陈正行,周蕴宇. 2010.高纯度多孔稻壳基白炭黑的制备及性质[J].粮食加工, 35(1):51-54.
    [141]侯贵华,罗驹华,陈景文. 2006.用稻壳灰为硅源合成有序介孔二氧化硅材料的研究[J].材料科学与工程学报, 24(4):528-531.
    [142] Jullaphan O, Witoon T, Chareonpanich M. 2009. Synthesis of mixed-phase uniformly infiltrated SBA-3-like in SBA-15 bimodal mesoporous silica from rice husk ash[J]. Materials Letters, 63(15):1303-1306.
    [1]申文忠,郑经堂. 2002.水蒸汽二次活化对活性炭中孔结构的影响[J].炭素技术, 1(4):5-9.
    [2] Guo YP, Yu KF, Wang ZC, et al. 2003. Effects of activation conditions on preparation of porous carbon from rice husk[J]. Carbon, 41(8):1645-1648.
    [3] Yeletsky PM, Yakovlev VA, Mel'gunov MS, et al. 2009. Synthesis of mesoporous carbons by leaching out natural silica templates of rice husk[J]. Microporous and Mesoporous Materials, 121(1-3):34-40.
    [4] Guo YP, Yang SF, Zhao JZ, et al. 2000. Preparation of active carbon with high specific surface area from rice husks[J]. Chemical Journal of Chinese Universities, 21(3):335-338.
    [5]刘欣梅,代晓东,张建,等. 2008.辅助活化法制备超级活性炭的机理[J].新型炭材料, 23(2):133-138.
    [6] Suzuki RM, Andrade AD, Sousa JC, et al. 2007. Preparation and characterization of activated carbon from rice bran[J]. Bioresource Technology, 98(10):1985-1991.
    [7] Sing KSW. 1989. Use of physisorption for the characterization of microporous carbons[J]. Carbon, 27(1):5-11.
    [8] Oh GH, Park CR. 2002. Preparation and characteristics of rice-straw-based porous carbons with high adsorption capacity[J]. Fuel, 81(3):327-336.
    [9] Morris SM, Fulvio PF, Jaroniec M. 2008. Ordered Mesoporous Alumina-Supported Metal Oxides[J]. Journal of the American Chemical Society, 130(45):15210-15216.
    [10] Sing KSW, Everett DH, haul RAW, et al. 1985. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984)[J]. Pure and Applied Chemistry, 57(603-619.
    [11] Method for preparing shape-changed nanosize colloidal silica US 2003113251 [P].
    [12] Aworn A, Thiravetyan P, Nakbanpote W. 2008. Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores[J]. Journal of Analytical and Applied Pyrolysis, 82(2):279-285.
    [13]张利波,彭金辉,杨坤彬,等. 2007.微波辐射烟杆CO2活化制取活性炭及孔结构表征[J].化学工程, 35(5):67-70.
    [14]蔡琼,黄正宏,康飞宇. 2005.超临界水和水蒸气活化制备酚醛树脂基活性炭的对比研究[J].新型炭材料, 20(2):122-128.
    [15] Benke D, Wainwright MS, Navratil JD Preparation and characterisation of activated carbon adsorbents from rice hull ash. CHEMECA '90, Australasian Chemical Engineering Conference. 1990. 1032-1038.
    [16] Benke DJ, Wainwright MS, Nigam KDP, et al. 2006. Kinetics of silica dissolution from rice husk char[J]. Canadian Journal of Chemical Engineering, 84(6):688-692.
    [17] Schroder E, Thomauske K, Weber C, et al. Experiments on the generation of activated carbon from biomass. 17th International Symposium on Analytical and Applied Pyrolysis. 2006. 106-111.
    [18]郑祥伟,胡中华,刘亚菲,等. 2009.中等比表面积高容量活性炭电极材料制备和表征[J].复旦学报, 48(1):58-64.
    [19] Daifullah AAM, Girgis BS, Gad HMH. 2004. A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 235(1-3):1-10.
    [20] Yun CH, Park YH, Park CR. 2001. Effects of pre-carbonization on porosity development of activated carbons from rice straw[J]. Carbon, 39(4):559-567.
    [21] Kennedy LJ, Vijaya JJ, Sekaran G. 2004. Effect of two-stage process on the preparation and characterization of porous carbon composite from rice husk by phosphoric acid activation[J]. Industrial and Engineering Chemistry Research, 43(8):1832-1838.
    [22] Mohanty K, Naidu JT, Meikap BC, et al. 2006. Removal of crystal violet from wastewater by activated carbons prepared from rice husk[J]. Industrial and Engineering Chemistry Research, 45(14):5165-5171.
    [23] Pendyal B, Johns MM, Marshall WE, et al. 1999. Removal of sugar colorants by granular activated carbons made from binders and agricultural by-products[J]. Bioresource Technology, 69(1):45-51.
    [24] Kalderis D, Koutoulakis D, Paraskeva P, et al. 2008. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse[J]. Chemical Engineering Journal, 144(1):42-50.
    [25] Yalcin N, Sevinc V. 2000. Studies of the surface area and porosity of activated carbons prepared from rice husks[J]. Carbon, 38(14):1943-1945.
    [26] Basta AH, Fierro V, El-Saied H, et al. 2009. 2-Steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons[J]. Bioresource Technology, 100(17):3941-3947.
    [1] Foletto EL, Gratieri E, Oliveira LHd, et al. 2006. Conversion of rice hull ash into soluble sodium silicate[J]. Materials Research, 9(3):335-338.
    [2] Benke DJ, Wainwright MS, Nigam KDP, et al. 2006. Kinetics of silica dissolution from rice husk char[J]. Canadian Journal of Chemical Engineering, 84(6):688-692.
    [3]叶芳,刘英,王展. 2008.不同压力条件下稻壳灰制备硅酸钠的工艺研究[J].粮食与饲料工业, 1(2):4-5.
    [4]刘娟,侯书恩,靳洪允,等. 2008.稻壳灰制水玻璃的正交试验研究[J].粮食与饲料工业, 1(12):6-7.
    [5]丁开宇,张彦军,刘成梅,等. 2009.稻壳灰制备高纯度白炭黑联产水玻璃影响因素研究[J].中国粮油学报, 24(5):1-5.
    [6] Rahman IA, Saad B, Shaidan S, et al. 2005. Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical-thermal process[J]. Bioresource Technology, 96(14):1578-1583.
    [7] Kalderis D, Koutoulakis D, Paraskeva P, et al. 2008. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse[J]. Chemical Engineering Journal, 144(1):42-50.
    [8] Mohanty K, Naidu JT, Meikap BC, et al. 2006. Removal of crystal violet from wastewater by activated carbons prepared from rice husk[J]. Industrial and Engineering Chemistry Research, 45(14):5165-5171.
    [9]徐星汉. 1990.稻壳灰联产水玻璃和活性炭.中国, CN1039000A [P].
    [10]鞠馥阳,刘伟. 1999.用稻壳灰炭制取水玻璃及副产品活性炭的方法.中国, CN1229057A [P].
    [11] Schroder E, Thomauske K, Weber C, et al. Experiments on the generation of activated carbon from biomass. 17th International Symposium on Analytical and Applied Pyrolysis. 2006. 106-111.
    [12] Ferreira SLC, dos Santos WNL, Bezerra MA, et al. 2003. Use of factorial design and Doehlert matrix for multivariate optimisation of an on-line preconcentration system for lead determination by flame atomic absorption spectrometry[J]. Analytical and Bioanalytical Chemistry, 375(5):443-449.
    [13] Lee KT, Mohtar AM, Zainudin NF, et al. 2005. Optimum conditions for preparation of flue gas desulfurization absorbent from rice husk ash[J]. Fuel, 84(2-3):143-151.
    [14] Zaky RR, Hessien MM, El-Midany AA, et al. 2008. Preparation of silica nanoparticles from semi-burned rice straw ash[J]. Powder Technology, 185(1):31-35.
    [15]汪冬庚,刘文英. 2005. Doehlert设计矩阵及其在药学中的应用[J].药学进展, 29(11):497-502.
    [16] Imandi SB, Bandaru VR, Somalanka SR, et al. 2007. Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design[J]. Enzyme and Microbial Technology, 40(5):1367-1372.
    [17] Bacaoui A, Yaacoubi A, Dahbi A, et al. 2001. Optimization of conditions for the preparation of activated carbons from olive-waste cakes[J]. Carbon, 39(3):425-432.
    [18]宗志宇,何桢,孔祥芬. 2006.多响应优化方法的比较和应用研究[J].数理统计与管理, 25(6):697-704.
    [19] Jimidar M, Bourguignon B, Massart DL. 1996. Application of Derringer's desirabilityfunction for the selection of optimum separation conditions in capillary zone electrophoresis[J]. Journal of Chromatography A, 740(1):109-117.
    [20] Kalapathy U, Proctor A, Shultz J. 2000. A simple method for production of pure silica from rice hull ash[J]. Bioresource Technology, 73(3):257-262.
    [21]王秀芳,田勇,张会平. 2009.高比表面积煤质活性炭的制备与活化机理[J].化工学报, 60(3):734-737.
    [22] Oh GH, Park CR. 2002. Preparation and characteristics of rice-straw-based porous carbons with high adsorption capacity[J]. Fuel, 81(3):327-336.
    [23] Sentorun-Shalaby C, Ucak-Astarlioglu MG, Artok L, et al. 2006. Preparation and characterization of activated carbons by one-step steam pyrolysis/activation from apricot stones[J]. Microporous and Mesoporous Materials, 88(1-3):126-134.
    [24] Yang T, Lua AC. 2003. Characteristics of activated carbons prepared from pistachio-nut shells by physical activation[J]. Journal of Colloid and Interface Science, 267(2):408-417.
    [25] Morris SM, Fulvio PF, Jaroniec M. 2008. Ordered Mesoporous Alumina-Supported Metal Oxides[J]. Journal of the American Chemical Society, 130(45):15210-15216.
    [26] Sing KSW, Everett DH, haul RAW, et al. 1985. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984)[J]. Pure and Applied Chemistry, 57(603-619.
    [27] Tan IAW, Hameed BH, Ahmad AL. 2007. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon[J]. Chemical Engineering Journal, 127(1-3):111-119.
    [28]张巍,应维琪,常启刚,等. 2007.水处理活性炭吸附性能指标的表征与应用[J].中国环境科学, 27(3):289-294.
    [29] Aygun A, Yenisoy-Karakas S, Duman I. 2003. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties[J]. Microporous and Mesoporous Materials, 66(2-3):189-195.
    [30] Jung MW, Ahn KH, Lee Y, et al. 2001. Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC)[J]. Microchemical Journal, 70(2):123-131.
    [1] Tan IAW, Hameed BH, Ahmad AL. 2007. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon[J]. Chemical Engineering Journal, 127(1-3):111-119.
    [2]彭书传,王诗生,陈天虎,等. 2006.坡缕石对水中亚甲基蓝的吸附动力学[J].硅酸盐学报, 34(6):733-739.
    [3]王征. 2007.锰氧化物对次甲基蓝染料的吸附和氧化脱色研究[D]: [硕士].中国海洋大学.
    [4]何永祥. 2007.天然沸石对水体中甲基橙和亚甲基蓝的吸附研究[D]: [硕士].郑州大学.
    [5]郭春香,孔庆山,高继贤,等. 2011.海藻酸纤维动态吸附废水中亚甲基蓝染料[J].环境工程学报, 5(2):297-301.
    [6] Ghosh D, Bhattacharyya KG. 2002. Adsorption of methylene blue on kaolinite[J]. Applied Clay Science, 20(6):295-300.
    [7] Ozer D, Dursun G, Ozer A. 2007. Methylene blue adsorption from aqueous solution by dehydrated peanut hull[J]. Journal of Hazardous materials, 144(1-2):171-179.
    [8]廖钦洪. 2007.稻壳多孔炭吸附材料的制备及其在废水处理中的应用[D]: [硕士].广西师范大学.
    [9] El-Halwany MM. 2010. Study of adsorption isotherms and kinetic models for Methylene Blue adsorption on activated carbon developed from Egyptian rice hull (Part II)[J]. Desalination,250(1):208-213.
    [10] Chandrasekhar S, Pramada PN. 2006. Rice husk ash as an adsorbent for methylene blue-effect of ashing temperature[J]. Adsorption-Journal of the International Adsorption Society, 12(1):27-43.
    [11] Han RP, Wang YF, Yu WH, et al. 2007. Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column[J]. Journal of Hazardous materials, 141(3):713-718.
    [12]张巍,应维琪,常启刚,等. 2007.水处理活性炭吸附性能指标的表征与应用[J].中国环境科学, 27(3):289-294.
    [13] Wartelle LH, Marshall WE, Toles CA, et al. 2000. Comparison of nutshell granular activated carbons to commercial adsorbents for the purge-and-trap gas chromatographic analysis of volatile organic compounds[J]. Journal of Chromatography A, 879(2):169-175.
    [14] Taty-Costodes VC, Fauduet H, Porte C, et al. 2003. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris[J]. Journal of Hazardous materials, 105(1-3):121-142.
    [15] Duman G, Onalt Y, Okutucu C, et al. 2009. Production of Activated Carbon from Pine Cone and Evaluation of Its Physical, Chemical, and Adsorption Properties[J]. Energy & Fuels, 23(2197-2204.
    [16] Mane VS, Mall ID, Srivastava VC. 2007. Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash[J]. Journal of Environmental Management, 84(4):390-400.
    [17] Wang LH, Lin CI. 2008. Adsorption of lead(II) ion from aqueous solution using rice hull ash[J]. Industrial & Engineering Chemistry Research, 47(14):4891-4897.
    [18] Mohanty K, Naidu JT, Meikap BC, et al. 2006. Removal of crystal violet from wastewater by activated carbons prepared from rice husk[J]. Industrial and Engineering Chemistry Research, 45(14):5165-5171.
    [19] Srivastava VC, Swamy MM, Mall ID, et al. 2006. Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 272(1-2):89-104.
    [20]袁勋,柳玉英,禚淑萍,等. 2007.有序介孔炭的合成及液相有机大分子吸附性能研究[J].化学学报, 65(17):1814-1820.
    [21] Wang XS, Qin Y. 2005. Equilibrium sorption isotherms for of Cu2+ on rice bran[J]. Process Biochemistry, 40(2):677-680.
    [22] Karthikeyan T, Rajgopal S, Miranda LR. 2005. Chromium(VI) adsorption from aqueoussolution by Hevea Brasilinesis sawdust activated carbon[J]. Journal of Hazardous materials, 124(1-3):192-199.
    [1]王莉玮. 1998. PEG法合成多孔高比表面积SiO2[J].功能材料, 29(4):397-399.
    [2]刘海弟,岳仁亮,张冬海,等. 2009.利用简单模板制备多孔二氧化硅[J].过程工程学报, 9(5):1005-1010.
    [3] Tang Q, Wang T. 2005. Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying[J]. Journal of Supercritical Fluids, 35(1):91-94.
    [4] Adam F, Ahmed AE, Min SL. 2008. Silver modified porous silica from rice husk and its catalytic potential[J]. Journal of Porous Materials, 15(4):433-444.
    [5] Jullaphan O, Witoon T, Chareonpanich M. 2009. Synthesis of mixed-phase uniformly infiltrated SBA-3-like in SBA-15 bimodal mesoporous silica from rice husk ash[J]. Materials Letters, 63(15):1303-1306.
    [6] Witoon T, Chareonpanich M, Limtrakul J. 2008. Synthesis of bimodal porous silica from rice husk ash via sol-gel process using chitosan as template[J]. Materials Letters, 62(10-11):1476-1479.
    [7] Li T, Wang T. 2008. Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure[J]. Materials Chemistry and Physics, 112(2):398-401.
    [8]刘善云,王涛. 2009.疏水性二氧化硅气凝胶吸附水中微量苯酚和甲醛的研究[J].离子交换与吸附, 25(4):289-296.
    [9] Wilhelm P, Stephan D. 2006. On-line tracking of the coating of nanoscaled silica with titania nanoparticles via zeta-potential measurements[J]. Journal of Colloid and Interface Science, 293(1):88-92.
    [10] Oh C, Lee YG, Choi TS, et al. 2009. Facile synthesis of PEG-silica hybrid particles using one-step sol-gel reaction in aqueous solution[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 349(1-3):145-150.
    [11] Basta AH, Fierro V, El-Saied H, et al. 2009. 2-Steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons[J]. Bioresource Technology, 100(17):3941-3947.
    [12] Witoon T, Chareonpanich M, Limtrakul J. 2009. Effect of acidity on the formation of silica-chitosan hybrid materials and thermal conductive property[J]. Journal of Sol-Gel Science and Technology, 51(2):146-152.
    [13] Sanchez-Flores NA, Pacheco-Malagon G, Perez-Romo P, et al. 2007. Mesoporous silica from rice hull ash[J]. Journal of Chemical Technology and Biotechnology, 82(7):614-619.
    [14] Thuadaij N, Nuntiya A. 2008. Preparation of nanosilica powder from rice husk ash by precipitation method[J]. Chiang Mai Journal of Science, 35(1):206-211.
    [15] Chareonpanich M, Nanta-Ngern A, Limtrakul J. 2007. Short-period synthesis of ordered mesoporous silica SBA-15 using ultrasonic technique[J]. Materials Letters, 61(29):5153-5156.
    [16]钱晓静,刘孝恒,陆路德,等. 2004.辛醇改性纳米二氧化硅表面的研究[J].无机化学学报, 20(3):335-340.
    [17] Elimelech H, Avnir D. 2008. Sodium-silicate route to submicrometer hybrid PEG@silicaparticles[J]. Chemistry of Materials, 20(6):2224-2227.
    [18] Liufu S, Xiao H, Li YP. 2004. Investigation of PEG adsorption on the surface of zinc oxide nanoparticles[J]. Powder Technology, 145(1):20-24.
    [19] Yokoi T, Wakabayashi J, Otsuka Y, et al. 2009. Mechanism of Formation of Uniform-Sized Silica Nanospheres Catalyzed by Basic Amino Acids[J]. Chemistry of Materials, 21(15):3719-3729.
    [1] Li N,Bai R B.Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms [J].Separation and Purification Technology,2005,42(3):237-247.
    [2] Wang H J,Kang J,Liu H J,et al. Preparation of organically functionalized silica gel as adsorbent for copper ion adsorption [J]. Journal of Environmental Sciences-China,2009, 21(11):1473-1479.
    [3] Veli S,Alyuz B.Adsorption of copper and zinc from aqueous solutions by using natural clay [J].Journal of Hazardous materials,2007,149(1):226-233.
    [4] Weng C H,Tsai C Z,Chu S H,et al.Adsorption characteristics of copper(II) onto spent activated clay [J].Separation and Purification Technology,2007,54(2):187-197.
    [5] Veli S,Ozturk T.Kinetic modeling of adsorption of reactive azo dye on powdered activated carbon and pumice [J].Fresenius Environmental Bulletin,2005,14(3):212-218.
    [6] da Silva L C C,dos Santos L B O,Abate G,et al.Adsorption of Pb2+, Cu2+ and Cd2+ in FDU-1 silica and FDU-1 silica modified with humic acid [J].Microporous and Mesoporous Materials,2008,110(2-3):250-259.
    [7]董兵海,王世敏,许祖勋,等.纳米二氧化硅对铜离子吸附性能的研究[J].湖北大学学报,2007,29(1):60-62.
    [8] Ahmed Y M Z,Ewais E M,Zaki Z I.Production of porous silica by the combustion of rice husk ash for tundish lining [J].Journal of University of Science and Technology Beijing,2008,15(3):307-313.
    [9] Witoon T,Chareonpanich M,Limtrakul J.Synthesis of bimodal porous silica from rice husk ash via sol-gel process using chitosan as template [J].Materials Letters,2008,62(10-11):1476-1479.
    [10] Srivastava V C,Swamy M M,Mall I D,et al.Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics [J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,2006,272(1-2):89-104.
    [11] Witoon T,Chareonpanich M,Limtrakul J.Effect of acidity on the formation of silica-chitosan hybrid materials and thermal conductive property [J].Journal of Sol-Gel Science and Technology,2009,51(2):146-152.
    [12] Zheng W,Li X M,Yang Q,et al.Adsorption of Cd(II) and Cu(II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste [J].Journal of Hazardousmaterials,2007,147(1-2):534-539.
    [13] Malik P K.Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36 [J].Dyes and Pigments,2003,56(3):239-249.
    [14] Thuadaij N,Nuntiya A.Preparation of nanosilica powder from rice husk ash by precipitation method [J].Chiang Mai Journal of Science,2008,35(1):206-211.
    [15] Imamoglu M,Tekir O.Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks [J].Desalination,2008,228(1-3):108-113.
    [16] Aydin H,Buluta Y,Yerlikaya C.Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents [J].Journal of Environmental Management,2008,87(1):37-45.
    [17] Wang L H,Lin C I,Wu F C.Kinetic study of adsorption of copper (II) ion from aqueous solution using rice hull ash [J].Journal of the Taiwan Institute of Chemical Engineers,2010,41(5):599-605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700