用户名: 密码: 验证码:
煤矿乏风瓦斯变压吸附分离吸附剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主要围绕乏风瓦斯富集和分离,进行了负载金属改性活性炭、KOH改性活性炭和活性炭纤维、高温焙烧改性活性炭等变压吸附分离吸附剂的研究工作,并进行了中试用吸附剂的工业化制备和中试实验。
     以吸附剂的分离系数α、吸附能力选择系数W、吸附选择参数S和吸附量V等为评价参数,以孔径、孔容、比表面积等为参考,进行改性碳材料吸附剂的筛选。活性炭中选择PA-1进行金属负载改性,10~20mesh椰壳炭进行高温焙烧和KOH活化改性,选择ZC1326作为ACF中最适合的改性材料。
     采用水热法负载金属改性活性炭PA-1进行了金属离子的选择,其中以Ti改性尤为突出。采用分离系数、吸附选择能力系数、吸附选择参数和在150kPa时的CH4吸附量来评价吸附剂的性能,并进行了常温常压穿透实验测试其吸附性能。分离系数α由PA-1的4.0变化为Ti-PA-1-160℃的4.3和Ti-PA-1-160℃-1100℃的3.9,吸附能力选择系数W也从PA-1和Ti-PA-1-160℃的2.8降至Ti-PA-1-160℃-1100℃的2.2,相应的吸附选择参数S为:11.20、12.04和8.58,但其在150kPa时对甲烷的吸附量V却从22.7cm~3/g升至34.4cm~3/g,增加了51.5%。1100℃N_2保护焙烧的Ti改性活性炭CH4常压穿透曲线的穿出点为111s,比未改性的活性炭和160℃水热方法Ti改性活性炭滞后了41%和50%。浸渍负载Sr改性活性炭表现出对N_2极低的吸附性能。
     采用KOH和活性炭混合法改性椰壳炭及KOH溶液浸渍法改性活性炭纤维进行实验研究。当KOH:C=2:1、碳化温度和活化温度分别为500℃和800℃、碳化时间和活化时间分别为1h和2h时,改性后的活性炭吸附效果最佳,对甲烷的吸附量V高达51.6cm~3/g,分离系数α为4.2,吸附选择能力W系数为2.5,吸附选择参数S为10.50,分别比未改性前变化了+63.8%,-10.6%,+4.2%和-6.9%。当KOH浓度为13%、活化时间为40min、活化温度为800℃时,改性后的活性炭纤维吸附效果最佳,分离系数α为4.2,吸附选择能力系数W为2.4,吸附选择参数S为10.08,虽然三个参数比未改性前分别降低了4.5%、11.1%和15.2%,但其对甲烷的吸附量V却达到49.4cm~3/g,比未改性前增加了48.3%。
     采用高温焙烧对活性炭进行改性研究。考察了不同焙烧温度、不同焙烧时间、不同焙烧气氛对椰壳炭分离CH4/N_2性能和物理性能的影响,采用分离系数、吸附选择能力系数、吸附选择参数和在150kPa时的CH4吸附量来评价吸附剂的性能,并进行了常温常压穿透实验测试其吸附性能。在实验研究范围内发现N_2保护下600℃焙烧4h时,改性椰壳炭的物理性能没有明显改变的情况下,具有良好的吸附分离性能。此时改性后的活性炭分离系数α为4.8,比未改性前的4.7增大了2.1%;吸附选择能力系数W为2.2,比未改性前的2.4降低了8.3%,吸附选择参数S为10.56,比未改性前的11.28降低了6.4%,对甲烷的吸附量V为36.0cm~3/g,比未改性前的31.5cm~3/g增大了14.3%;常压穿透曲线穿出点为172s,比未改性前的55s滞后了212.7%。
     中试用吸附剂的工业化制备采用氮气保护650℃焙烧4h、1mol/LHCl溶液浸泡24h、洗涤和热风烘干工艺,制得烘干后的活性炭为3745kg,总的损失率为22.4%。搭建了一套原料气进气量为1000m~3/h的煤矿乏风瓦斯分离富集中试试验装置。利用乏风减量装置,通过旋流富集在出口中心部分最高可获取的甲烷浓度可达0.3%。在乏风瓦斯平均浓度约为0.2%的条件下,吸附分离富集系统出口的瓦斯浓度≥1%,回收率可达到50%左右。
For methane enrichment and separation of ventilation air methane (VAM) in coalmine, carbon adsorption material was studied by supported metal modification,roasting modification, KOH modification for pressure swing adsorption (PSA).Adsorbent industrialization preparation and pilot scale experiment were carried.
     The separation factor α, selectivity coefficient of adsorption capacity W,adsorption selection parameter S and adsorption amount of capacity V were selectedas the evaluation parameters. The pore size, pore volume, surface area were taken asreference. Carbon material adsorbent was screened for modification. PA-1wasselected for supported metal modification,10~20mesh coconut shell charcoal forroasting modification, KOH modification. ZC1326was chosen as the most suitableACF material.
     The metal ions for PA-1modification were chosen by hydrothermal method, inwhich Ti modification was particularly prominent. The evaluation of adsorbent wastaken according as separation factor, selectivity coefficient of adsorption capacity,adsorption selection parameter and adsorption capacity of CH4at150kPa. Andatmospheric penetration test was taken to evalute adsorption properties of adsorbentmodified. The separation factor α changes from4of PA-1to4.3of Ti-PA-1-160℃andto3.9of Ti-PA-1-160℃-1100℃, selection coefficient of adsorption capacity W alsodecreases from2.8of PA-1and Ti-PA-1-160℃to2.2of Ti-PA-1-160℃-1100℃,corresponding adsorption selection parameter S is11.20,12.04and8.58, but itsmethane adsorption amount V at150kPa increases from22.7cm~3/g to34.4cm~3/g,increasing51.5%. Breakthrough point of atmospheric penetration curve is111s forTi-PA-1-160℃-1100℃. Respectively, it was lagged by41%and50%compared withPA-1and Ti-PA-1-160℃. Sr modified activated carbon shows very low adsorptionproperties of N_2.
     Coconut shell activated carbon modified by KOH and activated carbon mixedmethod, activated carbon fiber modified by KOH solution dipping method. WhenKOH:C was2:1, carbonization temperature and activation temperature were500℃and800℃, of carbonizationtime and activation time were1h and2H, modified ACadsorption properties were the best. CH4adsorption amount V reaches51.6cm~3/g,separation factor α is4.2, selection coefficient of adsorption capacity W is2.5and adsorption selection parameter S is10.50. Respectively, changes are+63.8%,-10.6%,+4.2%and-6.9%than the unmodified activated carbon. When KOH concentration is13%, activation time is40min, activation temperature is800℃, modified ACFadsorption properties were the best. Separation factor α is4.2, selection coefficient ofadsorption capacity W is2.4, and adsorption selection parameter S is10.08.Parameters decreases4.5%,11.1%and15.2%than the unmodified, but CH4adsorption capacity V reaches49.4cm~3/g and increases48.3%than the unmodified.
     Roasting method was adopted for AC modification. The effects of roastingtemperature, roasting time and roasting atmosphere on coconut shell charcoalseparation of CH4/N_2and physical performance were studied. In the experiment, thebetter condition is found that it is roasted at600℃for4H in N_2atmosphere. In thiscondition, modified coconut shell charcoal has no obvious change on physicalproperties and has good separation performances. Separation factor α is4.8,increasing2.1%than4.7of unmodified AC; selection coefficient of adsorptioncapacity W is2.2, reducing8.3%than2.4of unmodified AC, adsorption selectionparameter S is10.56, reducing6.4%than11.28of unmodified AC, CH4adsorptioncapacity V reaches36.0cm~3/g, increasing14.3%than31.5cm~3/g of the unmodified AC.Breakthrough point of atmospheric penetration curve is172s and lagged by212.7%compared with55s of the unmodified AC.
     Adsorbent industrialized preparation process is roasting at650℃for4h in N_2atmosphere, dipping in1mol/LHCl solution for24h, washing and drying. Activatedcarbon after drying is3745kg, and the total loss weight is22.4%. A test device wasbuilt for coal mine VAM enrichment and separation. The volume of feed gas is1000m~3/h. Using ventilation air reduction device, the maximum concentration of CH4can reach0.3%in export center after hydrocyclone enrichment. When the CH4average concentration is about0.2%, the CH4concentration of export for adsorptionseparation and enrichment system is larger than or equal to1%, the recovery rate canreach about50%.
引文
1雷利春.煤矿乏风中低浓度甲烷的变压吸附提纯[D].硕士学位论文,大连:大连理工大学,2010.
    2马晓钟.煤矿瓦斯综合利用技术的探索与实践[J].中国煤气层,2007,4(3):28-31.
    3牛国庆.矿井回风流中低浓度瓦斯利用现状及前景[J].工业安全与环保.2002,28(3):3-5.
    4IPCC,2007:气候变化2007:综合报告。政府间气候变化专门委员会第四次评估报告第一、第二和第三工作组的报告[核心撰写组、Pachauri, R. K和Reisinger, A.(编辑)][R].IPCC,瑞士,日内瓦,104页.
    5政府间气候变化专门委员会,2007:决策者摘要.气候变化2007:自然科学基础.政府间气候变化专门委员会第四次评估报告第一工作组的报告[Solomon S., Dahe Qin, M.Manning, Zhenlin Chen, M. Marquis, K. B. Averyt, M. Tignor和H. L. Miller (编辑)][R].英国,剑桥,剑桥大学出版社和美国,纽约.
    6张福凯,徐龙君.甲烷对全球气候变暖的影响及减排措施[J].矿业安全与环保,矿业安全与环保,2004,31(05):6~9,38.
    7黄盛初,刘文革,赵国泉.中国煤层气开发利用现状及发展趋势[J].中国煤层气.2009,35(1):5-10.
    8MALLETT C W. Opportunities for Utilization of Mine Methane in Australia Technologicaland Economic Review[C]. Sydney: The Australian Coal Seam and Mine Methane Conference,2003.
    9CAROTHERS P, DEO M. Technical and Economic Assessment: Mitigation of MethaneEmissions from Coal Mine Ventilation Air: Coalbed Methane Outreach Program[R].Washington: US Environmental Protection Agency,2000.
    10BAGHERI, HAMID. Ventilation of Gas Turbine Packag Enclosures: Design EvaluationProcedure[C]. Hamburg: Proceedings of25th International Conference on OffshoreMechanics and Arctic Engineering,2006.
    11XIAO F, SOHRABI A. Effects of Small Amounts of Fugitive Methane in the Air on DieselEngine Performance and Its Combustion Characteristics[J]. International Journal of GreenEnergy,2008,5(4):334-345.
    12高增丽.高振强.刘永启,等.矿井乏风瓦斯治理利用现状与发展[J].冶金能源,2010,29(5):43-46.
    13GOSIEWSKI K, WARMUZINSKI K, JASCHIK M, et al. Kinetics for Thermal Oxidation ofLean Methane-Air Gas Mixtures in Reverse-Flow Reactors[J]. Chemical and ProcessEngineering,2007(28):335-345.
    14GOSIEWSKI K. Efficiency of Heat Recovery Versus Maximum Catalyst Temperature in theReverse-Flow Combustion of Methane[J]. Chemical Engineering Journal,2005(107):19-25.
    15Schultz H L, Carothers P, Watts R, et al. Assessment of the Worldwide Market Potential forOxidizing Coal Mine Ventilation Air Methane[R]. Washington, DC: United StatesEnvironmental Protection Agency,2003.
    16FIASCHI D. The Recuperative Auto Thermal Reforming and Recuperative Reforming GasTurbine Power Cycles with CO2Removal~Part II: The Recuperative Reforming Rycle[J].Journal of Engineering for Gas Turbines and Power,2004,126(1):62-68.
    17SU SHI, BEATH A C. Coal Mine Ventilation Air Methane Catalytic Combustion GasTurbine[J]. Greenhouse Gas Control Technologies,2003(2):1287-1292.
    18SHI SU, JENNY AGNEW. Catalytic Combustion of Coal Mine Ventilation Air Methane[J].Fuel,2006(85):1201-1210.
    19Mehra Y R.Utilizing the Mehra Process for Processing and BTU Upgrading of Nitrogen-RichNatural Gas Streams: US,4623371[P].1986.
    20Dwayne T F, Walter C B, David J E, et al. Liquid Absorbent Solutions for SeparatingNitrogen from Natural Gas: US,6136222[P].2000.
    21陶鹏万,王晓东,黄建彬.低温法浓缩煤层气中的甲烷[J].天然气化工,2005,30(4):43-46.
    22陶鹏万,王晓东.用于甲醇生产的煤矿瓦斯气除氧工艺[J].天然气化工,2002,27(3):25-28.
    23范庆虎,李红艳,尹全森等.低浓度煤层气液化技术及其应用[J].天然气工业,2008,28(3):117-120.
    24吴剑峰,孙兆虎,公茂琼.从含氧煤层气中安全分离提纯甲烷的工艺方法[J].天然气工业,2009,29(2):113-116.
    25陈勇,王从厚,吴鸣.气体膜分离技术与应用[M].北京:化学工业出版社,2004.
    26Huang Y, Paul D R. Effect of Film Thickness on the Gas-Permeation Characteristics ofGlassy Polymer Membranes[J]. Industrial and Engineering Chemistry Research,2007,46(8):2342-2347.
    27Asad J, Michael P H, Varuntida V, et al. Solubility-Based Gas Separation with OligomerModified Inorganic Membranes[J]. Journal of Membrane Science,2001,187:141-150.
    28Richard W Baker, Kaacid A Lokhandwala, Johannes G Wijmans, et al. Tow Step Process forNitrogen Removal from Natural Gas: US,6425267B1[P].2002.
    29Lokhandwala K. Membrane-Augmented Cryogenic Methane/Nitrogen Separation: US,5647227[P].1997.
    30方华东.孔狭缝及孔网络模型在炭膜气体分离中的应用[D].硕士学位论文,大连:大连理工大学,2007.
    31Bhide B D, Voskericyan A, Stern S A. Hybrid Processes for the Removal of Acid Gases fromNatural Gas[J]. Journal of Membrane Science,1998,140(1):27-49.
    32Richard W Baker. Future Directions of Membrane Gas Separation Technology[J]. Industrialand Engineering Chemistry Research,2002,41:1393-1411.
    33[美]R. T. Yang著,王树森,曾美云,胡竟民,等译.吸附法气体分离.化学工业出版社,1991.
    34杨涌源.分子筛前端净化中的PSA和TSA工艺[J].深冷技术,2001,3:1-5
    35Skarstrom C W. Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption:US,2944627[P].1960.
    36Cheng-Tung Chou, Chao-Yuh Chen. Cabron Dioxide Recovey by Vacuum SwingAdsoprtion[J]. Separation and Purification Technology,2004,39:51-65
    37Mark M D, Robert L G, Kirit P. Process for the Purification of Natural Gas: US,5174796[P].1992.
    38Herbert E R, Kent S K, Mark H, et al. Separation of Gases by Pressure Swing Adsorption: US,5792239[P].1998.
    39徐龙君,鲜学福,杨明莉.煤矿区煤层气浓缩净化方面的基础研究[J].中国煤层气,2005,2:11-17
    40杨雄.吸附法分离低浓度抽排煤层气实验研究[D].博士学位论文,北京:北京科技大学,2011.
    41R. T. Yang, Adsorbents: Fundamentals and Applications. John Wiley and Sons, Inc., Hoboken,New Jersey,2003.
    42辜敏.提高抽放煤层气中甲烷浓度的变压吸附基础研究[D].博士学位论文,重庆:重庆大学,2000.
    43辜敏,陈昌国,鲜学福.混合气的吸附特征研究[J].天然气工业,2001,21:92-94.
    44辜敏,鲜学福.模拟的煤层气在活性炭上穿透曲线的研究[J].天然气化工,2003,28:23-25.
    45辜敏,鲜学福,张代钧.变压吸附分离CH4/N2混合气体[J].煤炭学报,2002,27:197-200.
    46辜敏,陈昌国,鲜学福.抽放煤层气的变压吸附过程的数学模拟[J].煤炭学报,2001,26:323-326.
    47杨明莉.煤层甲烷变压吸附浓缩的研究[D].博士学位论文,重庆:重庆大学,2004.
    48辜敏,鲜学福.变压吸附技术分离CH4/N2气体混合物[J].煤炭学报,2002,27:197-200.
    49辜敏,鲜学福.矿井抽放煤层气中甲烷的变压吸附提浓[J].重庆大学学报,2007,30(4):29-33.
    50张福凯,徐龙君,鲜学福.改性煤变压吸附分离煤层气中甲烷的研究[J].天然气化工,2008,33(4):17-23.
    51Zhou L, Guo W C, Zhou Y P. A Feasibility Study of Separating CH4/N2by Adsorption[J].Chinese Journal of Chemical Engineering,2002,10(5):555-561.
    52周理,周亚平.高表面活性炭变压吸附分离甲烷/氮气混合物的方法. CN,02117916.6[P],2003
    53李胜男.吸附法浓缩煤层甲烷的实验研究[D].硕士学位论文,天津:天津大学,2006.
    54常心洁,刘应书,刘文海,等.低压变压吸附法分离净化低浓度瓦斯的试验研究[J].中国煤层气,2006,3(4):39-43.
    55常心洁,刘应书,刘文海,等.变压吸附法分离低浓度瓦斯的试验研究[J].低温与特气,2006,24(6):18-21.
    56赵国锋,刘欣梅,代晓东,等.煤矿瓦斯气中低浓度CH4吸附富集研究[J].工业催化,2007,15(8):44-49.
    57Olajossy A. Methane Separation from Coal Mine Methane Gas by Vacuum Pressure SwingAdsorption[J]. Chemical Engineering Research and Design,2003,81(4):474-482.
    58Delgado J A, Uguina M A, Sotelo J L. Modelling of the Fixed-Bed Adsorption ofMethane/Nitrogen Mixtures on Silicalite Pellets[J]. Separation and Purification Technology,2006,50:192-203.
    59Buczek B. Methane Recovery from Coal Mille Gases Using Carbonaceous Adsorbents[J].Inzynieria Chemiczna I Procesowa,1996,10:205-209.
    60Buczek B. Development of Texture of Carbonaceous Sorbent for Use in Methane Recoveryfrom Gaseous Mixtures[J]. Inzynieria Chemiczna I Procesowa,2000,21:385-392.
    61Balys M, Buczek B, Ziefldewicz J. Modeling Study of PSA Process for Methane Recoveryfrom Mine Gases[J]. Inzynieria Chemiczna I Procesowa,1999,18:205-210.
    62Dong F, Lou H, Kodama A, et al. The Petlyuk PSA Process for the Separation of Ternary GasMixtures: Exemplification by Separating a Mixture of CO2-CH4-N2[J]. Separation andPurification Technology,1999,16(2):159-166.
    63西南化工研究设计院.变压吸附法富集煤矿瓦斯气中甲烷:中国,85103557[P],1986.
    64Utaki T. Development of Coal Mine Methane Concentration Technology for Reduction ofGreenhouse Gas Emissions[J]. Science China Technological Sciences,2010,53(1):28-32.
    65赵益芳,阎海英,王飞,等.矿井低浓度瓦斯增浓技术的研究[J].太原理工大学学报,2001,3(1):57-60.
    66章川泉,林文胜,顾安忠,等. CH4/N2混合气体在CMS上的低温吸附分离实验研究[J].低温技术,2008,36(5):9-12.
    67Aeldey M.W, Yang L T. Clinoptilolite Untapped Potential for Kinetic Gas Separations[J].Zeolites,1992,12(7):780-788.
    68Acldey M W, Yang R T. Adsorption Characteristics of High-Exchange Clinoptilolites[J].Industrial Engineering&Chemistry Research,1991,30(12):2523-2530.
    69Jayaraman A, Hernandez-Maldonado A J, Yang R T, et a1. Clinoptilolites for Nitrogen/Methane Separation[J]. Chemical Engineering Science,2004,59:2407-2417.
    70Jayaraman A, Yang R T. Tailored Clinoptilolites for Nitrogen/Methane Separation[J].Industrial&Engineering Chemistry Research.2005,44:5184-5192.
    71Kouvelos E, Kesore K, Steriotis T, et al. High Pressure N2/CH4Adsorption Measurements inClinoptilolites[J]. Microporous and Mesoporous Materials,2007,99(1-2):106-111.
    72Ski K W, Sodzawiczny W. Effect of Adsorption Pressure on Methane Purity During PSASeparations of CH4-N2Mixtures[J]. Chemical Engineering and Processing,1999,38(1):55–60.
    73Huang Q L, Farooq S, Karimi I A. Binary and Ternary Adsorption Kinetics of Gases inCarbon Molecular Sieves[J]. Langmuir,2003,19:5722-5734.
    74Huang Q L, Farooq S, Karimi I A. Prediction of Binary Gas Diffusion in Carbon MolecularSieves at High Pressure[J]. AIChE Journal,2004,50:351-367.
    75Grande C A, Carbon Molecular Sieves for Hydrocarbon Separations by Adsorption[J].Industrial and Engineering Chemistry Research,2005,44(18):7218-7227.
    76Simone C, Carlos A G. Separation of Methane and Nitrogen by Adsorption on CarbonMolecular Sieve[J]. Separation Science and Technology,2005,40:2721-2743.
    77Simone C, Carlos A G, Rodrigues A E. Separation of CH4/CO2/N2Mixtures by LayeredPressure Swing Adsorption for Upgrade of Natural Gas[J]. Chemical Engineering Science,2006,61:3893-3906.
    78Ackley M W, Yang R T. Kinetic Separation by Pressure Swing Adsorption: Method ofCharacteristics Model[J]. AIChE Journal,1990,36(8):1229-1238.
    79Fatehi A. Separation of Methane-Nitrogen Mixtures by Pressure Swing Adsorption Using aCarbon Molecular Sieve[J]. Gas Separation&Purification,1995,31(9):199-204.
    80A. A. Gelacio, P. I. María, L. R. Roberto. Adsorption Kinetic Behaviour of Pure CO2, N2andCH4in Natural Clinoptilolite at Different Temperatures[J]. Adsorption Science&Technology,2003,21:81-91.
    81ESTEVES Isabel A A C, LOPES Marta S S, NUNES Pedro M C. Adsorption of Natural Gasand Biogas Components on Activated Carbon[J]. Separation and Purification Technology,2008,62:281-296.
    82Rodríguez-Reinoso F, Nakagawa Y, Silvestre-Albero J. Correlation of Methane Uptake withMicroporosity and Surface Area of Chemically Activated Carbons[J]. Microporous andMesoporous Materials,2008,115:603-608.
    83Belmabkhout Y, Weireld G. D, Frere M. High-Pressure Adsorption Isotherms of N2/CH4/O2and Ar on Different Carbonaceous Adsorbents[J]. Journal of Chemical and Engineering Data,2004,49:1379-1391.
    84Baksh M S A, Yang R T, Chung D D L. Composite Sorbents by Chemical Vapor Depositionon Activated Carbon[J]. Carbon,1989,27(6):931-934.
    85Baksh M A, Kapoor A, Yang R T. New Composite Sorbent for Methane-Nitrogen Separationby Adsorption[J]. Separation Science and Technology,1990,25(7/8):845-868.
    86Carrott P J M, Cansado I P P, Ribeiro M M L. Carbon Molecular Sieves from PET forSeparations Involving CH4/CO2/O2and N2[J]. Applied Surface Science,2006,252:5948-5952.
    87Villar-Rodil S, Navarrete R, Denoyel R, et al. Carbon Molecular Sieve Cloths Prepared byChemical Vapour Deposition of Methane for Separation of Gas Mixtures[J]. Microporous andMesoporous Materials,2005,77:109-118.
    88李坚,宁红艳,马东祝,等.变压吸附分离煤矿乏风瓦斯吸附剂的选择及改性[J].煤炭学报,2012,37(1):126~130.
    89Zhang T Y, Walawender W P, Fan LT. Preparation of Carbon Molecular Sieves by CarbonDeposition from Methane[J]. Bioresource Technology,2005.96(17):1929-1935.
    90Prasetyo I, Do D.D. Pore Structare Alteration of Porous Carbon by Catalytic CokeDeposition[J]. Carbon.1999.37(12):1909-1918.
    91Freitas M M A, Figueiredo J L. Preparation of Carbon Molecular Sieves for Gas Separationsby Modification of the Pore Sizes of Activated Carbons[J]. Fuel,2001,80(1):1-6.
    92Sun X, Zha Q F. Control of Pore Structure of Carbon Molecular Sieves[J]. ShiyouJiagong/Aeta Petrolei Siniea (Petroleum Procesing Section).2004,20(3):43-48.
    93鲁特格斯炭公司.用于从空气中提取氮的炭分子筛的制备方法:德国,028112105[P],2004.
    94Cao D P, Zhang X R, Chen J F. Optimization of Single-Walled Carbon Nanotube Arrays forMethane Storage at Room Temperature[J]. Journal of Physical Chemistry B,2003,107:13286-13292.
    95Bekyarova E, Murata K, Yudasaka M, et al. Single-Wall Nanostructured Carbon for MethaneStorage[J]. Journal of Physical Chemistry B,2003,107(20):4681-4684.
    96Aguilar-Armenta G, Hernandez-Ramirez G, Flores-Loyola E, et al. Adsorption Kinetics ofCO2/O2/N2, and CH4in Cation-Exchanged Clinoptilolite[J]. Journal of Physical Chemistry B,2001,105:1313-1319.
    97Delgado J A, Uguina M A, Gomez J M. Adsorption Equilibrium of Carbon Dioxide, Methaneand Nitrogen onto Na-and H-mordenite at High Pressures[J]. Separation and PurificationTechnology,2006,48,223-228.
    98Cavenati S, Grande C A, Rodrigues A E. Adsorption Equilibrium of Methane, CarbonDioxide, and Nitrogen on Zeolite13X at High Pressures[J]. Journal of Chemical andEngineering Data,2004,49:1095-1101.
    99Li P Y, Tezel F H. Adsorption Separation of N2/O2/CO2and CH4Gases by Zeolite[J].Microporous and Mesoporous Materials,2007,98:94–101.
    100Jayaraman A, Yang R T, Chinn D. Tailored Clinoptilolites for Nitrogen/MethaneSeparation[J]. Industrial&Engineering Chemistry Research,2005,44:5184-5192.
    101Glover T G., Dunne K I, Davis R J, et al. Carbon-Silica Composite Adsorbent:Characterization and Adsorption of Light Gases[J]. Microporous and Mesoporous Materials,2008,111:1-11.
    102Liu X W, Li J W, Zhou L. Adsorption of CO2/CH4and N2on Ordered Mesoporous SilicaMolecular Sieve[J]. Chemical Physics Letters,2005,415:198-201.
    103Zhou L, Liu X W, Sun Y, et al. Methane Sorption in Ordered Mesoporous Silica SBA-15inthe Presence of Water[J]. Journal of Physical Chemistry B,2005,109,22710-22714.
    104Kuznicki S M, Bell V A, Nair S, et al. A Titanosilicate Molecular Sieve with Adjustable Poresfor Size-Selective Adsorption of Molecules[J]. Nature,2001,412,720-723.
    105刘克万,辜敏,鲜晓红.变压吸附分离CH4/N2的分子筛吸附剂进展[J],材料导报,2010,24:59-63.
    106Pillai R S, Peter S A, Jasra R V. Adsorption of Carbon Dioxide/Methane/Nitrogen/Oxygenand Argon in Na-ETS-4[J].2008,113,(1-3):268-276.
    107Delgado J A, Uguina M A, Gueda V I A, et al. Adsorption and Diffusion Parameters ofMethane and Nitrogen on Microwave-Synthesized ETS-4[J]. Langmuir,2008,24:6107-6115.
    108Lokhandwala, Membrane-augmente. A Cryogenic Methane/Nitrogen Separation: US,5647227[P],1997.
    109M. W. Ackley, R. T. Yang. Adsorption Characteristics of High Exchange Clinoptilolites[J],Industrial and Engineering Chemistry Research,1992,30:2523.
    110Eddaoudi M, Kim J, Rosi N, et al. Systematic Design of Pore Size and Functionality inIsoreticular MOFs and Their Application in Methane Storage[J]. Science Science,2002,295(5554):469-472.
    111Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen Storage in Microporous Metal-OrganicFrameworks[J]. Science,2003,300:1127-1129.
    112Düren T, Sarkisov L, Yaghi O M. Design of New Materials for Methane Storage[J]. Langmuir,2004,20:2683-2689.
    113Ma S Q, Sun D F, Simmons J M, et al. Metal-Organic Framework from an AnthraceneDerivative Containing Nanoscopic Cages Exhibiting High Methane Uptake[J]. Journal of theAmerican Chemical Society,2008,130:1012-1016.
    114Cavenati S, Grande C A, Rodrigues A E. Metal Organic Framework Adsorbent for BiogasUpgrading[J]. Ind Eng Chem Res,2008,47(16):6333–6335
    115Wang X S, MA S Q, Rauch K. Metal-Organic Frameworks Based on Double-Bond-CoupledDi-Isophthalate Linkers with High Hydrogen and Methane Uptakes[J]. Chemistry ofMaterials,2008,20(9):3145-3152.
    116徐如人,庞文琴,等著.分子筛与多孔材料化学[M],科学出版社,2004.
    117刘应书,郭广栋,杨雄,等.变压吸附浓缩煤层气吸附剂的选择实验[J].矿业安全与环保,2010,37(4):4-7.
    118Chen J P, Wu S. Simultaneous Adsorption of Copper Ions and Humic Acid onto an ActivatedCarbon[J]. Journal of Colloid and Interface Science,2004,280(2):334-342;
    119Caturla F, Molina-Sabio M, Rodriguez-noso F. Preparation of Activated Carbon by ChemicalActivation with ZnCl2[J]. Carbon,1991,29(7):999-1007.
    120王红娟,奚红霞,张海兵,等.正已醇在改性活性炭上的脱附活化能[J].华南理工大学学报(自然科学版),2002,30(7):35-38.
    121李德伏,曾海,王金渠,等.活性炭的改性及对乙烯的吸附性[J].石油化工,2001,30(9):677-680.
    122徐法强,侯瑞玲,薛锦珍,等.甲烷分子在碱性催化剂上的吸附与酸碱活化机理[J].分子催化,1997,11(4):247-252.
    123Zhonghua Hu, E. F. Vansant. Synthesis and Characterization of a Controlled-Micropore-SizeCarbonaceous Adsorbent Produced from Walnut Shell[J]. Microporous Materials,1995,3(6):603-612
    124N. V. Bodev, R. Gruber, V. A.Kucherenko, et al. A Novel Process for Preparation of ActiveCarbon from Sapropelitic Coals[J]. Fuel,1998,77(6):473-478
    125V. Vertheyen, R. Rathbone, M. Jagtoyen, et al. Activated Extrudates by Oxidation and KOHActivation of Bituminous Coal[J]. Carbon,1995,33(6):763-772
    126郭玉鹏,杨少凤,赵敬哲,等.由稻壳制备高比表面积活性炭[J],高等学校化学学报,2000,21(3):335-338
    127黄正宏,康飞宇,郝吉明. KOH与CO2活化的ACF的孔结构[J].炭素,2005(1):23-26
    128商红岩,吴明铂,郑经堂,等. KOH活化制备高比表面积窄孔径分布的活性炭纤维的研究[J].炭素技术,1999(5):9-13.
    129ALCANIZMONGE J, DELACASALILLO MA,CAZORLAAMOROS D. Methane Storagein Activated Carbon Fibres[J]. Carbon,1997,35(2):291-297.
    130Grajek H. Changes in the Surface Chemistry and Adsorptive Properties of Active CarbonPreviously Oxidized and Heat-Treated at Various Temperatures[J]. Adsorption Science andTechnology,2001,19(7):565-576.
    131Menendez J. A., Phillips J., Xia B., et al. On the Modification of Chemical Surface Propertiesof Active Carbon in the Search of Carbon with Stable Basic Properties[J]. Langmuir,1996,12(18):4404-4410.
    132Xuedong ZHU, Zibin ZHU, Chengfang ZHANG, et al. Fundamental Study of Coal Pyrolysis-IV: Functional Group Pyrolysis Model[J]. Journal of East China University of Science andTechnology,2001,27:113-120.
    133白树林,赵桂英,付希贤.改性活性炭对水溶液中CP3+吸附的研究[J].化学研究与应用,2001,13(6):670-672.
    134刘军利,古可隆.高温处理对活性炭孔隙结构的影响[J].林产化学与工业,1999,19(3):37-40.
    135Manuel Fernando R. Pereira, Samanta F. Soares, Jose J. M. Orfao, et a1. Adsorption of dyeson activated carbons: influence of surface chemical groups[J]. Carbon,2003,41(4):811-821.
    136王宁,苏伟,周理.水蒸气活化法制备椰壳活性炭的研究[J].炭素,2006,2:44-49.
    137孙康,蒋剑春,张天健.水蒸气法制备橡胶籽壳活性炭的研究[J].林产化学与工业,2006,26(2):41-43.
    138XU Bin, wu Feng, CAO Gaoping. Effect of Carbonization Temperature on Mierostructure ofPAN-Based Activated Carbon Fibers Prepared by CO2Activation[J]. New Carbon Materials,2006,2l(1): l4-l9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700