用户名: 密码: 验证码:
空间数据几何相似性度量理论方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相似性是人类感知、判别、分类和推理等认知活动的基础。空间数据相似性度量不仅是地理信息数据融合更新、空间数据检索和相似查询、空间聚类和异常探测、电子地图导航等技术的核心和基础,而且也是从更深层次探寻地理实体在不同历史时期的相似形成、演变与差异性规律,进而进行动态相似推理、相似预测和知识发现的关键。本文主要研究多源多尺度、多时相空间数据几何相似性度量理论方法及其应用,所做的主要工作及取得的成果有:
     1、总结了相似性科学与相似工程的研究进展,分析了几何相似性在计算机视觉和地理信息科学领域的研究现状和面临的挑战。提出了论文研究的基本思路,即:空间数据几何相似性度量模型的建立以相似性科学与工程为基础,借鉴图形图像处理方面的算法和空间关系理论,考虑到空间数据的特殊性,对上述理论方法进行大量的改进和创新。
     2、论文基于心理学、认知科学、思维科学和系统科学,论述了相似性的定义、性质和分类,介绍了基于距离的相似性度量、基于系统的相似性度量和几种典型的几何相似性度量模型。然后运用上述基本理论讨论了空间数据相似性的科学内涵、概念和基本性质,并从地理实体变化的角度分析了空间数据相似性产生的根源,即:变化导致空间数据产生差异性和相似性。从系统的角度分析和定义了空间数据相似性,即把空间数据看作一个整体的系统,然后划分了系统的层次结构,阐述了系统-要素-特征之间的逻辑关系。在系统分析的基础上,对空间数据相似性进行了层次分类和数学上的形式化定义,得出“空间数据相似性度量是基于系统的相似性度量方法与基于距离的相似性度量方法的有机结合”这一重要结论。
     3、建立了矢量目标间几何相似性度量的多种模型,研究了几何相似性度量模型在空间目标匹配、合并与制图综合中具体应用,主要包括:提出了一种基于KL特征的空间点集目标间的相似匹配方法,建立了点集目标间的几何相似性度量模型,最后在点集匹配的基础上利用最优插值方法合并了点目标,提高了数据精度;利用平均Fréchet距离来度量曲线的几何相似性(该方法还可以识别同名曲线上的邻近点),基于此相似性度量方法,提出了一种不同比例尺地图数据网状线要素匹配算法,即先进行结点、弧段的粗匹配,然后利用结点—弧段拓扑关系的相似性和离散Fréchet距离进行精确匹配,匹配过程将几何、语义、拓扑、结点和弧段匹配有效结合起来,在匹配的基础上,合并了同名线目标;利用多级弦长函数和中心距离函数从全局整体到局部细节逐级描述面目标几何形状,建立了通用多尺度面目标几何相似性度量模型。并基于高斯概率统计模型改进了传统的Hausdorff距离,引入信息检索中的相关反馈技术解决了相似度量模型中各指标阈值的确定问题,最后将相似度量模型分别应用于不同比例尺数据匹配和空间目标化简前后的相似度量。
     4、基于矢量数据轮廓与其对应影像数据边缘轮廓的几何相似性,研究了如何利用主动轮廓模型和已有的矢量数据来提取更新面目标和线目标矢量数据。首先对传统主动轮廓模型的基本原理、求解方法、优点及目前存在的问题做了简要介绍。然后提出一种用于提取面状水体和线状道路的新的主动轮廓模型,新模型在传统内部能量和外部能量的基础上加入基于目标-背景灰度的图像引力势能和基于离散曲率的相似约束势能,目的分别是为了提高模型的收敛速度和抗噪性能,避免噪声点对轮廓曲线上点的吸引和干扰进而使曲线变形太大。并充分利用矢量数据的先验信息,自适应确定模型中的相关参数,还在原始直线主动轮廓模型的基础上加入“气球”膨胀力以提取更新线目标。同时,建立了基于相似性度量的提取精度评估模型,给出了基于贪婪算法的模型求解过程。
     5、研究了空间数据集合间的拓扑关系、方向关系和五元混合相似性度量模型的建立。首先基于9交集模型总结计算了各类拓扑关系之间的距离值,在拓扑关系距离的基础上建立了实体集合间简单拓扑关系的相似性度量模型。基于简单实体集合间拓扑关系的相似性度量,采用“分解—组合”的思路建立了实体集合间复杂拓扑关系的相似性度量模型;基于方向关系矩阵的方向关系描述方法,改进了Goyal的方向关系概念邻域图,使之更符合人对方向关系的认知理解,并在此基础上建立了一般情况下实体对之间方向关系的相似性度量模型,如1:N、N:N和M:N空间方向关系之间的相似性,然后建立了实体集合间空间方向关系的相似性度量模型。基于数量、维数、几何、拓扑关系和方向关系相似性度量模型建立了五元组混合相似性度量模型。将混合相似性度量模型应用于地理要素的变化推理中,建立了存储和描述地理要素变化的地理事件模型,并基于混合相似性度量模型给出了地理事件的推理过程。最后将本文的研究成果集成于数字地图生产与更新的实验系统中,介绍了实验系统的基本情况和主要功能。
The similarity is the basis of the human perception, identification, classification, reasoning and other cognitive activities. The similarity measure of spatial data is not only the key technologies of map navigation, spatial data matching, spatial data fusion, spatial data updating, spatial data retrieval and similarity query, spatial data clustering and anomaly detection, but also it has very important significance in exploring the variation laws of geographic entities in different period and implementing dynamic prediction. This dissertation focuses on how to establish and apply geometric similarity measurement model for multi–source, multi–scale and multi–temporal spatial data. The main contributions are as follows:
     1. The dissertation summarizes the research actuality of similarity science and engineering, and geometric similarity applications, actuality, challenges and solution in the field of computer vision and geography information science are also present. This dissertation thinks that the theory basis of spatial data geometric similarity measurement model establishment is what similarity science and engineering includes interrelated theory, and the key algorithms are based on image and spatial relations processing algorithms, but the particularity of spatial data must be take into account.
     2. The dissertation discusses the basic definition, property and classification about similarity based on psychology, cognition science, noetic science and system science, and then the similarity measurement distance–based, similarity measurement system–based and several typical geometric similarity measurement models are also introduced. Based on the above basic theory, this dissertation presents the scientific meaning, concept, basic property for spatial data similarity, and the causes of spatial data similarity are analyzed from the geography entity changes. Then the dissertation analyses and defines spatial data similarity from the system point of view, i.e. the spatial data was seen as a system, which is divided into many hierarchies. The logic relations of system–element-feature about are spatial data similarity explained. Based on system analysis, this dissertation conducts a hierarchical classification and formal definition mathematically, and the important conclusion that the similarity measurement methods for spatial data are the organic integration of similarity measurement distance–based and similarity measurement system–based is got.
     3. The dissertation establishes kinds of geometric similarity measurement models between the vector objects, and researches on the models applications in spatial objects matching, conflation and cartographic generalization, includes: this dissertation introduces the basic idea and method of point pattern matching and proposes similarity matching method of between spatial point group objects based on KL feature, geometric similarity measurement model of point group objects is established. Finally, the dissertation applies the optimum interpolation method to conflate the multi-source geography spatial data based on point group matching, compared with other methods, this method can improve the data precision; the dissertation presents a method of curve similarity measurement based on average Fréchet distance(the method can also identify neighborhood points between homonymy curves). This dissertation proposes an algorithm for feature matching from network data at different map scaled based on similarity measure. The whole strategy of matching is the first pre-matching of nodes and arcs, followed by accurate matching through similarity of node-arc topologies and discrete Fréchet distance. The matching process combines the matches in geometry, semantics, topology, nodes and arcs effectively. Based on matching, line objects are conflated; the dissertation establishes universal measure model of geometry similarity for multi-scale spatial data based on multilevel chord length functions and center distance functions. These functions can describe geometry shape from entirety to part gradually. This dissertation improves the traditional Hausdorff distance based on the statistic Gaussian mode. The enactment of every criteria threshold value in the measure model of geometry similarity is solved by introducing relevance feedback techniques. At last, the model is applied in data matching of different scales and similarity measure of spatial object simplification.
     4. The dissertation researches on how to apply active contour model and existing vector data extracting and updating area and linear objects based on the geometry similarity between the vector data contour and image data edge contour. The basic theory, solving methods, advantages and disadvantages of the traditional active contour model are introduced. This dissertation presents a new active contour model, which is used to extracting area water body and linear road from Remote Sensing Images. The new active contour model is added to the image gravitation potential energy based on object-background gray value and the similarity restriction potential energy based on discrete curvature, the purpose is to improve the model constringency speed and noise immunity, and to avoid the noise on the curve point of attraction and disturbance. The model use prior information of vector data adequately to compute correlative parameter adaptively. The balloon power is added into original line active contour model to extract and update linear objects. At the same time, The extraction precision evaluating model is established based on similarity measurement, and the process of solving the model is given based on greedy algorithm.
     5. The dissertation researches on the establishment of topological relations similarity measurement model, direction relations similarity measurement model and five–tuples similarity measurement model. Based on 9–intersection classification and description of topological relations, the distance values between various topological relations are computed and the simple topological relations similarity measurement model between objects set is established. This dissertation establish similarity measurement model of complex topological relations by using the strategy of decomposing– combination based on simple topological relations similarity measurement model; Goyal’s conceptual neighborhood graph is improved and the normal direction relations similarity measurement model is established based on direction relations describing methods, such as 1:N, N:N and M:N direction relations similarity. Then direction relations similarity measurement model between objects set is established, and finally, this dissertation establishes five–tuples similarity measurement model based on quantity, dimension, geometry, topological relations and direction relations similarity measurement model. The reasoning process of geography event is presented based on mixed similarity measurement model and the database logical expression frame and the detection and storage flow for geographical event is designed. At last, the dissertation’s research are used in map making and geography information updating system, and the basic content and main function of experiment system are also introduced.
引文
[1] Shepard, R. N. , Toward a universal law of generalization for psychological science[J], Science, 1987, 237(4820): 1317-1323.
    [2]钱学森.创建系统学[M].太原:山西科学技术出版社, 2001.
    [3] Quine, W. V. , Ontological Relativity and Other Essays [M], Columbia University Press, 1969, 165.
    [4]周美立.相似性科学[M].北京:科学出版社, 2003.
    [5]丁虹.空间相似性理论与计算模型的研究[D].武汉:武汉大学, 2004.
    [6]苏洁,周东方,岳春生. GPS车辆导航中的实时地图匹配算法[J].测绘学报, 2001, 30(3): 252-256.
    [7]张振辉.车辆导航中地图匹配算法与应用研究[D].郑州:信息工程大学, 2006.
    [8]闫浩文,褚衍东.多尺度地图空间相似关系基本问题研究[J].地理与地理信息科学, 2009, 25(4): 42-44.
    [9]安晓亚,孙群,肖强,李少梅.面向地理空间数据更新的数据同化[J].测绘科学技术学报, 2010, 27(2): 153-156.
    [10]安晓亚,孙群,张小朋,陈艳丽.多源地理空间数据同化的主动更新与应用分析[J].地球信息科学学报, 2010, 12(4): 541-548.
    [11]陈军,王东华,商瑶玲,等.国家1:50000更新工程总体设计研究与技术创新[J].测绘学报, 2010, 39(1): 7-10.
    [12]袁贞明,吴飞,庄越挺.基于草图内容的空间拓扑数据检索方法[J].浙江大学学报(工学版), 2006, 40(10): 1663-1668.
    [13] Patricia Louise Frontiera. A probabilistic approach to spatial ranking for geographic information retrieval [D]. University of California Berkeley, USA, 2004.
    [14] Konstantinos A Nedas, Max J Egenhofer. Spatial-Scene similarity queries[J], Transactions in GIS, 2008, 12(6): 661-681.
    [15] Christopher A. Badurek. Measuring change similarity of spatial entities: the case of the criminal history of place [D]. University of New York, USA, 2005.
    [16] M·B·基尔皮契夫.相似理论[M].北京:科学出版社, 2003.
    [17]樊坚.相似关系?类比方法的基础[J].自然辩证法研究, 1992, 8(8): 48-50.
    [18]梁俊雄.相似关系的基本概念及其弱等价性质[J].系统工程理论与实践, 1999, 28(7): 106-111.
    [19]莫雷,常建芳.类别特征的相似性与竞争性对归类的影响[J],心理学报, 2003, 35(5): 628-635.
    [20]骆嘉伟.基因数据相似性分析方法研究[D].长沙:湖南大学, 2008.
    [21]张光鉴.相似论[M].江苏:江苏科技出版社, 1993.
    [22]周美立.相似系统论[M].北京:科学技术文献出版社, 1994.
    [23]周美立.相似工程学[M].北京:机械工业出版社, 1998.
    [24]王斌,舒华忠,施朝健,等.一种基于轮廓线的形状描述与匹配方法[J],电子与信息学报, 2008, 30(4): 949-952.
    [25]王斌.形状分析的新方法及其应用[D].上海:复旦大学, 2006.
    [26] C. Zahn and R. Roskies. Fourier descriptors for plane closed curves [J]. Computer Graphics and Image Proeessing, 21: 269-281, 1972.
    [27] J. R. Bennet and J. S. McDonald. On the measurement of curvature in a quantized environment [J]. IEEE Transactions on Computers, 1975, 24: 803-820.
    [28] G. H, Granlund. Fourier preprocessing for hand print character recognition[J]. IEEE Transactions on Computers, 1972, 21: 195-201.
    [29] C. W. Riehards and H.Hemami, Identification of three-dimensional objects using Fourier descriptors ofthe boundary curve [J]. IEEE Transactions on SMC, 1974, 4: 371-378.
    [30] E. Persoon and K. Fu. Shape discrimination using Fourier descriptors[J]. IEEE Transactions on SMC, 1977, 7: 170-179.
    [31] P. J. van Otterloo. A contour-oriented approach to shape analysis[C]. Prentice Hall International(UK)Ltd, 1991, 90-108.
    [32] E. R. Davies. Machine Vision: Theory, Algorithms, practicalities[M]. 1997, Academic press.
    [33] D. Cheng and H. Yan. Recognition of Hand written digits based on contour information[J]. Pattern Recognition. 1998, 31(3): 235-255.
    [34] M. F. Wu and H. T. Sheu. Contour-based correspondence using Fourier descriptors[J]. IEEE Proceedings-Vision, Image and Signal Processing. 1997, 144(3): 150-160.
    [35] R. Tello. Fourier descriptors for computer graphics[J]. IEEE Transactions on Systems, Man and Cybernetics. 1995, 25(5): 861-865.
    [36] M. Sonka, V. Hlavae, R. Boyle. Image processing, Analysis and Machine Vision[M]. Chapman& Hall Computing, 1993.
    [37] H. Freeman. On the encoding of arbitrary geometric configuration[J]. IEEE Transaction on Electric Computers. 1961, 10(2): 260-268.
    [38] F. Mokhtarian and A. K. Mack worth. Scale-based description and recognition of planar Curves and two-dimensional shapes [J]. IEEE Transactions on PAMI. 1986, 8: 34-43.
    [39] F. Mokhtarian and A. K. Mack worth. A theory of multi-scale, curvature-based shape representation for planar curves [J]. IEEE Transactions on PAMI. 1992, 14:759-805.
    [40] Chen Guangyi, Tien D. Bui, Invariant Fourier wavelet descriptor for Pattern recognition [J]. Pattern Recognition. 1999, 327: 1083-1088.
    [41] Dinggang Shen, Horace H. S. IP. Discriminative wavelet shape descriptors for recognition of 2-D patterns [J], Pattern Recognition. 1999, 32: 51-165.
    [42] K. Yasuda, Y. Yin. A dissimilaruty measure for solving the cell formation problem in cellular manufacturing [J]. Computers & Industrial Engineering, 2001, 39: 1-17.
    [43]周美立何鹏.基于特征差异的系统相似性度量方法[J].机械设计, 22(增刊): 71-72.
    [44] Ohbuchi R. Otagiri T. Ibato M. Takei T. Shape similarity search of 3D models using parameterized statistics [A]. In: Proceedings of Pacific Conference on Computer Graphics and Applications [C], Beijing, China, 2002, 265-275.
    [45]丁险峰,吴洪,张宏江,等.形状匹配综述[J].自动化学报, 2001, 27(5): 678-694.
    [46] Saalefld A., Conflation: Automated Map Compilation [J]. International Journal of Geographical Information Systems, 1988, 2(3) , 217-228.
    [47] Saalefld A., Automated Map Conflation [D], Ph. D. Dissertation, Dept of Computer Sci., The University of Maryland, Washington D. C., USA, 1993.
    [48] Saalefld A., Spatial Data Acquisition and Integration [DBOL], http://www.ncgia.uesb.edu/other/ ucgis/research-priorities/oId3%20%287-07-97%29/aequisition. html, 1996.
    [49] Good child M. F, Conflation: combining geographical information [DBOL] , http://www.ncgia.uesb.edu/other/ ucsb.edu/research/ucgis/Porposal. html, 1996.
    [50] Walter.V and Fritsch.D., 1999, Matching Spatial Datasets [A]: A spatial Approach, IJGIS, 1999, 13(5), 445-473.
    [51] Filin S.and Doytsher Y., A Linear Mapping Approach to map conflation: Matching of Polylines. Surveying and Land Information Systems[J]. 1999, 59(2), 107-114.
    [52] Lemarie C., and RyanalL., Geographic Data Matching: First Investigations for a Generic Tool [A], In: Proceedings of the GIS/LIS’96 annual Convention [C], Denver, Coloardo, USA, 333-341.
    [53] Duekham M, Worboy F. An Algebraic Approach to Automated Information Fusion [J]. International Journal of Geographical Information Science, 2005, 19(5): 537-557.
    [54]张桥平,李德仁.龚健雅.地图合并技术[J].测绘通报, 2001, (7): 6-8.
    [55]张桥平.地图数据库实体匹配与合并技术研究[D].武汉:武汉大学, 2002.
    [56]张桥平,李德仁.龚健雅.城市地图数据库面实体匹配技术[J].遥感学报, 2004, 8(2): 107-112.
    [57]李德仁,张桥平,龚健雅.论地图数据库合并技术[J].测绘科学, 2004, 29(1): 1-4.
    [58] Sester M, Anders K H, Walter W. Linking Objects of Different Spatial Data Sets by Integration and Aggregation[J]. Geoinformatica, 1998, 2(4): 335 -358.
    [59] Jones C B, Kidner D B, Luo L Q, et al. Database Design for A Multi-scale Spatial Information System[J]. International Journal of Geographical Information Systems, 1996, 10(8): 901 -920.
    [60] Cobb M, Chung M, Floey H. A rule-based approach for the conflation of attributed vector data [J]. Geoinformatica, 1998, (1): 7-35.
    [61] Zhang M, Shi W, Meng L. A Generic Matching Algorithm for Line Networks of Different Resolutions [A].//Proceedings of the 8th ICA Workgroup on Generalization and Multiple Representations[C], A Coruna, 2005, 7.
    [62] Huttenlocher D P, Klanderman G A, Rncklidge W J. Comparing Images Using the Hausdorff Distance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850-863.
    [63] Volz S.An Iterative Approach for Matching Multiple Representations of Sheet Data [A]. //Hampe M, Sester M, Harrie L. (eds.): ISPRS Workshop-Multiple Representation and Interoperability of Spatial Data[C], Hannover, Germany, 2006, 36: 22-24.
    [64] Gabay Y, Doytsher Y. Automatic Adjustment of Line Maps [A]. //GIS/LIS Prooeedings'94[C], Phoenix, Arizona, 1994: 333-341.
    [65] Masuyama k. Methods for Detecting Apparent Differences between Spatial Tessellations at Different Time Points [J]. International Journal of Geographical Information Science, 2006, 20(6): 633 -648.
    [66] Mantel D, Lipeck U.Matching Cartographic Objects in Spatial Databases [A]. ISPRS Vol.XXXV, Commission 4[C], 2004, Istanbul, Turkey.
    [67] Gombosi M, Zalik B, Krivograd S. Comparing Two Sets of Polygons[J]. International Journal of Geographical Information Science, 2003, 17(5), 431-443.
    [68] A. -M. Olteanu. A multi-criteria fusion approach for geographical data matching [A]. In Proc. of the 5th International Symposium On Spatial Data Quality (ISSDQ)[C], Enschede, Netherlands, 2007.
    [69] Patrick Lüscher, Dirk Burghardt, and Robert Weibel. Matching road data of scales with an order of magnitude difference [C]. ICC 2007.
    [70] Zhang, M. , Shi, W. & Meng. L. A matching approach focused on parallel roads and looping crosses in digital maps [A]. International Symposium of Theoretical Cartography and Geo-Information Science[C], Wuhan, China, 2006.
    [71] Meng Zhang. Methods and Implementations of Road-Network Matching [D]. Technische Universit?t München, Germany, 2009.
    [72] Sébastien Mustière, Thomas Devogele. Matching Networks with Different Levels of Detail [J]. International Journal of Geographical Information Science, 2008, 12: 435-453.
    [73] Eliyahu Safra, Yaron Kanza, et al. Efficient Integration of Road Maps [C]. ACM-GIS’06, Arlington, Virginia, USA, 2006.
    [74]陈玉敏,龚健雅,史文中.多尺度道路网的距离匹配算法[J].测绘学报, 2007, 36(1): 84-90.
    [75]童小华,邓愫愫,史文中.基于概率的地图实体匹配方法[J].测绘学报, 2007, 36(2): 210-217.
    [76]郝燕玲.基于空间相似性的面实体匹配算法研究[J].测绘学报, 2008, 37(4): 204-209.
    [77]章莉萍,郭庆胜,孙艳.相邻比例尺地形图之间居民地要素匹配方法研究[J],武汉大学学报(信息科学版), 2008, 33(6): 604-607.
    [78]郭黎,崔铁军,郑海鹰,等.基于空间方向相似性的面状矢量空间数据匹配算法[J].测绘科学技术学报, 2008,25(5): 380-382.
    [79]胡云岗. GIS中道路数据缩编更新方法研究[D].北京:中国矿业大学, 2007.
    [80]王育红,陈军.基于实例的GIS数据库模式匹配方法[J].武汉大学学报(信息科学版), 2008, 33(1): 46-50.
    [81] TONG XiaoHua, DENG SuSu. Error matching detection and robust estimation adjustment approach for map conflation [J]. Science in China Series E: Technological Sciences, 2008, 51(1): 48-61.
    [82]赵东保,盛业华.全局寻优的矢量道路网自动匹配方法研究[J].测绘学报, 2010, 39(4): 416-421.
    [83]徐枫,邓敏,赵彬彬,等.空间目标匹配方法的应用分析[J],地球信息科学学报, 2009, 11(5): 657-663.
    [84] Ching-Chien Chen, Craig A. Knoblock, Cyrus Shahabi. Automatically Conflating Road Vector Data with Orthoimagery [J]. GeoInformatica, 2006, 10: 495-530.
    [85] Matthias Butenuth, Guido v. G?sseln, Michael Tiedge, et al. Integration of heterogeneous geospatial data in a federated database [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2007, 62: 328-346.
    [86]韩敏,张杨.一种基于分组式蛇模型的GIS矢量边界更新方法[J].测绘学报, 2009, 38(2): 168-173.
    [87]孙燕楠,韩敏,等.基于神经网络的GIS和RS数据融合[J].大连理工大学学报, 2005, 45(6): 902 906.
    [88]张晓东,李德仁,等.一种基于面特征的遥感影像与GIS数据配准方法[J].遥感学报, 2006, 10(3): 373-380.
    [89] Huabin Qi. Detection and Generalization of Changes in Settlements for Automated Digital Map Updating [D]. Hong Kong Polytechnic University, Hong Kong, 2005.
    [90] Stefan Hinz. Automatic object extraction for change detection and GIS update [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2007, 62: 277-284.
    [91]苏国中,张剑清,陈炳贵. GIS知识引导的正射影像变化检测及更新[J].武汉大学学报:信息科学版, 2005, 30(8): 664-667.
    [92]张剑清,朱丽娜,潘励.基于遥感影像和矢量数据的水系变化检测[J].武汉大学学报:信息科学版,2007,32(8):663-666.
    [93]唐炉亮,杨必胜,徐开明.基于线状图形相似性的道路数据变化检测[J].武汉大学学报:信息科学版, 2008, 33(4): 367-370.
    [94]应申,李霖,刘万增,等.版本数据库中基于目标匹配的变化信息提取与数据更新[J].武汉大学学报:信息科学版, 2009, 34(6): 752-755.
    [95]夏慧琼,李德仁,郑春燕.基于相似度理论的时空变化定量描述方法[J].地理与地理信息科学, 2010, 26(3): 1-5.
    [96] Dimitris Papadias, Vasilis Delis. Relation-Based Similarity [A], In Proceedings of the 5th ACM Workshop on GIS[C], Las Vegas, ACM Press, 1997.
    [97] Max J. Egenhofer, David M. Mark, and John Herring. The 9-Intersection: Formalism and Its Use for Natural-Language Spatial Predicates[DBOL]. 1994, www.ncgia.ucsb.edu/Publications/Techse Reports /94/ 94- 1. PDF.
    [98] EGENHOFER M J. Query processing in spatial-query-by-sketch [J]. Journal of Visual Languages and Computing, 1997, 8(4): 403-424.
    [99] PAPADIAS D, KARACAPII IDIS N, ARKOUMANID. Processing fuzzy spatial queries: a configuration similarity approach [J].International Journal of Geographic Information Science, 1999, 13(2): 93-118.
    [100] Alberto Belussi, Omar Boucelma, Barbara Catania, et al. Towards Similarity-Based Topological Query Languages [A], EDBT 2006 Workshops[C], 2006, 675-676.
    [101] Po-Whei Huang, Lipin Hsu, Yan-Wei Su, et al. Spatial inference and similarity retrieval of an intelligent image database system based on object’s spanning representation [J]. Journal of Visual Languages & Computing, 2008, 19: 637-651.
    [102] Ying-Hong Wang. Image indexing and similarity retrieval based on spatial relationship model [J]. Information Sciences, 2003, 154: 39–58.
    [103]郭庆胜,丁虹.基于栅格数据的面状目标空问方向相似性研究[J].武汉大学学报:信息科学版, 2004, 29(5): 447-450.
    [104]李彬,梁爽,孙正兴.基于空间关系的手绘草图检索[J].计算机科学, 2004, 32(12): 227-231.
    [105]孟妮娜,艾廷华,周校东.制图综合中空间关系相似度的集成表达[J].华中师范大学学报(自然科学版), 2009, 43(4): 693-697.
    [106]吕秀琴,吴凡.多尺度空问对象拓扑相似关系的表达与计算[J].测绘信息与工程,2006,31(2): 29-31.
    [107]帅赞,艾廷华,帅海燕,等.基于形状模板匹配的多边形查询[J].武汉大学学报:信息科学版, 2008, 33(12): 1267-1270.
    [108]艾廷华,帅赟,李精忠.基于形状相似性识别的空间查询[J],测绘学报, 2009, 38(4): 356-362.
    [109]王桥,毋河海.地图信息的分形描述与自动综合研究[M].武汉:武汉测绘科技大学出版社,1998.
    [110]武芳.协同式地图自动综合的研究与实践[D].郑州:解放军信息工程大学测绘学院, 2000.
    [111]王桥,吴纪桃.地图数据处理与分形几何[J].地图,1995,第4期: 4-8.
    [112]李洪省,郭庆胜,刘纪平,等.基于数据匹配的建筑物群典型化快速算法[J].武汉大学学报:信息科学版, 2006, 31(7): 636-639.
    [113]边丽华,闫浩文,刘纪平,褚衍东.多边形化简前后相似度计算的一种方法[J].测绘科学, 2008, 33(6): 207-208.
    [114]张永华,程耀东,闫浩文,等.多尺度空间线状实体形状相似关系的表达与度量[J].测绘科学, 2008, 33(6): 83-85.
    [115]江浩,褚衍东,闫浩文,等.多尺度地理空间点群目标相似关系的计算研究[J].地理与地理信息科学, 2009, 25(6): 1-4.
    [116]杨春成,张清浦,田向春,等.顾及几何形状相似性的简单多边形最近距离计算方法[J].测绘学报, 2004, 33(4): 311-318.
    [117]杨春成,张清浦,田向春,等.应用于面状地理实体聚类分析的线段链形状相似性准则[J].武汉大学学报:信息科学版, 2005, 30(1): 61-64.
    [118]杨春成,何列松,谢鹏,等.顾及距离与形状相似性的面状地理实体聚类[J].武汉大学学报:信息科学版, 2009, 34(3): 335-338.
    [119]唐炉亮,李清泉,杨必胜.空间数据网络多分辨率传输的几何图形相似性度量[J].测绘学报, 2009, 38(4): 336-340.
    [120]王家耀,谢明霞,郭建忠,等.基于相似性保持和特征变换的高维数据聚类改进算法[J].测绘学报, 2011, 40(3): 1-7.
    [121] Goldstone, R. L. .Similarity[M], MIT Press, 1999, 763-765.
    [122]唐宏.图像相似性模型、算法与应用研究[D].上海:上海交通大学, 2006.
    [123] Torgerson, W. S. . Multidimensional scaling of similarity [J], Psychometricka, 1965, 30(4): 379-393.
    [124] Medin, D. L., Ortony, A. . Psychological essentialism [D], Cambridge University, 1989.
    [125] Tversky, A. Features of similarity [J] , Psychological Review, 1977, 84 (4): 327-352.
    [126] Gentner, D. . Structure-mapping: A theoretical framework for analogy [J], Cognitive Science, 1983, 7(1): 155-170.
    [127]刘远航.基于弹簧模型的形状轮廓相似性度量方法[D].沈阳:辽宁师范大学, 2002.
    [128] Alec Holt, G.L. Benwell. Using Spatial Similarity for Exploratory Spatial Data Analysis: SomeDirections[A]. Presented at the second annual conference of GeoComputation[C], `97&SIRC '97.
    [129] Goodchild M F. The Law in Geography[R], University of Zurich, 2006.
    [130] Egenhofer M, Mark D. Spatial information theory-A theoretical basis for GIS[A]. Frank A, Kuhn W. International Conference COSIT’95[c]. Lecture Notes in Computer Science, 1995, 988: 1-15.
    [131]李德仁.关于地理信息理论的若干思考[J].武汉测绘科技大学学报, 1997, 22(2): 3-5.
    [132]李德仁,王树良,李德毅.空间数据挖掘的理论与应用[M].北京:科学出版社, 2006.
    [133]谭志国.点模式匹配及应用研究[D].长沙:国防科学技术大学, 2008.
    [134]张昌芳,杨宏文,胡卫东,等.一种用于点模式匹配的改进型谱方法[J].计算机工程, 2009, 35(2): 10-12.
    [135]王年,范益政,韦穗,等.基于图的Laplace谱的特征匹配[J].中国图象图形学报, 2006, 11(3): 332-336.
    [136]童小华,邓愫愫,史文中.数字地图合并的平差原理与方法[J].武汉大学学报(信息科学版), 2007, 32(7): 621-625.
    [137]臧德彦,陶本藻,周世健.地图合并中基于叠置方法的特征点匹配可靠性检验[J].地理与地理信息科学, 2007, 23(5): 15-18.
    [138]李新,黄春林.数据同化—一种集成多源地理空间数据的新思路[J].科技导报, 2004, No.12: 13-16.
    [139]陈荣元,刘国英,王雷光,等.基于数据同化的全色和多光谱遥感影像融合[J].武汉大学学报(信息科学版), 2009, 34(8): 919-922.
    [140] Li x, Koike T, Pathmathevan M. A very fast simulated re-annealing(VFSA)approach for land data assimilation [J]. Computers&Geosciences, 2004, 30(3): 239-248.
    [141]谭建荣,岳小莉,陆国栋.图形相似的基本原理、方法及其在结构模式识别中的应用[J].计算机学报, 2002, 25(9): 959-967.
    [142]郭克华.基于微分几何的局部相似目标匹配算法研究[D].南京:南京理工大学, 2008.
    [143] Alt H, Godau M. Computing the Fréchet distance between two polygonal curves[A]. In: International Journal of Computational Geometry & Applications[C], 1995, 5(1): 75-91.
    [144] Ariane Mascret, Thomas Devogele, et al. Coastline Matching Process based on the discrete Fréchet distance[A]. In: progress in spatial handing[C] , 2006: 383-400.
    [145] Eiter T, Mannila H . Computing Discrete Fréchet Distance[A]. Technical report of Christian Doppler Labor für Expertensensyteme[C]. Vienna University of technology, num. CD-TR 94/64.
    [146] T. Devogele, C. Parent, and S. Spaccapietra. On spatial database integration [J]. International Journal of Geographical Information Science. 1998, 12(4): 335-352.
    [147] Yungang Hu, Jun Chen, Zhilin Li, Renliang Zhao. Matching of road data with different scales for updating[C]. Geoinformatics, Beijing,2007:1-12.
    [148]肖强,孙群,安晓亚.点位信息度量模型及其在曲线化简中的应用[J].测绘通报, 2010, No: 9: 57-59.
    [149] Zhang D S. Lu G J. Study and Evaluation of Different Fourier Methods for Image Retrieval [J]. Image and Vision Computing. 2005, 23: 33-49.
    [150] Seo C K, Tae J K. Texture Classification and Segmentation Using Wavelet Packet Frame and Gaussian Mixture Model [J]. Pattern Recognition, 2007, 40: 1207-1221.
    [151]陈实,马天骏,黄万红,等.基于形状上下文描述子的步态识别[J].模式识别与人工智能, 2007, 20(6): 794-799.
    [152]吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报, 2005, 28(12): 1969-1979.
    [153] Kass M, Witkin A, Terzopoulos D. Snakes:Active Contour Models[J]. International Journal of ComputerVision, 1987, 1(4): 321-331.
    [154]陈波,赖剑煌.用于图像分割的活动轮廓模型综述[J].中国图象图形学报, 2007, 12(1): 11-20.
    [155]李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报, 2000, 11(6): 751-757.
    [156] Amini A, Weymouth T, Jain R. Using dynamic programming for solving variational problems in vision[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1990, 12(9): 855-867.
    [157] Williams DJ, Shah M. A fast algorithm for active contours and curvature estimation[J]. CVGIP: Image Understanding, 1992, 55(1): 14-26.
    [158] Cohen LD, Cohen I. Finite element methods for active contour models and balloons for 2-D and 3-d images[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1131-1147.
    [159]成思源.基于可变形模型的轮廓提取与表面重建[D].重庆:重庆大学, 2003.
    [160] SALMAN Ahmadi, M.J. Valadan Zoej, Hamid Ebadi, et al. Automatic urban building boundary extraction from high resolution aerial images using an innovative model of active contours[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12:150-157.
    [161] Matthias Butenuth, Christian Heipke. Network snakes: graph-based object delineation with active contour models [J]. Machine Vision and Applications, 2010, 40: 1207-1221.
    [162] HU Yang, ZU Keju. Road Extraction from Remote Sensing Imagery Based on Road Tracking and Ribbon Snake [A]. In: Pacific-Asia Conference on Knowledge Engineering and Software Engineering [C], A Coruna, 2009: 201-203.
    [163]唐亮,谢维信,黄建军,等.直线snakes及其在建筑物提取中的应用[J].西安电子科技大学学报(自然科学版), 2005, 32(1): 60-64.
    [164]谢兴灿.城市航空影像中建筑物信息的自动提取方法研究[D].西安:西安电子科技大学, 2003.
    [165] L. D. Cohen. On active contour models and balloons [J]. CVGIP: Image Understanding, 1991, 53(2): 211-218.
    [166] Berger M O, Mohr R. Towards Autonomy in Active Contour Models [A]. In Tenth International Conference on Pattern Recognition[C]. Atlantic City: [s. n. ], 1990: 847-851.
    [167]杜世宏,王桥,秦其明.空间关系模糊描述与组合推理[M].北京:科学出版社, 2007.
    [168] M. J. Egenhofer and K. Al-Taha. Reasoning about Gradual Changes of Topological Relationships [A], In LNCS 639: Proc. of Theory and Methods of Spatio-Temporal Reasoning in Geographic Space[C], 1992, 196-219.
    [169]陈军,刘万增,李志林,等.线目标间拓扑关系的细化计算方法[J].测绘学报, 2006, 35(3): 255-260.
    [170]刘万增,陈军,邓喀中,等.线线空间关系描述的拓扑链模型[J].中国矿业大学学报, 2010, 39(1):75-79.
    [171] Goyal R. Similarity assessment for cardinal directions between extended spatial objects[D]. Orono, ME: University of Maine, 2000.
    [172] Marfa Andrea Rodrfguez. Assessing semantic similarity among spatial entity classes [D]. Orono, ME: University of Maine, 2000.
    [173] Schwering A. Approaches to semantic similarity measurement for geospatial data: A survey [J]. Transactions in GIS, 2008, 12: 5-29.
    [174]梅翔.语义检索中若干关键问题的研究[D].北京:北京邮电大学, 2007.
    [175]周晓光,陈军,朱建军,等.基于事件的时空数据库增量更新[J].中国图象图形学报, 2006, 11(10): 1431-1438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700