用户名: 密码: 验证码:
固相再生AZ91D镁合金组织结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
每合金是迄今在工程应用中最轻的金属工程结构材料,被誉为“21世纪最具发展前途的绿色金属材料”。镁合金作为结构材料应用受到限制的最主要因素是成本仍然很高,造成成本高的原因是镁合金废料回收率低,回收费用高,且利用传统再次熔炼的方法产生大量的烧损和废渣,重熔过程中须加覆盖剂和精炼剂。
     本文以固相再生的方法再生AZ91D镁合金屑和边角料,在固相再生过程中,镁屑或边角料经塑性变形直接成形,具体工艺为先冷压或热压,再热挤出成形,是一项新的再生镁合金技术。由于晶粒细化和氧化相的均匀分布,再生的镁合金具有较好的力学性能。
     研究了AZ91D镁合金屑固相再生的最佳工艺,分析了固相再生过程中AZ91D镁合金屑变形的基本特征。AZ91D镁合金屑在冷压成坯过程中,压力为300~310MPa,坯料密度可达到1.49g/cm~3以上,形成少量新的结合面。采用屑粒尺寸(4~6)mm×(3.5~4.5)mm×(1.45~1.55)mm、挤压温度为400℃和挤压比25:1再生试样有较好的综合力学性能,与铸态热挤出试样的力学性能相当。再生试样随挤压比的增大,抗拉强度和延伸率同时增大,挤压比达到25:1以上时,延伸率又随挤压比的增大而减小。
     研究了再生试样中氧化相含量与AZ91D镁合金屑的表面积之间关系,指出了氧化相含量与屑的表面积成直线关系,适量的氧化相使再生试样有较高的抗拉强度和较好的延伸率,适量的氧化相在试样中可以作为一种强化相;过多的氧化相反过来影响镁合金的延伸率,过多的氧化相在拉伸过程中易产生微孔,降低了试样的延伸率。
     研究了AZ91D镁合金边角料固相再生的最佳工艺,给出了AZ91D镁合金边角料蚀洗工艺。采用间接挤压工艺时,挤压温度为450℃时,晶粒尺寸均匀,块与块之间结合较好,抗拉强度和延伸率分别达到350.24MPa和11.82%。挤压比达到25:1以上时,晶粒不仅变得细小,而且没有出现未打碎的结合面;随挤压比的增大,试样抗拉强度增大,挤压比40:1时,抗拉强度达到378.05MPa。采用直接热挤出研究表明,与相同条件下间接挤压相比,试样的抗拉强度和延伸率均降低。
     研究了AZ91D镁合金边角料固相再生试样中结合面与抗拉强度之间关系。当结合面呈连续分布成曲线时,结合面厚度0 < w≤7μm时,AZ91D镁合金抗拉强度的预测公式为σ_w = - 40 w/3 + 345 + 40/3;结合面厚度7μm < w <11μm时,AZ91D镁合金抗拉强度的预测公式为σ_w = -30 w+ 475。当结合面呈不连续分布成曲线时,曲线上打碎段的长度所占测量曲线长度的比例0.1≤l≤0.7时,AZ91D镁合金抗拉强度的预测公式为σ_l = 150l + 245;曲线上打碎段的长度所占测量曲线长度的比例0.7 < l< 0.9时,AZ91D镁合金抗拉强度的预测公式为σ_l = 75l + 297.5。
     研究了固溶时效处理对再生AZ91D镁合金组织和力学性能的影响。经T6处理后,抗拉强度和延伸率明显提高。随着时效时间的延长,析出的β-Mg_(17)Al_(12)相数量明显增多,更长的时效时间β-Mg_(17)Al_(12)相并没有明显增大。随着时效时间的延长,试样维氏硬度增加;用AZ91D镁合金边角料和屑固相再生试样的维氏硬度均高于铸态热挤出试样的维氏硬度。
     研究了工业化基础试验中固相再生AZ91D镁合金的组织及力学性能。热压温度400±10℃,保温300s,压力为400MPa;热挤温度450±10℃,保温1小时,挤压速度0.4mm/s。固相再生试样的抗拉强度和延伸率分别能达到346.2MPa和9.62%,挤出试样的厚度、挤压流线和氧化层的分布将严重影响试样的力学性能。
Magnesium alloy is the lightest metal structural material in the engineering application up to the present moment. It is known as the most developing recycling metal material in the 21st century. Magnesium alloy is limitedly used in metal structural material because of its high cost including of the lower rate of recovery of magnesium alloy scraps and the higher expense cost. Plenty of burnout and waste residue are produced using the common remelting method and covering flux and refining flux are added in the remelting process.
     In this paper, AZ91D magnesium alloy chips and scraps were prepared by solid state recycling. In the solid state recycling process, magnesium alloy chips and scraps were directly extruded into the products by plastic deformation. Cold-press or hot-press were carried out and then hot-extrusion was used. Solid recycling magnesium alloy presents high mechanical property due to grain refinement and homogeneous dispersion of oxide precipitates. Solid state recycling is a new efficient method for the recycling of magnesium alloy chips and scraps.
     Optimal parameters of AZ91D magnesium alloy chips prepared by solid state recycling were obtained and plastic characteristics in solid state recycling were analyzed. At first, AZ91D magnesium alloy chips were cold-pressed to form a compact billet with the pressure of 300~310MPa. The density of the billet was above 1.49g/cm~3 and the surface of the chips exhibited some breaking and bonding. Recycled specimen prepared with chip dimensions of (4~6)mm×(3.5~4.5)mm×(1.45~1.55)mm, extrusion temperature of 400℃and extrusion ratio of 25:1 showed higher mechanical property. Its ultimate tensile strength and elongation to failure were almost the same as those of the as-cast and extruded specimen. Ultimate tensile strength and elongation to failure of recycled specimen increased with the extrusion ratio increasing. When the extrusion ratio is above 25:1, the elongation to failure of recycled specimen decreased with increasing the extrusion ratio.
     Relationship between oxygen concentration and total surface area of AZ91D magnesium alloy was studied for the recycled specimens. The accumulated oxygen concentration increased linearly with the total surface area. A small amount of oxide precipitation contributed to higher tensile strength and elongation to failure and resulted in dispersion strengthening. Excessive oxide may be prone to cause the early development of microvoids and contributed to lower elongation.
     Optimal parameters of AZ91D magnesium alloy scraps prepared by solid state recycling were obtained and corrosive washing technology of AZ91D magnesium alloy scraps was present. Adopting hot-press and hot-extrusion technology, the grain size was uniform and the bonding between scraps was better with the extruding temperature of 450℃. The ultimate tensile strength and elongation to failure can reach 350.24MPa and 11.82%, respectively. When the extrusion ratio exceeded 25:1, the grain became fine and the bonding layer didn’t appear. The ultimate tensile strength increased with the extrusion ratio increasing. When the extrusion ratio was 40:1, the ultimate tensile strength could reach 378.05MPa. Adopting hot-extrusion technology, comparing to hot-press and hot-extrusion technology, the ultimate tensile strength and elongation to failure decreased.
     Relationship between bonding layer and ultimate tensile strength was studied for the recycled specimens adopting AZ91D magnesium alloy scraps. When the bonding layer in the recycled specimens formed continuous curves, the ultimate tensile strength decreased with the thickness of the bonding layer increasing. Forcastable equation of the ultimate tensile strength for the recycled specimens isσ_w = -40 w/3 + 345 + 40/3 when the thixkness of the bonding layer is 0 < w≤7μm. Forcastable equation of the ultimate tensile strength for the recycled specimens isσ_w = -30 w+ 475 when the thixkness of the bonding layer is 7μm < w <11μm. When the bonding layer for the recycled specimens formed discontinuous curves, the ultimate tensile strength increased with the proportion of the length of the bonding layer accounting for the whole measured curve increasing. Forcastable equation of the ultimate tensile strength for the recycled specimens isσ_l = 150l + 245 when the thixkness of the bonding layer is 0.1≤l≤0.7. Forcastable equation of the ultimate tensile strength for the recycled specimens isσ_l = 75l + 297.5 when the thixkness of the bonding layer is 0.7 < l< 0.9.
     Effect of solution and artificial aging treatment on microstructure and mechanical property of recycled specimens was studied. The ultimate tensile strength and the elongation to failure obviously increased after T6. With the aging time prolonging, the amount ofβ-Mg_(17)Al_(12) phase obviously increased andβ-Mg_(17)Al_(12) phase didn’t become coarse. With the aging time prolonging, Vickness hardness of the recycled specimens increased. The Vickness hardnesses of recycled specimens adopting AZ91D magnesium alloy chips or scraps were higher than that adopting as-cast and hot-extrusion.
     Microstructure and mechanical property of recycled AZ91D magnesium alloy in the industrial experiment were studied. Ultimate tensile strength and elongation to failure prepared by solid state recycling were the highest and could reach 346.2MPa and 9.62%, respectively, with the optimal hot-press parameters of the temperature of 400±10℃, the holding time of 300s, the pressure of 400Mpa and the hot-extrusion parameters of the temperature of 450±10℃, the holding time of 300s, the extruding rate of 0.4mm/s. Mechanical property of the recycled specimens prepared by solid state recycling was related with the thickness of the recycled specimens, extrusion streamline and the distribution of the bonding layer.
引文
[1]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].北京:科学技术出版社, 2007: 2-5.
    [2]程永奇. AZ31镁合金板材等经角轧制及冲压性能研究[D].长沙:湖南大学博士学位论文, 2007: 1-5.
    [3]李锋.挤压变形Mg-Al和Mg-Zn系镁合金的力学行为[D].大连:大连理工大学博士学位论文, 2006: 1-3.
    [4]丁文江.镁合金科学与技术[M].北京:科学出版社, 2007: 365-399.
    [5] HSIANG S H, KUO J L. An Investigation on the Hot Extrusion Process of Magnesium Alloy Sheet[J]. Journal of Materials Processing Technology, 2003, 140: 6-12.
    [6] LAWRENCE C, YU Y, SHIGEHARU K, et al. Microstructures and Tensile Properties of ECAC-processed and Forged AZ31 Magnesium Alloy[J]. Materials Transactions, 2003, 44 (4): 476-483.
    [7]陈振华.变形镁合金[M].北京:化学工业出版社, 2005: 48-56.
    [8]陈振华,夏伟军,严红革,等.镁合金材料的塑性变形理论及其技术[J].化工进展, 2004, 23 (2): 127-135.
    [9]余琨,黎文献,王日初.镁合金塑性变形机制[J].中国有色金属学报, 2005, 15 (7): 1081-1086.
    [10]郭强.镁合金高温单向压缩及多向变形行为研究[D].长沙:湖南大学博士学位论文, 2007: 3-4.
    [11]李姗. AZ31变形镁合金板材轧制工艺、组织和性能[D].西安:西安建筑科技大学硕士学位论文, 2007: 1-4.
    [12]刘奎立. AZ31变形组织与力学性能研究[D].太原:华北工学院硕士学位论文, 2004: 5-9.
    [13]康义.中国有色金属工业“十五”发展概览[M].北京:冶金工业出版社, 2007: 135-145.
    [14]吴秀铭.发展中的镁工业[C].中国首届镁合金挤压技术国际讨论会文集,苏州, 2006: 6-17.
    [15]左铁镛.树立科学发展观,促进我国镁产业的可持续发展[C].中国首届镁合金挤压技术国际讨论会文集,苏州, 2006: 1-5.
    [16]陈振华.变形镁合金[M].北京:化学工业出版社, 2005: 372-397.
    [17]王晓强,李培杰,曾大本.镁合金废料再生标准的制定[J].轻金属, 2004, (6): 42-45.
    [18] HANKO G, ANTREKOWITSCH H, EBNER P. Recycling Automotive Magnesium Scraps[J]. Journal of the Minerals, Metals and Materials Society, 2002, 54 (2): 51-54.
    [19] ALAN A L. Magnesium: Current Potential Automotive Applications[J]. Journal of the Minerals, Metals and Materials Society, 2002, 54 (2): 42-48.
    [20]陈刚,范培耕,彭晓东,等.镁合金废料回收与再生技术研究现状[J].兵器材料科学与工程, 2007, 30 (5): 73-76.
    [21] JUNG H C, LEE Y C, SHIN K S. Fluxless Recycling of Die-cast AZ91 Magnesium Alloy Scraps[J]. Materials Science Forum, 475/479: 541-544.
    [22] TSENG K S, SHEU G L, HUANG S T. Management and Recycle of Magnesium Alloy Scraps in Die Casting Factory[J]. Materials Science Forum, 488/489: 49-52.
    [23]张诗昌,段汉桥,蔡启舟,等.镁合金的熔炼工艺现状及发展趋势[J].特种铸造及有色合金, 2000, 20 (6): 51-54.
    [24]翟春泉,丁文江,徐小平,等.新型无公害镁合金熔剂的研制[J].特种铸造及有色合金, 1997, 17 (4): 48-50.
    [25]丛福官.镁合金的回收与再生[J].轻合金加工技术, 2006, 34 (2): 1-5.
    [26] WU Guo Hua, XIE Min, ZHAI Chun Quan, et al. Stady on Purification Technology of AZ91 Magnesium Alloy Wastes[J]. Trans. Nonferrous Met. Soc. China, 2003, 13 (6): 1260-1264.
    [27] GAO H T, WU G H, DING W J. et al. Purifying Effect of New Flux on Magnesium Alloy[J]. Trans. Nonferrous Met. Soc. China, 2004, 14 (3): 530-536.
    [28] KAPLAN H I. Magnesium Technology 2002[M]. Warrendale USA: The Minerals, Metals and Materials Society, 2002: 43-54.
    [29] KAINER K U. Magnesium Alloys and their Application[M]. Weinheim: WILEY-VCH Verlag GmhH, 2000: 725-781.
    [30] NEELAMEGGHAM N R, KAPLAN H I, POWELL B R. Magnesium Technology 2005[M]. Warrendale USA: The Minerals, Metals and Materials Society, 2005: 335-339.
    [31]殷建华.一种回收镁合金废料的新工艺[J].世界有色金属, 2006, (12): 74-77.
    [32] CASHION S P, RICKETTS N J, HAYES P C. The Mechanism of Protection of Molte Magnesium by Cover Gas Mixtures Containing Sulphur Hexafluoride[J]. Journal of Light Metals, 2002, 2(1): 33-47.
    [33] CASHION S P, RICKETTS N J, HAYES P C. Characterisation of Protective Surface Films Formed on Molten Magnesium Protected by Air/SF6 Atmospheres[J]. Journal of Light Metals, 2002, 2(1): 37-42.
    [34]凡海兵,樊自田.镁合金废料再生技术[J].铸造设备研究, 2005, (5): 50-54.
    [35]蒋忠城,李文珍.镁合金报废产品回收处理技术的进展[J].铸造技术, 2005, 26 (6): 478-480.
    [36]李明照,马非.镁合金废料的回收与利用[J].华北工学院学报, 2005, 26 (2): 153-156.
    [37]杨明波,胡红军,代兵,等.镁合金废料回收技术的现状及进展[J].铸造, 2005, 54, (5): 420-424.
    [38] KATSUYOSHI K, RITSUKO T, DU W B. Manufacturing High Property Magnesium Alloy by Repeated Plastic Working and Solidifying Molding[J]. Materia, 2004, 43(4): 275-280.
    [39] KATSUYOSHI K, RITSUKO T, DU W B, et al. Devising High Property Magnesium Alloy by Grain Refining[C]. Collected Abstracts of the 2004 Spring Meeting of the Japan Institute of Metals, Tokyo, 2004: 487-488.
    [40]吉泽升.日本镁合金研究进展及新技术[J].中国有色金属学报, 2004, 14 (12): 1977-1984.
    [41] SINTAROU Y, MICHIAKI Y, YUICHI M, et al. ECAE Process on the Mg2Zn2Y Alloy of Long Period Stacking Ordered Structure[C]. Collected Abstracts of the 2004 Spring Meeting of the Japan Institute of Metals, Tokyo, 2004: 287-288.
    [42] LUO P, HU Q D, WU X L, et al. Equal Channel Angular Deformation Process and its Neuro-simulation for Fine-grained Magnesium Alloy[J]. Trans. Nonferrous Met. Soc. China, 2004, 14 (3): 525-529.
    [43] WU K, HU X S, ZHENG M Y. Mechanical Properties and Damping Capacities of Magnesium Alloys Processed by Equal Channel AngularExtrusion(ECAE)[J]. Trans. Nonferrous Met. Soc. China, 2005, 15 (Special 2): 276-279.
    [44] WANG W W, SONG J L. Effect of Friction on Equal Channel Angular Extrusion Process[J]. Trans. Nonferrous Met. Soc. China, 2005, 15 (Special 2): 162-166.
    [45] LUO P, WU X L, XIA K N. Equal Channel Angular Deformation (ECAD) of Cast AM60 Magnesium Alloy[J]. J. Mater. Sci. Technol., 2003, 19 (6): 513-515.
    [46] KIM W J, HONG S I, KIM Y S, et al. Texture Development and its Effect on Mechanical Properties of an AZ61 Mg Alloy Fabricated by Equal Channel Angular Pressing[J]. Acta Materialia, 2003, 51: 3293-3307.
    [47] LEE J C, SEOK H K, SUH J Y. Microstructural Evolutions of the Al Strip Prepared by Cold Rolling and Continuous Equal Channel Angular Pressing[J]. Acta Materialia, 2002, 50: 4005-4019.
    [48] AGNEW S R, HORTON J A, LILLO T M, et al. Enhanced Ductility in Strongly Textured Magnesium Produced by Equal Channel Angular Processing[J]. Scripta Materialia, 2004, 50: 377-381.
    [49]宋宝韫,高飞,李明典,等. LD7铝合金废屑直接再生新工艺[J].上海金属, 1990, 11 (5): 30-36.
    [50]彭大暑,罗超,姚伍秋.铝及铝合金颗粒挤压的研究[J].中南矿冶学院学报, 1989, 20 (5): 520-525.
    [51]宋宝韫,戴焕海,高飞,等.用热挤压使LD7铝合金切屑再生新工艺的试验研究[J].大连铁道学院学报, 1987, (4): 31-36.
    [52] GRONOSTAJSKI J, MATUSZAK A.The Recycling of Metals by Plastic Deformation: an Example of Recycling of Aluminium and its Alloys Chips[J]. Journal of Materials processing Technology, 1999, 92/93: 35-41.
    [53] GRONOSTAJSKI J, MARCINIAK H, MATUSZAK A. New Methods of Aluminium and Aluminium-alloy Chips Recycling[J]. Journal of Materials Processing Technology, 2000, 106: 34-39.
    [54] NAKANISHI M, MABUCHI M, SAITO N, et al. Tensile Properties of the ZK60 Magnesium Alloy Produced by Hot Extrusion of Machined Chip[J]. Journal of Materials Science Letters, 1998, 17: 2003-2005.
    [55] MABUCHI M, KUBOTA K, HIGASHI K. New Recycling Process byExtrusion for Machined Chips of AZ91 Magnesium and Mechanical Properties of Extruded Bars[J]. Materials Transactions, 1995, 36 (10): 1249-1254.
    [56] GRONOSTAJSKI J Z, KACZMAR J W, MARCINIAK H, et al. Production of Composites from Al and AlMg2 Alloy Chips[J]. Journal of Materials Processing Technology, 1998, 77: 37-41.
    [57] LEE J S, CHINO Y, HOSOKAWA H, et al. Deformation Characteristics at Elevated Temperature in Recycled 5083 Aluminum Alloy by Solid State Recycling[J]. Materials Transactions, 2005, 46 (12): 2637-2640.
    [58] FOGAGNOLO J B, RUIZNAVAS E M, SIMON M A, et al. Recycling of Aluminium Alloy and Aluminium Matrix Composite Chips by Pressing and Hot Extrusion[J]. Journal of Materials Processing Technology, 2003, 143/144: 792-795.
    [59] YASUMASA C, TETSUJI H, MAMORU M. Mechanical and Corrosion Properties of AZ31 Magnesium Alloy Repeatedly Recycled by Hot Extrusion[J]. Materials Transactions, 2006, 47 (4): 1040-1046.
    [60] YASUMASA C, MAMORU M, GEN I. The Solid Regenerative Circulation of Leftover Bits and Pieces of Magnesium Alloy[J]. Materia, 2004, 43 (4): 270-273.
    [61] OHGUCHI A, OGINUMA H, YUASA E, et al. Mechanical Alloying of Powder Mixture of Magnesium Alloy Chips and Aluminum[J]. Materials Science Forum, 2003, 426/432: 575-580.
    [62] OGINUMA H, OHGUCHI A, OHNO S, et al. Crystal Phase Formed in Mechanical Alloying of Mg-Al-Zn Powder Mixtures Using Magnesium Alloy Machined Chips[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2005, 52 (6): 416-422.
    [63]潘国如,张佩武,刘英. AZ80镁合金切屑回用的探讨[J].特种铸造及有色合金, 2006, 26 (7): 457-459.
    [64] LIU Ying, LI Yuan Yuan, ZHANG Da Tong, et al. Microstructure and Properties of AZ80 Magnesium Alloy Prepared by Hot Extrusion from Recycled Machined Chips[J]. Trans. Nonferrous Met. Soc. China, 2002, 12 (5): 882-885.
    [65]陈晓瑜,吉泽升,胡茂良.镁合金固相合成和回收的研究进展[J].轻合金加工技术, 2007, 35 (4): 10-13.
    [66]吉泽升,陈晓瑜,胡茂良,等.固相合成AZ91D镁合金的组织和性能[J].中国有色金属学报, 2006, 16 (12): 2010-2015.
    [67] JI Ze Sheng, HU Mao Liang, CHEN Xiao Yu. Fracture Analysis and Mechanical Property of AZ91D Magnesium Alloy Chips Prepared by Solid State Recycling[C]. Proceedings of the 5th International Conference on Fracture and Damage Mechanics, Harbin, 2006: 499-502.
    [68]中西勝,馬渕守,久保田耕平,等. AZ91マグネシウム合金切粉押出し材の押出し比と機械的性質との関係[J].粉体および粉末冶金, 1995, 42 (3): 373-377.
    [69] NAKANISHI M, MABUCHI M, SAITO N, et al. Mechanical Properties of Magnesium Alloys Produced by Hot Extrusion of Machined Chip[J]. Int. J. Materials and Product Technology, 2001, (Special Issue): 592-597.
    [70] YASUMASA C, RYUJI K, KOJI S, et al. Superplasticity and Cavitation of Recycled AZ31 Magnesium Alloy Fabricated by Solid Recycling Process[J]. Materials Transactions, 2002, 43 (10): 2437-2442.
    [71] YASUMASA C, FURUTA T, HAKAMADA M, et al. Fatigue Behavior of AZ31 Magnesium Alloy Produced by Solid-state Recycling[J]. J. Mater. Sci., 2006, 41: 3229-3232.
    [72] YASUMASA C, MASAAKI K, KOJI S, et al. Blow Forming of Mg Alloy Recycled by Solid-state Recycling[J]. Materials Transactions, 2004, 45 (2): 361-364.
    [73] YASUMASA C, LEE J S, YUSUKE N, et al. Mechanical Properties of Mg-Al-Ca Alloy Recycled by Solid-state Recycling[J]. Materials Transactions, 2005, 46 (12): 2592-2595.
    [74]千野靖正,岸原竜二,下島康嗣,等.固体リサイクル法によって再生されたAZ91Dマグネシウム合金の腐食特性および機械的特性[J].日本金属学会誌, 2001, 65 (7): 621-626.
    [75]李斗勉,李俊瑞,李智煥. AZ91Dマグネシウム合金切粉押出材の組織および機械的性質[J].軽金属, 1995, 45 (7): 391-396.
    [76] WATANABE H, MORIWAKI K, MUKAI T, et al. Consolidation of Machined Magnesium Alloy Chips by Hot Extrusion Utilizing Superplastic Flow[J]. Journal of Materials Science, 2001, 36: 5007-5011.
    [77] KONDOH K, LUANGVARANUNT T, AIZAWA T. Morphology-free Processing of Magnesium Alloys[J]. Materials Transactions, 2001, 42 (7): 1254-1257.
    [78] HONG T G, GUO H W, WEN J D, et al. Recycling of Magnesium Alloy AZ91 Scrap by a B2O3-containing Flux[J]. Journal of Materials Science, 2004, 39: 6449-6456.
    [79] KONDOH K, OGINUMA H, UMEDA J, et al. Innovative Reuse of Agricultural Wastes as Industrial Raw Materials to Form Magnesium Composites[J]. Materials Transactions, 2005, 46 (12): 2586-2591.
    [80] AIZAWA T, SONG R, YAMAMOTO A. Solid-state Synthesis of Thermoelectric Materials in Mg-Si-Ge System[J]. Materials Transactions, 2005, 46 (7): 1490-1496.
    [81] WATANABE H, SUGIOKA M, FUKUSUMI M, et al. Mechanical and Damping Properties of Fullerene-dispersed AZ91 Magnesium Alloy Composites Processed by a Powder Metallurgy Route[J]. Materials Transactions, 2006, 47 (4): 999-1007.
    [82]胡志,闫洪,陈国香.镁基纳米复合材料的研究现状与展望[C].第十届全国塑性工程学术年会,南昌, 2007: 1-4.
    [83] JI Ze Sheng, HONG Yan, ZHAO Mi. Lathe Process of AZ91D Magnesium Alloy Chips Used in Semi-solid Thixomolding[J]. Trans. Nonferrous Met. Soc. China, 2005, 15 (Special 3): 236-240.
    [84] OGAWA M, YASUDA S, SAGA T. Prevention of the Chip Combustion in Turning of AZ91 Magnesium Alloy Castings[J]. Journal of Japan Institute of Light Metals, 2002, 52 (9): 387-391.
    [85] MURAI T, MATSUOKA S I, MIYAMOTO S, et al. Effects of Extrusion Conditions on Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Extrusions[J]. Journal of Materials processing Technology, 2003, 141: 207-212.
    [86] ZHENG M Y, QIAO X G, XU S W, et al. Effect of Hot Extrusion on Microstructure and Mechanical Properties of Quasicrystal-reinforced Mg-Zn-Y Alloy[J]. Trans. Nonferrous Met. Soc. China, 2005, 15 (4): 715-721.
    [87] WANG X L, YU Y, WANG E D. Effect of Extrusion Deformation on Microstructures and Properties of AZ31 Magnesium Alloy[J]. Trans.Nonferrous Met. Soc. China, 2005, 15 (Special 2): 183-186.
    [88] LAPOVOK R Y, BARNETT M R, DAVIES C H J. Construction of Extrusion Limit Diagram for AZ31 Magnesium Alloy by FE Simulation[J]. Journal of Materials processing Technology, 2004, 146: 408-414.
    [89] WANG H B, HONG Y, LIANG Y X. Effect of Extrusion Ratio on Mechanical Properties of AZ31B Alloy[J]. Trans. Nonferrous Met. Soc. China, 2005, 15 (Special 3): 23-27.
    [90] QAMAR S Z, ARIF A F M, SHEIKH A K. A New Definition of Shape Complexity for Metal Extrusion[J]. Journal of Materials processing Technology, 2004, 155/156: 1734-1739.
    [91]陈振华.变形镁合金[M].北京:化学工业出版社, 2005: 160-171.
    [92]王向东.挤压变形对AZ31B镁合金组织及力学性能的影响[D].太原:中北大学硕士论文, 2007: 31-33.
    [93]刘奎立. AZ31变形组织与力学性能研究[D].太原:华北工学院硕士论文, 2004: 20-33.
    [94] WATANADE H, MUKAI T, MABUCHI M, et al. Superplastic Deformation Mechanism in Powder Metallurgy Magnesium Alloys and Composites[J]. Acta. Mater., 2001, 49: 2027-2037.
    [95] JIANG Ju Fu, LUO Shou Jing. Reheating Microstructure of Refined AZ91D Magnesium Alloy in Semi-solid State[J]. Trans. Nonferrous Met. Soc. China, 2004, 14 (6): 1074-1081.
    [96] JIANG Ju Fu, LUO Shou Jing. Study on Reheated Microstructure of AZ91D Magnesium Alloy[C]. The 8th S2P International Conferences, 2004, Limassol, 2004: 244-257.
    [97]魏军.金属挤压机[M].北京:化学工业出版社, 2006: 10-21.
    [98]刘晓霏,严巍,陈国学. AZ31B镁合金塑性变形动态再结晶的实验研究[J].塑性工程学报, 2005, 12 (3): 10-13.
    [99]宋美娟,王智祥,汪凌云,等. AZ31B镁合金板材超塑性变形与断裂机理研究[J].轻合金加工技术, 2005, 33 (8): 40-43.
    [100] KOIKE J, KOBAYASHI T, MUKAI T, et al. The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-grained AZ31B Magnesium Alloys[J]. Acta Materialia, 2003, 51: 2055-2065.
    [101] AGNEW S R, DUYUGULU O. Plastic Anisotropy and the Role of Non-basal Slip in Magnesium Alloy AZ31B[J]. International Journal of Plasticity, 2005, 21: 1161-1193.
    [102]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社, 2006: 52-74.
    [103]束德林.工程材料力学性能[M].北京:机械工业出版社, 2003: 24-43.
    [104]程俊伟,夏巨谌,王新云,等. AZ31变形镁合金挤压成形工艺的研究[J].金属成形工艺, 2004, 22 (3): 4-10.
    [105] MYSHLYAEV M M, MCQUEEN H J. Twinning Dynamic Recovery and Recrystallization in Hot Worked Mg-Al-Zn alloy[J]. Materials Science and Engineering, 2002, A337: 121-133.
    [106] YOSHIDA Y, CISAR L, KAMADO S, et al. Effect of Microstructural Factors on Tensile Properties of an ECAE Processed AZ31 Magnesium Alloy[J]. Materials Transactions, 2003, 44 (4): 468-473.
    [107]张星,李保成,张冶民.温变形对AZ31镁合金组织的影响[J].塑性工程学报, 2004, 11 (3): 52-54.
    [108] WAGENER H W, Horsse H J, FRIZ R. Deep Drawing and Impact Extrusion of Magnesium Alloys at Room Temperature[J]. Advanced Engineering Materials, 2003, 5 (4): 237-242.
    [109] LEE C M, YANG D Y. A Three-dimensional Steady-state Finite Element Analysis of Square Die Extrusion by Using Automatic Mesh Generation[J]. International Journal of Machine Tools & Manufacture, 2000, 40: 33-47.
    [110] ALCARAZ J L, Gil S J. Safety Maps in Bimetallic Extrusions[J]. Journal of Materials Processing Technology, 1996, 60: 133-140.
    [111] BAKHSHI J M. A Theoretical and Experimental Study of Frication in Metal Forming by the Use of the Forward Extrusion Process[J]. Journal of Materials Processing Technology, 2002, 125/126: 369-374.
    [112]刘静华.金属制品的水基清洗工艺[J].航空制造技术, 1982, (12): 27-28.
    [113]王学工.镁合金笔记本电脑外壳回收技术研究[D].西安:西北工业大学硕士学位论文, 2007: 24-48.
    [114]王慧敏,陈振华,严红革,等.镁合金的热处理[J].金属热处理, 2005, 30 (11): 49-54.
    [115]严琦琦,张辉,陈振华.热处理对挤压镁合金AZ91和ZK60组织与性能的影响[J].金属热处理, 2006, 31 (11): 71-74.
    [116]于宝义,包春玲,宋鸿武,等.固溶处理对AZ91D镁合金挤压管件组织和性能影响[J].金属热处理, 2006, 31 (4): 56-58.
    [117]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].北京:科学技术出版社, 2007: 81-112.
    [118]轻合金材料加工手册编写组.轻金属材料加工手册(上册)[M].北京:冶金工业出版社, 1980: 165-166.
    [119]张菊梅,蒋百灵,王志虎,等.固溶及时效处理对AZ80镁合金显微组织的影响[J].金属热处理, 2007, 32 (7): 6-10.
    [120]张星,张治民,李保成.时效处理对AZ80镁合金冲击韧度的影响[J].金属热处理, 2007, 32 (7): 69-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700