用户名: 密码: 验证码:
基于多波段光学成像及链路优化的微弱目标探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微弱目标光学成像探测技术是一项在军事和民用等领域有着广泛而重要应用前景的技术。目标可以反射太阳或其他光源照射的光波,同时也发射各种红外光波,在光学链路成像探测中,存在诸多退化因素,如光学系统的像差、传感器的电子类噪声、景物与传感器的相对运动等,这些都会造成目标成像信杂、噪比的降低;此外,远距离的成像导致目标在图像中所占面积小像素少、缺乏诸多细节特征,易淹没在复杂背景中。这些因素共同造成了目标的微弱特性。随着探测距离的日益增大、对伪目标的探测要求的不断提高,利用传统方式进行光学成像微弱目标探测遇到了不小的挑战,严重制约了目标探测技术的发展与应用。如何解决传统光学成像探测问题、有效提高复杂背景下微弱目标的探测能力是本文重点研究的内容。本文通过优化技术对成像链路中存在的退化进行补偿,利用多种手段提高目标图像信杂、噪比,并研究具有优秀性能的目标探测方法,多模式地提升微弱目标探测的能力,在低虚警率下获得尽可能高的探测率,以适应各类应用的需求。
     分析了微弱目标多模式探测技术的框架。根据链路化成像的原理,分析了多模式目标探测的可行性。讨论与分析了典型目标与背景的光学辐射反射特性等,这些特性可用来作为目标探测与背景抑制的参考因素。给出了多模式微弱目标探测的实验设计,包括图像信息获取设备,信息采集平台与获取系统,室内实验设计等等。分析了微弱目标测定与判定的方法,设定判别的要求,为具体研究微弱目标探测提供基础。
     为了提升成像信杂、噪比,针对成像链路中存在的模糊退化,进行了各种补偿机制的分析与研究。分析了典型的图像退化模型。在介绍多种典型的图像复原方法,分析这些复原模型、介绍常用图像质量评价方法的基础上,提出了一种参考型的基于梯度的波纹图像质量评价方法,提出了一种无参考型的结合边缘宽度和模糊度衡量的评价算法。针对图像复原,提出了局部约束的Richardson-Lucy方法,引入空间加权矩阵以实现局部约束以解决振铃抑制与细节保留的平衡问题;提出了梯度约束规整化快速复原方法,在保留重要细节的同时极大地抑制了噪声。
     为了提升红外成像信杂、噪比,对红外成像中的噪声抑制与优化补偿进行了研究。分析了红外非均匀性噪声退化的原理,并推导了非均匀性校正模型。以图像优化为突破口,提出了基于场景的单幅图像条纹非均匀性校正方法;在校正模型的基础上,提出了基于场景的序列图像法非均匀性校正方法,对于354×236红外图像,每帧处理时间20ms左右,完全满足实时性要求。
     在微弱目标增强与双波段图像信息的融合方面展开了深入地研究。首先,提出了一种利用局部频率调谐显著性法实现微弱目标增强的方法,其能够针对性地提升微弱目标与背景的强度对比,适用于实时处理系统。其次,为了综合利用多波段的图像信息,提出了结合多尺度分析与显著性提取的双波段图像信息融合的思路,原始图像的信息能够得到保留甚至增强。
     根据目标在图像中的特征特点,提出了多种目标探测的新思路。根据目标区域往往相对对比度较大的特性,提出了基于傅里叶变换法显著性提取的目标探测方法获取目标;考虑到目标通常存在于局部差异性大的区域,提出了局部相似度差异的目标探测方法;为了精确探测目标,提出了一种使用稀疏表征理论的自动目标探测方法;为了实时目标探测应用,提出了一种基于显著性提取与形态学抑制噪声的实时目标探测方法。
The weak target detection technology using optical imaging is widely applied in military and civil fields. There exist lots of degradation factors in the optical chain imagery detection, such as aberration of pptical system, electronic noise of imaging sensor, relative movements between scene and sensor, which would lead to the low signal-to-noise (SNR) and signal-to-clutter ratio (SCR) of target image. Moreover, because of long-distance imaging, target is small and lack of detail characteristic, target signal is so weak relative to background clutter and noise. All of those factors lead to the weak characteristics of target. With the increasement of demand for long-distance detection and low false alarm rate, traditional optical detection methods have been unable to meet demand. How to solve the traditional optical imaging detection problem under complicated background and effectively improve the ability of weak target detection is the key research point in this paper. Using image pre-processing technology for optimization and compensation in imaging chain, multiple means are adopted to improve the SNR of target image. And the author tries his best to design excellent algorithm for target detection, to achieve high Probability of Detection (PD) with low Probability of False Alarm (PFA), and improve the ability of weak target detection to satisfy the demand of many kinds of application.
     The framework of multi-mode weak target detection technology is analyzed. Based on pricinple of full-link imaging, the author analyzes the feasibility of multi-mode target detection technology. We have discussed the optical reflection and radiation character of typical target and background, which could be used for target detection and background suppression. And we give out the experimental design for multi mode weak target detection, including image sensor, experimental platform and system, indoor experiment design and so on. Finally, we figure out the discriminant rules for weak target.
     In order to improve imaging SNR. we try to analyze compensation mechanism based on degradation in imaging chain. The typical models of image degradation are introduced. Several typical image restoration methods are introduced and analyzed. We propose one full-reference method and one no-reference algorithm for image quality assessment, named gradient-based ripple image quality assessment approach and the algorithm combined edge width and blurring, respectively. For image restoration, we propose local constrained Richardson-Lucy deconvolution approach, introducing spatial weight matrix for local constraint which can solve the balance between ringing suppression and details preserving. And we also propose the gradient constraint regularized fast image restoration methos, which does well in edge preserving and reduce noise.
     In order to improve infrared imaging SNR, we also try our best to analyze the noise suppression and compensation in infrared imagery. We deduce the non-uniformity correction model. In the field of non-uniformity correction, two methods are designed, the one is based on single image, and the other need sequence images. The sequence images based approach works real time,0.02seconds for each frame with size of354x236.
     A lot of work has been done in weak target enhancement and multi-band image fusion. Firstly, with the help of local frequency based saliency extraction, we propose an enhancement method, which could strength the contrast between target and background. Secondly, in order to well utilize the information of multi-band images, we combine multi scale analysis and saliency extraction technologies together to design the image fusion algorithm, which can keep even enhance the details of original image.
     According to the features of target in image, we propose several ideas for target detection. Considering the high constrast in target area, a target detection method based on saliency detection in Fourier domain is proposed. Because those targets usually exist in region with large local difference, local similarity difference is used for target detection. In order to detect target accurately, we make use of sparse representation theory for e automatic target detection. Finally, a real-time automatic small target detection method using saliency extraction and morphological theory is designed.
引文
[1]胡永生.复杂背景中红外弱小目标探测方法研究[D].南京理工大学.2008.
    [2]杨磊.复杂背景条件下的红外小目标检测与跟踪算法研究[D].上海:上海交通大学.2006.
    [3]Sun S. G. Target detection using local fuzzy thresholding and binary template matching in forward-looking infrared images[J]. Optical Engineering.2007,46: 36402.
    [4]李熙莹,倪国强.红外探测系统在反巡航导弹中的应用[J].激光与红外.2003,33(1):8-12.
    [5]孙翠娟.复杂背景条件下的红外运动小目标检测技术研究[D].国防科学技术大学.2002.
    [6]王江安,马治国.海空复杂背景下弱点目标红外辐射特征研究[J].激光与红外.2003,33(001):48-50.
    [7]刘兴超.单帧红外图像弱小目标检测算法研究[D].武汉.华中科技大学.2005.
    [8]Shaik J., Iftekharuddin K. M. Detection and tracking of targets in infrared images using Bayesian techniques [J]. Optics & Laser Technology.2009,41(6):832-842.
    [9]Bai X.. Zhou F. Hit-or-miss transform based infrared dim small target enhancement[J]. Optics & Laser Technology.2011,43(7):1084-1090.
    [10]Liu R., Lu Y., Gong C., et al. Infrared point target detection with improved template matching[J]. Infrared Physics & Technology.2012.
    [11]Bae T. W. Small target detection using bilateral filter and temporal cross product in infrared images[J]. Infrared Physics & Technology.2011.
    [12]He Deng Jianguo Liu. Infrared small target detection based on the self-information map[J]. Infrared Physics & Technology.2011.54(2):100-107.
    [13]JiCheng L., ZhengKang S., Tao L. Detection of spot target in infrared clutter with morphological filter[J].1996,1:168-172.
    [14]Zaveri M. A., Merchant S. N., Desai U. B. Multiple single pixel dim target detection in infrared image sequence[J].2003,2:380-383.
    [15]Tom V. T., Peli T., Leung M., et al. Morphology-based algorithm for point target detection in infrared backgrounds[J].1993,1954:2-11.
    [16]Ma L., Zhao D., Gao W. Learning-based image restoration for compressed images[J]. Signal Processing:Image Communication.2011,1(27):54-65.
    [17]Zhao Jufeng, Feng Huajun, Xu Zhihai, et al. An improved image deconvolution approach using local constraint [J]. Optics & Laser Technology.2012,44(2):421-427.
    [18]Richardson W. H. Bayesian-based iterative method of image restoration[J]. JOSA.1972,62(1):55-59.
    [19]Lucy L. B. An iterative technique for the rectification of observed distributions[J]. The astronomical journal.1974,79:745.
    [20]Burch S. F., Gull S. F., Skilling J. Image restoration by a powerful maximum entropy method[J]. Computer Vision, Graphics, and Image Processing.1983,23(2): 113-128.
    [21]Chan T. F., Wong C. K. Total variation blind deconvolution[J]. IEEE Transactions on Image Processing.1998,7(3):370-375.
    [22]Gonzalez R C Woods R. E. Digital Image Processing[M].2nd Edition ed. Publishing House of Electronics Industry,2002.
    [23]邹谋炎.反卷积和信号复原[M].国防工业出版社,2001.
    [24]阮秋琦.数字图像处理学[M].电子工业出版社,2007.
    [25]王超.基于变分问题和偏微分方程的图像处理技术研究[D].合肥.中国科学技术大学.2007.
    [26]朱虹.数字图像处理基础[M].科学出版社.2005.
    [27]薛履中.工程最优化技术[M].天津大学出版社,1989.
    [28]郭晶,赵红梅MATLAB 6.5辅助优化计算与设计[M].北京:电子工业出版社,2003.
    [29]曹卫华,郭正.最优化技术方法及MATLAB的实现[M].化学工业出版社. 2005.
    [30]Joshi N., Zitnick C. L., Szeliski R., et al. Image deblurring and denoising using color priors[J].2009:1550-1557.
    [31]Levin A., Fergus R., Durand F., et al. Image and depth from a conventional camera with a coded aperture[J].2007,26:70.
    [32]Yuan L., Sun J., Quan L., et al. Progressive inter-scale and intra-scale non-blind image deconvolution[J].ACM Trans. Graph.2008,27(3):1-10.
    [33]Xiong Z., Sun X., Xu J., et al. Content-adaptive deblocking for high efficiency video coding[J]. Signal Processing:Image Communication.2012,27(3):260-268.
    [34]王永攀,冯华君,徐之海,等.模糊核估计不准确下的振铃效应修正[J].光电工程.2009,36(008):105-111.
    [35]Zhao J., Feng H., Xu Z., et al. An improved image restoration approach using adaptive local constraint [J]. Optik-International Journal for Light and Electron Optics. 2011,123(11):982-985.
    [36]范彦革,刘旭敏,陈婧.各向异性扩散和双边滤波关系的研究[J].微计算机信息.2006.22(4):245.
    [37]Yuan L., Sun J., Quan L., et al. Image deblurring with blurred/noisy image pairs[J]. ACM Transactions on Graphics.2007,26(3):1.
    [38]Yuan L., Sun J., Quan L., et al. Progressive inter-scale and intra-scale non-blind image deconvolution[J]. ACM Transactions on Graphics.2008,27(3):74.
    [39]Levin A. Blind motion deblurring using image statistics [J]. Advances in Neural Information Processing Systems.2007.19:841.
    [40]Levin A., Fergus R., Durand F., et al. Deconvolution using natural image priors[J]. ACM Trans. Graphics.2007,26(3).
    [41]Black M. J., Sapiro G., Marimont D. H., et al. Robust anisotropic diffusion[J]. IEEE Transactions on Image Processing.1998,7(3):421-432.
    [42]Takeda H., Farsiu S., Milanfar P. Deblurring using regularized locally adaptive kernel regression[J]. IEEE Transactions on Image Processing.2008,17(4):550-563.
    [43]Rav-Acha A., Peleg S. Two motion-blurred images are better than one[J]. Pattern Recognition Letters.2005,26(3):311-317.
    [44]Kim S. P., Su W. Y. Recursive high-resolution reconstruction of blurred multiframe images[J]. IEEE Transactions on Image Processing.1993,2(4):534-539.
    [45]Chen J., Yuan L., Tang C. K., et al. Robust dual motion deblurring[J].2008:1-8.
    [46]Haik O., Yitzhaky Y. Effects of image restoration on automatic acquisition of moving objects in thermal video sequences degraded by the atmosphere [J]. Applied optics.2007,46(36):8562-8572.
    [47]Torres S. N., Hayat M. M. Kalman filtering for adaptive nonuniformity correction in infrared focal-plane arrays[J]. JOSA A.2003,20(3):470-480.
    [48]王钰,陈钱.实时红外图像非均匀性校正技术研究[J].红外与毫米波学报.1999,18(002):151-155.
    [49]Milton A. F., Barone F. R., Kruer M. R. Influence of nonuniformity on infrared focal plane array performance[J]. Optical Engineering.1985,24(5):855-862.
    [50]Scribner D. A., Kruer M. R., Killiany J. M. Infrared focal plane array technology [J]. Proceedings of the IEEE.1991.79(1):66-85.
    [51]Vera E., Meza P., Torres S. Total variation approach for adaptive nonuniformity correction in focal-plane arrays[J]. Optics Letters.2011,36(2):172-174.
    [52]Harris J. G., Chiang Y. M. Nonuniformity correction of infrared image sequences using the constant-statistics constraint[J]. IEEE Transactions on Image Processing. 1999,8(8):1148-1151.
    [53]石岩,张天序,王岳环,等.红外焦平面非均匀性两点校正法分析及FPGA实现[J].激光与红外.2005,35(002):100-103.
    [54]Mooney J. M., Shepherd F. D., Ewing W. S., et al. Responsivity nonuniformity limited performance of infrared staring cameras[J]. Optical Engineering.1989,28(11): 1151-1161.
    [55]陈锐,谈新权.红外图像非均匀性校正方法综述[J].红外技术.2002,24(1):1-3.
    [56]杨正兴,谈新权,尚小冬.基于场景的红外图像非均匀性校正方法综述[J].光电子技术.2003,23(002):135-138.
    [57]李庆,刘上乾,赖睿,等.一种基于场景的红外焦平面阵列非均匀性校正算法[J].光子学报.2006,35(5):720-723.
    [58]桑红石,袁雅婧,张天序.基于运动指导的红外焦平面非均匀性校正方法[J].中国图象图形学报.2011,16(9):1577-1582.
    [59]Zhao Jufeng, Zhou Qiang, Chen Yueting, et al. Single image stripe nonuniformity correction with gradient-constrained optimization model for infrared focal plane arrays[J]. Optics Communications.2013.
    [60]Scribner D. A., Sarkady K. A., Kruer M. R., et al. Adaptive nonuniformity correction for IR focal-plane arrays using neural networks[J].1991,1541:100.
    [61]Pezoa J. E., Hayat M. M., Torres S. N., et al. Multimodel Kalman filtering for adaptive nonuniformity correction in infrared sensors[J]. JOSA A.2006,23(6): 1282-1291.
    [62]Qian W., Chen Q., Gu G., et al. Correction method for stripe nonuniformity [J]. Applied optics.2010.49(10):1764-1773.
    [63]Zuo C., Chen Q., Gu G., et al. Scene-based nonuniformity correction algorithm based on interframe registration[J]. JOSA A.2011,28(6):1164-1176.
    [64]Ratliff B. M., Hayat M. M., Tyo J. S. Generalized algebraic scene-based nonuniformity correction algorithm[J]. JOSA A.2005,22(2):239-249.
    [65]Hayat M. M., Ratliff B. M., Tyo J. S., et al. Generalized algebraic algorithm for scene-based nonuniformity correction [J].2004,1.
    [66]Qian W., Chen Q., Gu G. Minimum mean square error method for stripe nonuniformity correction [J]. Chinese Optics Letters.2011,9(5):51003.
    [67]于雪莲.复杂背景条件下红外运动目标的实时探测和跟踪技术[D].南京理工大学.2004.
    [68]韩客松.复杂背景下红外点目标检测的预处理[J].系统工程与电子技术.2000.22(1):52-54.
    [69]彭嘉雄,周文琳.红外背景抑制与小目标分割检测[J].电子学报.1999,27(012):47-51.
    [70]周卫祥,彭嘉雄.红外图像序列运动小目标检测的预处理算法研究[J].国防科技大学学报.1999,21(5):57-60.
    [71]Scharf L. L., Friedlander B. Matched subspace detectors[J]. IEEE Transactions on Signal Processing.1994,42(8):2146-2157.
    [72]Yang L., Yang J., Yang K. Adaptive detection for infrared small target under sea-sky complex background [J]. Electronics Letters.2004,40(17):1083-1085.
    [73]PENG J., ZHOU W. Infrared Background Suppression for Segmenting and Detecting Small Target [J]. Acta Electronica Sinica.1999,12.
    [74]Boccignone G., Chianese A., Picariello A. Small target detection using wavelets[J].1998,2:1776-1778.
    [75]叶增军,王江安.海空复杂背景下红外弱点目标的检测算法[J].红外与毫米波学报.2000,19(002):121-124.
    [76]Casasent D. P., Smokelin J. S. Real, imaginary, and clutter Gabor filter fusion for detection with reduced false alarms (Journal Paper)[J]. Optical Engineering.1994, 33(07):2255-2263.
    [77]Strickland R. N., Hahn H. I. Wavelet transform methods for object detection and recovery[J]. IEEE Transactions on Image Processing.1997,6(5):724-735.
    [78]叶斌,彭嘉雄.基于形态学Top—Hat算子的小目标检测方法[J].中国图象图形学报:A辑.2002,7(7):638-642.
    [79]Bai X., Zhou F., Xie Y., et al. Enhanced detectability of point target using adaptive morphological clutter elimination by importing the properties of the target region[J]. Signal Processing.2009,89(10):1973-1989.
    [80]惠建江,刘朝晖,刘文.数学形态学在红外多弱小目标提取中的应用[J].光子学报.2006.35(4):626-629.
    [81]Tom V. T., Peli T.,Leung M., et al. Morphology-based algorithm for point target detection in infrared backgrounds[J].1954:2-11.
    [82]Justusson B. L. Median filtering:Statistical properties[J]. Two-Dimensional Digital Signal Prcessing Ⅱ.1981:161-196.
    [83]Barnett J. T. Statistical analysis of median subtraction filtering with application to point target detection in infrared backgrounds [J].1989,1050:10.
    [84]Gonzalez R. C., Woods R. E. Digital image processing [J].2002.
    [85]Leung H. Nonlinear clutter cancellation and detection using a memory-based predictor[J]. IEEE Transactions on Aerospace and Electronic Systems.1996,32(4): 1249-1256.
    [86]Leung H., Young A. Small target detection in clutter using recursive nonlinear prediction [J]. IEEE Transactions on Aerospace and Electronic Systems.2000,36(2): 713-718.
    [87]Cao Y., Liu R. M., Yang J. Small target detection using two-dimensional least mean square (TDLMS) filter based on neighborhood analysis[J]. International Journal of Infrared and Millimeter Waves.2008,29(2):188-200.
    [88]Hadhoud M. M., Thomas D. W. The two-dimensional adaptive LMS (TDLMS) algorithm[J]. Circuits and Systems, IEEE Transactions on.1988,35(5):485-494.
    [89]Bae T. W., Kim Y. C., Ahn S. H., et al. An Efficient Two-Dimensional Least Mean Square (TDLMS) Based on Block Statistics for Small Target Detection[J]. Journal of Infrared, Millimeter and Terahertz Waves.2009,30(10):1092-1101.
    [90]Leung H., Lo T. Chaotic radar signal processing over the sea[J]. IEEE Journal of Oceanic Engineering.1993,18(3):287-295.
    [91]Leung H., Haykin S. Is there a radar clutter attractor?[J]. Applied Physics Letters. 1990,56(6):593-595.
    [92]Denney B. S., de Figueiredo R. J. P. Optimal point target detection using adaptive auto regressive background prediction[J].2000,4048:46.
    [93]Xie N., Leung H., Chan H. A multiple-model prediction approach for sea clutter modeling[J]. Geoscience and Remote Sensing, IEEE Transactions on.2003,41(6): 1491-1502.
    [94]Yang L., Yang J., Ling J. New criterion to evaluate the complex degree of sea-sky infrared backgrounds [J]. Optical Engineering.2005,44:126401.
    [95]许彬,郑链,王克勇,等.基于信号奇异性分析的小目标检测方法[J].红外技术.2005,27(3):245-249.
    [96]彭复员,周麟,阎旭光.基于相关的多重分形奇异性分析的红外弱目标检测[J].红外与毫米波学报.2004,23(1):67-71.
    [97]李红艳,吴成柯.一种基于小波与遗传算法的小目标检测算法[J].电子学报.2001,29(4):439-442.
    [98]温佩芝,史泽林,于海斌,等.基于小波变换的海面背景红外小目标检测方法[J].光电工程.2004,31(4):38-41.
    [99]陈振学,汪国有.基于自适应背景预测的红外弱小目标检测算法[J].激光与红外.2006,35(8):608-610.
    [100]朱红,赵亦工.基于背景自适应预测的红外弱小运动目标检测[J].红外与毫米波学报.1999,18(004):305-310.
    [101]吴一全,尹丹艳.基于FLS-SVM背景预测的红外弱小目标检测[J].光学学报.2010,(10):2806-2811.
    [102]Feng Huajun, Zhao Jufeng, Xu Zhihai, et al. Fast target enhancement in thermal infrared imagery[J].2012:1-2.
    [103]Deshpande S. D., Meng H. E., Venkateswarlu R., et al. Max-mean and max-median filters for detection of small targets[J].1999,3809:74-83.
    [104]Ffrench P. A., Zeidler J. H., Ku W. H. Enhanced detectability of small objects in correlated clutter using an improved 2-D adaptive lattice algorithm[J]. IEEE Transactions on Image Processing.1997,6(3):383-397.
    [105]Highnam R., Brady M. Model-based image enhancement of far infra-red images[J].1995:40.
    [106]郭佳,秦文罡,刘卫国.自适应红外目标特征增强算法[J].应用光学.2009,30(2):357-360.
    [107]张风超,杨杰.红外图像序列的目标增强和检测[J].红外与激光工程.2004, 33(004):380-384.
    [108]Bai X., Zhou F., Xue B. Infrared image enhancement through contrast enhancement by using multiscale new top-hat transform[J]. Infrared Physics & Technology.2010.
    [109]Zhao J., Feng H., Xu Z., et al. Detail enhanced multi-source fusion using visual weight map extraction based on multi scale edge preserving decomposition[J]. Optics Communications.2012,287:45-52.
    [110]Zhao Jufeng, Zhou Qiang, Chen Yueting, et al. Fusion of visible and infrared images using saliency analysis and detail preserving based image decomposition[J]. Infrared Physics & Technology.2013,56:93-99.
    [111]黄伟.像素级图像融合研究[D].上海交通大学.2008.
    [112]Burt P. J. The pyramid as a structure for efficient computation[M]. Rensselaer Polytechnic Institute,1983.
    [113]Li H., Zhou Y. T., Chellappa R. SAR/IR sensor image fusion and real-time implementation[J].1995,2:1121-1125.
    [114]Ranchin T., Wald L. The wavelet transform for the analysis of remotely sensed images[J]. International Journal of Remote Sensing.1993,14(3):615-619.
    [115]Guo B., Zhang Q., Hou Y. Region-based fusion of infrared and visible images using nonsubsampled contourlet transform[J]. Chinese Optics Letters.2008,6(5): 338-341.
    [116]Bai X., Zhou F., Xue B. Fusion of infrared and visual images through region extraction by using multi scale center-surround top-hat transform[J]. Optics Express. 2011,19(9):8444-8457.
    [117]Lewis J. J., O Callaghan R. J., Nikolov S. G., et al. Pixel-and region-based image fusion with complex wavelets[J]. Information fusion.2007,8(2):119-130.
    [118]朱彬,胡玮,邓科,等.多波段光学探测系统的探测概率研究[J].电子科技大学学报.2008,(03).
    [119]张伟,操乐林,侯晴宇,等.红外多波段点目标检测RX算法性能分析[J]. 光子学报.2009,(07).
    [120]倪国强.多波段图像融合算法研究及其新发展(Ⅰ)[J].光电子技术与信息.2001,(05).
    [121]倪国强.多波段图像融合算法研究及其新发展(Ⅱ)[J].光电子技术与信息.2001,(06).
    [122]张伟,操乐林,侯睛宇,等.红外多波段点目标检测RX算法性能分析[J].光子学报.2009,38(7):1757-1761.
    [123]徐冠雷,王孝通,徐晓刚,等.基于限邻域经验模式分解的多波段图像融合[J].红外与毫米波学报.2006,25(3):225-228.
    [124]许榕峰,徐涵秋.ETM+全色波段及其多光谱波段图像的融合应用[J].地球信息科学.2004,6(1):99-103.
    [125]Burton M, Benning C. Comparison of Imaging Infrared Detection Algorithms: Infrared technology for target detection and classification[J].1981:26-32.
    [126]Zhao Jufeng, Chen Jinwei, Chen Yueting, et al. Sparse-representation-based automatic target detection ininfrared imagery[J]. Infrared Physics & Technology. 2013,56:85-92.
    [127]Zhao Jufeng, Feng Huajun, Xu Zhihai, et al. Real-time automatic small target detection using saliency extraction and morphological theory[J]. Optics & Laser Technology.2013,47:268-277.
    [128]魏阳杰,董再励,缪磊,等.新的Otsu阈值改进方法的红外小目标检测[J].光电工程.2004,31(011):23-26.
    [129]王茜蓓, 彭中,刘莉.一种基于自适应阈值的图像分割算法[J].北京理工大学学报.2003,23(004):521-524.
    [130]Huajun Feng, Jufeng Zhao, Zhihai Xu, et al. Fast target enhancement in thermal infrared imagery [J].2012:1-2.
    [131]杨明月,杨卫平.复杂海天背景下红外舰船目标的自动检测方法[J].红外与激光工程.2008,37(4):638-641.
    [132]孙殿星,王学伟,周晓东,等.海空背景下确定弱小目标潜在区域的方法 [J].红外技术.2009,(011):663-667.
    [133]Reiss D. B. Spatial signal processing for infrared detection[J].1994,2235:38.
    [134]张飞,李承芳.红外背景抑制与弱小目标的检测算法[J].光学技术.2004,30(003):337-339.
    [135]吴巍,彭嘉雄.一种云层背景抑制与小目标检测方法[J].华中科技大学学报:自然科学版.2001,29(011):56-57.
    [136]Barnett J. T. Statistical analysis of median subtraction filtering with application to point target detection in infrared backgrounds[J].1989,1050:10.
    [137]Bae T. W., Kim Y. C., Ahn S. H., et al. A novel Two-Dimensional LMS (TDLMS) using sub-sampling mask and step-size index for small target detection[J]. IEICE Electronics Express.2010,7(3):112-117.
    [138]Denney B. S., de Figueiredo R. J. P. Optimal point target detection using adaptive auto regressive background prediction[J].2000,4048:46.
    [139]Nishiguchi K. I., Kobayashi M., Ichikawa A. Small target detection from image sequences using recursive max filter[J].1995,2561:153.
    [140]于劲松,万九卿,高秀林.红外图像弱小点目标检测技术研究[J].兵工学报.2009,29(12):1518-1521.
    [141]胡谋法,李超,王书宏.空时域联合差分检测可见光图像的运动小目标[J].计算机工程与应用.2006,21:25-26.
    [142]王平, 张焱,沈振康.运动平台成像系统弱目标检测方法[J].电子学报.2006,34(12):2293-2296.
    [143]Tzannes A. P., Brooks D. H. Point target detection in IR image sequences:a hypothesis-testing approach based on target and clutter temporal profile modeling[J]. Optical Engineering.2000,39:2270.
    [144]闫晓珂, 史彩成,赵保军,等.基于分形和粗集理论的云杂波背景下序列图像弱目标检测[J].北京理工大学学报.2006,26(9):824-827.
    [145]苏峰,凌清,高梅国.红外小目标实时检测系统实现[J].激光与红外.2008,38(8):826-829.
    [146]Kim S., Yang Y., Lee J., et al. Robust scale invariant small target detection using the Laplacian scale-space theory[J].2008:11.
    [147]Kim S., Yang Y., Lee J., et al. Small target detection utilizing robust methods of the human visual system for IRST[J]. Journal of Infrared, Millimeter and Terahertz Waves.2009,30(9):994-1011.
    [148]李翠芸,姬红兵.Rao-Blackwellized粒子滤波的红外多个弱目标检测前跟踪[J].光学精密工程.2009,17(9):2342-2349.
    [149]王博,张建奇.红外运动弱小目标的动态规划检测[J].电子科技大学学报.2009,38(4):614.
    [150]Sadjadi F. A., Chun C. S. New experiments in the use of infrared polarization in the detection of small targets[J].2001:144.
    [151]Crosby F. Signature adaptive target detection and threshold selection for constant false alarm rate[J]. Journal of Electronic Imaging.2005,14:33009.
    [152]Frietsch N., Meister O., Schlaile C., et al. Detection and tracking of objects in an image sequence captured by a VTOL-UAV[J].2007,6561:65611H.
    [153]Nichtern O., Rotman S. R. Parameter adjustment for a dynamic programming track-before-detect-based target detection algorithm[J]. EURASIP Journal on Advances in Signal Processing.2008,2008:141.
    [154]Chapple P. B., Bertilone D. C., Caprari R. S., et al. Stochastic model-based processing for detection of small targets in non-gaussian natural imagery[J]. IEEE Transactions on Image Processing.2001,10(4):554-564.
    [155]Morelande M. R., Kreucher C. M., Kastella K. A bayesian approach to multiple target detection and tracking[J]. IEEE Transactions on Signal Processing.2007.55(5): 1589-1604.
    [156]Murenzi R., Johnson D., Kaplan L. M., et al. Detection of targets in low-resolution FLIR images using two-dimensional directional wavelets[J].1998, 3371:510.
    [157]Park S. I., Murenzi R., Smith M. J. T. Multidimensional wavelets for target detection and recognition[J].1996,2762:177.
    [158]Itti L., Gold C., Koch C. Visual attention and target detection in cluttered natural scenes[J]. Optical Engineering.2001,40:1784.
    [159]崔金辉,孙慧.复杂背景下小目标恒虚警检测技术研究[J].红外.2009,30(009):1-5.
    [160]杨崇艳,刘伟宁,王艳华.基于9/7提升小波的海面弱目标检测算法[J].微电子学与计算机.2008,25(004):28-30.
    [161]王广平,高昆,倪国强.红外弱小目标检测跟踪并行处理系统[J].光电工程.2008,35(006):5-9.
    [162]李俊山,杨威,张雄美.红外图像处理,分析与融合[M].科学出版社,2009.
    [163]姚连兴,仇维礼,王福恒.目标和环境的光学特性[M].宇航出版社,1995.
    [164]高昕,李建安.应用于弹丸跟踪测量的红外器件工作波段选择[J].测试技术学报.2002,16(003):192-195.
    [165]李旭辉.红外景象匹配技术研究[D].西安.第二炮兵工程学院.2005.
    [166]王桥.数字图像处理[M].科学出版社,2009.
    [167]Ben-Ezra M., Nayar S. K. Motion-based motion deblurring[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2004,26(6):689.
    [168]付中梁,冯华君,徐之海等.基于快速CCD位移探测的运动模糊图像的恢复[J].光电工程.2009,36(003):69-73.
    [169]Park S. C., Park M. K., Kang M. G. Super-Resolution Image Reconstruction[J]. IEEE signal processing magazine.2003.
    [170]Baker S., Kanade T. Limits on super-resolution and how to break them[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2002:1167-1183.
    [171]Robinson D., Milanfar P. Statistical performance analysis of super-resolution[J]. IEEE Transactions on Image Processing.2006,15(6):1413-1428.
    [172]Baker S., Kanade T. Super-resolution:Limits and beyond[J]. KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE. 2001:243-271.
    [173]Borman S., Stevenson R. L. Super-resolution from image sequences-a review[J]. 1998,5.
    [174]陶小平.基于光学成像特性的高分辨图像复原技术研究[D].杭州.浙江大学.2010.
    [175]邹谋炎.反卷积与信号复原[M].国防工业出版社,2001.
    [176]Gonzalez R. C., Woods R. E. Digital Image Processing 2nd Edition[M]. Publishing House of Electronics Industry,2002.
    [177]Wiener Norbert. Extrapolation, interpolation, and smoothing of stationary time series[M].1964.
    [178]Haykin Simon. Adaptive filter theory (ise)[J].2003.
    [179]Rudin L. I., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena.1992,60(1-4):259-268.
    [180]Wang Z., Bovik A. C., Sheikh H. R., et al. Image quality assessment:From error visibility to structural similarity[J]. IEEE Transactions on Image Processing. 2004,13(4):600-612.
    [181]Wang Z., Bovik A. C. A universal image quality index[J]. IEEE signal processing letters.2002,9(3):81-84.
    [182]Wang Z., Bovik A. C., Lu L. Why is image quality assessment so difficult?[J]. 2002,4:3313-3316.
    [183]赵巨峰,陶小平,冯华君,等.基于梯度的波纹图像质量评价[J].浙江大学学报:工学版.2010,(5):870-874.
    [184]浙江大学.基于区域权重和人眼视觉特性的图像质量客观评价方法.中国.发明专利.2010.10.27.
    [185]赵巨峰,冯华君,徐之海,等.基于模糊度和噪声水平的图像质量评价方法[J].光电子.激光.2010,21(007):1062-1066.
    [186]李奇,戴瑞春.数字图像清晰度评价函数研究[J].光子学报.2002,31(6):736-738.
    [187]Marziliano P., Dufaux F., Winkler S., et al. Perceptual blur and ringing metrics: Application to JPEG2000[J]. Signal Processing:Image Communication.2004,19(2): 163-172.
    [188]Wang Z. A Universal Image Quality Index[J].2001.
    [189]Wang Z., Sheikh H. R., Bovik A. C. No-reference perceptual quality assessment of JPEG compressed images[J].2002,1:477-480.
    [190]Sheikh H. R., Bovik A. C., Cormack L. No-reference quality assessment using natural scene statistics:JPEG2000[J]. IEEE Transactions on Image Processing.2005, 14(11):1918-1927.
    [191]Portilla J., Strela V., Wainwright M. J., et al. Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Transactions on Image Processing.2003,12(11):1338-1351.
    [192]Yongpan W., Huajun F., Zhihai X., et al. An improved Richardson-Lucy algorithm based on local prior[J]. Optics & Laser Technology.2010,42(5):845-849.
    [193]Lagendijk R. L., Katsaggelos A. K., Biemond J. Iterative identification and restoration of images[J].1988,2:992-995.
    [194]FU Z., FENG H., XU Z., et al. Restoration of the image blurred by motion based on high-speed CCD motion detection[J]. Opto-Electron. Eng.2009,36(3): 69-73.
    [195]Dong W., Feng H., Xu Z., et al. A piecewise local regularized Richardson-Lucy algorithm for remote sensing image deconvolution[J]. Optics & Laser Technology.2011,43(5):926-933.
    [196]Feng H., Wang Y., Xu Z., et al. Real-time motion deblurring algorithm with robust noise suppression [J]. Journal of Zhejiang University-Science C.2010,11(5): 375-380.
    [197]Krishnan D., Fergus R. Fast image deconvolution using hyper-Laplacian priors[J]. Advances in Neural Information Processing Systems.2009,22:1-9.
    [198]Rui L., Yin-Tang Y., Qing L., et al. Improvement in adaptive nonuniformity correction method with nonlinear model for infrared focal plane arrays[J]. Optics Communications.2009,282(17):3444-3447.
    [199]Munch B., Trtik P., Marone F., et al. Stripe and ring artifact removal with combined wavelet—Fourier filtering[J]. Optics express.2009,17(10):8567-8591.
    [200]L. Xu C. Lu Y. Xu. Image Smoothing via L0 Gradient Minimization[J]. ACM Transactions on Graphics (SIGGRAPH Asia 2011).2011,30(6).
    [201]Achanta R., Hemami S., Estrada F., et al. Frequency-tuned salient region detection[J].2009:1597-1604.
    [202]Farbman Z., Fattal R., Lischinski D., et al. Edge-preserving decompositions for multi-scale tone and detail manipulation[J]. ACM Transactions on Graphics.2008, 3(27):67.
    [203]Deng H., Liu J., Chen Z. Infrared small target detection based on modified local entropy and EMD[J]. Chinese Optics Letters.2010,8(1):24-28.
    [204]Seo H. J. And P. Visual saliency for automatic target detection, boundary detection, and image quality assessment[J].2010:5578-5581.
    [205]Itti L., Gold C., Koch C. Visual attention and target detection in cluttered natural scenes[J]. Optical Engineering.2001,40:1784.
    [206]Achanta R., Estrada F., Wils P., et al. Salient region detection and segmentation[J]. Computer Vision Systems.2008,5008:66-75.
    [207]Goferman S., Zelnik-Manor L., Tal A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2012,34(10): 1915-1926.
    [208]Hou X., Zhang L. Saliency detection:A spectral residual approach[J].2007: 1-8.
    [209]Ma Y. F., Zhang H. J. Contrast-based image attention analysis by using fuzzy growing[J].2003:374-381.
    [210]Harel J., Koch C., Perona P. Graph-based visual saliency[J]. Advances in neural information processing systems.2007,19:545.
    [211]Seo H. J., Milanfar P. Static and space-time visual saliency detection by self-resemblance[J]. Journal of Vision.2009,9(12).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700