用户名: 密码: 验证码:
基于数据驱动的复杂工业过程故障检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着现代工业过程生产规模的不断扩大,企业生产系统的自动化水平和集成化程度也在不断提高。一方面生产单元之间的高关联性使得过程故障具有了比以往更强的破坏性。为了减少故障造成的诸如产品质量下降、生产成本提高等的影响,企业迫切需要运用有效的过程监控技术提高过程的安全性、增加系统的可靠性。而过程的复杂性给传统的过程监控方法带来了诸如建模困难等的问题。另一方面,现场总线技术和集散控制系统在工业过程中的广泛应用使得大量的工业过程数据通过成熟的数据采集与存储系统保存下来。在这样的背景下,利用过程数据建立监控模型的一类基于数据驱动的监控方法受到了广泛关注,并成为了过程监控领域中的一个研究热点。
     目前,现有的基于数据驱动的故障检测方法在展开研究工作的过程中大多对过程数据设置多种简化或理想化的假设条件,比如数据的线性假设、高斯分布假设以及过程的单一运行模态假设等。但是,这些假设在一定程度上限制了监控方法在实际应用效果,本文拟针对流程工业过程监控中遇到的多种实际问题,在对传统多元统计监控(Multivariate Statistical Process Monitoring, MSPM)方法进行改进的同时,系统化地研究建立工业过程监控的新策略和新方法,以实现对过程数据具有高适应性的监控。本文的主要研究工作包括:
     (1)针对非线性过程监控问题,提出一种统计量核主元分析方法(Statistics Kernel Principal Component Analysis, SKPCA)。通过计算样本集不同阶次的统计量将数据从原始数据空间映射到统计量样本空间,然后利用核函数将数据从统计量样本空间投影到高维核空间中进行核主元分析(Kernel Principal Component Analysis, KPCA)。由于统计量空间中包含了样本数据的高阶统计量,与传统KPCA相比SKPCA方法能够更有效的提取过程信息,也具有更好的监控效果。
     (2)针对工业过程中存在运行模态发生切换的情况,提出一种基于距离空间统计量分析(Distance Space Statistics Analysis, DSSA)的多模态过程故障检测方法。在对多模态数据空间分布特性进行分析的基础上,对正常数据与故障数据彼此之间的距离关系进行比较,构建样本在距离空间中的表达形式。运用统计量分析方法提取高阶统计信息,实现了对多模态过程只建立单一监控模型的故障检测。
     (3)针对工业过程中的多模态问题,从对数据进行预处理的角度出发,提出一种新的局部邻域标准化策略(Local Neighborhood Standardization, LNS),(?)局部邻域标准化策略与主元分析方法(Principal Component Analysis, PCA)结合,得到一种新的LNS-PCA方法对多模态过程进行故障检测。利用这种数据预处策略对多模态数据进行标准化能够有效的抹除数据中包含的多分布特征,同时不会破坏变量之间的相关关系,监控结果能够通过变量的贡献度分解进行解释,从而实现对故障变量的识别。LNS与PCA方法结合之后能够使PCA方法对过程数据中的多模态特征具有鲁棒性。
     (4)针对工业过程中同一运行模态下的数据分布较为复杂,无法满足高斯分布的情况,提出一种基于密度的马氏距离局部离群因子方法(Mahalanobis Distance-based Local Outlier Factor, MDLOF)进行故障检测。通过在计算样本局部离群因子的过程中引入马氏距离对变量的局部结构以及样本的局部邻域密度加以考虑。利用基于密度的局部离群因子作为监控指标,形成对样本偏离正常状态程度的度量。与传统MSPM方法利用的基于距离的监控统计量不同,MDLOF能够利用局部邻域信息,同时对数据的分布情况没有依赖性。
     (5)针对过程数据复杂分布的情况下模态内数据分布不确定,同时又包含多模态特征的问题,结合局部邻域标准化策略与局部离群因子方法,提出一种新的邻域标准化局部离群因子方法(Neighborhood Standardized Local Outlier Factor, NSLOF)。借鉴提出的局部邻域标准化策略对数据的处理方式,运用一种新的加权欧式距离计算样本的局部离群因子。加权欧式距离的应用使得NSLOF方法中的监控指标能够直接进行变量贡献度分解,从而实现了基于局部离群因子方法进行过程监控时的故障变量识别问题。同时,降低了局部离群因子方法在实际应用过程中的计算复杂度,提高了监控高性能。
     在对上述方法进行分析的同时,通过不同方法之间的比较,利用数值仿真例子以及Tennessee Eastman过程进行验证,仿真结果验证了本文方法的有效性。最后,在对本文主要工作进行总结的基础上对未来的研究工作进行了展望。
In the past few years, the scales of the modern industrial processes are increased continuously. The production systems have become more and more integrated and complex with the developments of automatic control techniques. On the one hand, the interactions among different manufacturing plants make the faults more destructive for the process. To reduce the impacts of the process faults such as the decline of the product quality and the increase of the product costs, the effective process monitoring becomes one of the most urgent problems in modern industrial processes. It is important to improve the security of the industrial processes and increase the system reliability. However, the complexity of the processes makes the monitoring models difficult to be built by the traditional methods. On the other hand, with the filedbus tenology and the distributed control systems widely used, a large number of the historical operating data can be measured and stored automatically by the data acquisition and storage system system. In this context, data-driven monitoring methods have been intensively researched and arisen as an active research area in process monitoring.
     However, most of the traditional data-based fault detection methods often contain some assumptions such as linear, Gaussian and unimodal processes. All of assumptions limit the monitoring performance of the monitoring methods when applied in practical processes.To deal with the practical monitoring challenges, some improvements of the conventional multivariate statistical process monitoring methods and several novel monitoring strategies are propsed in this dissertation, which are summarized as follows:
     (1) For nonlinear process monitoring, a fault detection method called statistics kernel principal component analysis (SKPCA) is developed. The original data space is projected into a statistics space by the calculation of the the higher-order statistics of the data set. Then, KPCA is conducted in the statistics space to extract some dominant principal components. Since the higher-order statistics are involved in the statistics space, SKPCA can extract more meaningful knowledge and obtain a better monitoring results than KPCA
     (2) For multimode process monitoting, a novel multimode fault detection approach named distance space statistics analysis (DSSA) is proposed. Based on the analysis of the distribution characteristics of the multimode data, the distance relationships of the normal samples and the fault samples are compared. Then, the expressions of the samples in the original data space are obtained to build the distance space. Finally, the statistics analysis method is employed to extract the useful informations in the higher-order statistics. The proposed DSSA method use only one single model for multimode process monitoring.
     (3) In order to improve the monitoring performance for multimode process, a novel local neighborhood standardization (LNS) strategy is proposed as a data preprocessing method to address the challenges caused by the multimode characteristic of operating data. After a thorough analysis of LNS, the proposed data preprocessing method is integrated with principal component analysis method to provide a complete fault detection method in multimode processes. By using LNS, the multimode characteristic of operating data can be erased in the data processing phase while the correlations of variables are maintained. The contribution-based fault identification method can be directly applied in the LNS-PCA method. The new data preprocessing method makes the PCA method display a robust performance regardless of the multimode characteristic in process data.
     (4) The process complexity makes the within-mode data usually follow an uncertain combination of Gaussian and non-Gaussian distribution. A novel Mahalanobis distance-based local outlier factor (MDLOF) method is proposed to deal with the complex distribution of the process data. The local structure of variables is taken into account by employing Mahalanobis distances, and the local density of the surrounding neighborhoods is also considered. The density-based local outlier factor is employed as a monitoring statistic. The degree of the oulierness is calculated for each sample. Different from the traditional distance-based monitoring methods, the information in the local neighborhood is utilized in MDLOF. The density-based monitoring index makes MDLOF effective regardless of the data distribution.
     (5) To develop an efficient monitoring method with the multimodality and the within-mode uncertainty of data distribution, a novel neighborhood standardized local outlier factor (NSLOF) method is proposed by integrating the LNS and local outlier factor. A new normalized Euclidean distance based on the local neighborhood standardization strategy is employed during the calculation of the monitoring index. The utilization of the normalized Euclidean distance makes the contribution-based fault identification method available for the NSLOF method. Meanwhile, compared to the MDLOF, the monitoring performance is improved and the algorithm complexity is reduced.
     Several monitoring methods are compared with the proposed methods, and the numerical example and the Tennessee Eastman process are applied to illustrate the efficient of the proposed methods. Finally, based on the conclusion of the thesis, some future research directions are discussed.
引文
[1]Qin S. J. Statistical process monitoring:basics and beyond [J]. Journal of Chemometrics.2003,17(8-9):480-502.
    [2]李晗,萧德云.基于数据驱动的故障诊断方法综述[J].控制与决策.2011,26(1):1-9.
    [3]Chiang L. H., Russell E., Braatz R. D. Fault detection and diagnosis in industrial systems [M]. London:Springer,2001.
    [4]Kesavan P., Lee J. H. Diagnostic tools for multivariable model-based control systems [J]. Industrial & Engineering Chemistry Research.1997,36(7):2725-2738.
    [5]Raich A., cinar A. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes [J]. AIChE Journal.1996,42(4):995-1009.
    [6]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    [7]Isermann R. Model base fault detection and diagnosis methods [C]. In:Proceedings of the American Control Conference,1995,3:1605-1609.
    [8]Frank P. M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-a survey and some new results [J]. Automatica.1990,26(3):459-474.
    [9]Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S. N. A review of process fault detection and diagnosis:part i:quantitative model-based methods [J]. Computers & Chemical Engineering.2003,27(3):293-311.
    [10]Venkatasubramanian V., Rengaswamy R., Kavuri S. N. A review of process fault detection and diagnosis part ii:qualitative models and search strategies [J]. Computers & Chemical Engineering.2003,27(3):313-326.
    [11]Venkatasubramanian V., Rengaswamy R., Kavuri S. N., Yin K. A review of process fault detection and diagnosis part iii:process history based methods [J]. Computers & Chemical Engineering.2003,27(3):327-346.
    [12]葛志强.复杂工况过程统计监测方法研究[D].浙江大学,2009.
    [13]陈玉东,施颂椒,翁正新.动态系统的故障诊断方法综述[J].化工自动化及仪表.2001,28(3):1-14.
    [14]Isermann R., Balli P. Trends in the application of model-based fault detection and diagnosis of technical processes [J]. Control Engineering Practice.1997,5(5):709-719.
    [15]Patton R. J., Chen J. Review of parity space approaches to fault diagnosis for aerospace systems [J]. Journal of Guidance, Control and Dynamics.1994,17(2):278-285.
    [16]Beard R. V. Failure accommodation in linear systems through self-reorganization [D].Massachusetts Institute of Technology,1971.
    [17]Ye H., Wang G., Ding S. X. A new parity space approach for fault detection based on stationary wavelet transform [J]. IEEE Transactions on Automatic Control.2004,49(2): 281-287.
    [18]Bhagwat A., Srinivasan R., Krishnaswamy P. R. Fault detection during process transitions:a model-based approach [J]. Chemical Engineering Science.2003,58(2): 309-325.
    [19]Ghoshal S. K., Samantaray A. K. Multiple fault disambiguations through parameter estimation:a bond graph model-based approach [J]. International Journal of Intelligent Systems Technologies and Applications.2008,5(1):166-184.
    [20]Yoon S., Macgregor J. F. Statistical and causal model-based approaches to fault detection and isolation [J]. AIChE Journal.2000,46(9):1813-1824.
    [21]葛建华,孙优贤.容错控制系统的分析与综合[M].杭州:浙江大学出版社,1994.
    [22]Olivier-Maget N., Hetreux G., Le Lann J. M., Le Lann M. V. Model-based fault diagnosis for hybrid systems:application on chemical processes [J]. Computers & Chemical Engineering.2009,33(10):1617-1630.
    [23]Isermann R. Model-based fault-detection and diagnosis-status and applications [J]. Annual Reviews in Control.2005,29(1):71-85.
    [24]Li F., Upadhyaya B. R., Coffey L. A. Model-based monitoring and fault diagnosis of fossil power plant process units using group method of data handling [J]. ISA Transactions.2009,48(2):213-219.
    [25]Stephanopoulos G., Han C. Intelligent systems in process engineering:a review [J]. Computers & chemical engineering.1996,20(6):743-791.
    [26]Bakshi B. R., Stephanopoulos G. Compression of chemical process data by functional approximation and feature extraction [J]. AIChE Journal.1996,42(2):477-492.
    [27]肖应旺.基于PCA的流程工业性能监控与故障诊断研究[D].江南大学,2007.
    [28]Xiong X., Wang J., Niu T., Du Y. A new multi-expert system applied in fault diagnosis [J]. Electronics, Optics & Control.2009,16(7):58-61.
    [29]Han T., Li B., Xu L. A universal fault diagnostic expert system based on bayesian network [C]. In:Proceedings of the International Conference on Computer Science and Software Engineering,2008,1:260-263.
    [30]Qian Y., Li X., Jiang Y., Wen Y. An expert system for real-time fault diagnosis of complex chemical processes [J]. Expert Systems with Applications.2003,24(4): 425-432.
    [31]Dokas I. M., Karras D. A., Panagiotakopoulos D. C. Fault tree analysis and fuzzy expert systems:early warning and emergency response of landfill operations [J]. Environmental Modelling & Software.2009,24(1):8-25.
    [32]Maurya M. R., Rengaswamy R., Venkatasubramanian V. Fault diagnosis by qualitative trend analysis of the principal components [J]. Chemical Engineering Research and Design.2005,83(A9):1122-1132.
    [33]Maurya M. R., Rengaswamy R., Venkatasubramanian V. Fault diagnosis using dynamic trend analysis:a review and recent developments [J]. Engineering Applications Of Artificial Intelligence.2007,20(2):133-146.
    [34]Gatzke E. P., Iii F. J. D. Use of multiple models and qualitative knowledge for on-line moving horizon disturbance estimation and fault diagnosis [J]. Journal of Process Control.2002,12(2):339-352.
    [35]胡昌华,许化龙.控制系统故障诊断与容错控制的分析和设计[M].北京:国防工业出版社,2000.
    [36]柴天佑.生产制造全流程优化控制对控制与优化理论方法的挑战[J].自动化学报.2009,35(6):641-649.
    [37]侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报.2009(6):650-667.
    [38]周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报.2009(6):748-758.
    [39]张曦.基于统计理论的工业过程综合性能监控、诊断及质量预测方法研究[D].上海交通大学,2008.
    [40]Thompson J. R., Koronacki J. Statistical process control for quality improvement [M]. New York:Chapman & Hall,1993.
    [41]Page E. S. Continuous inspection schemes [J]. Biometrika.1954,41(1/2):100-115.
    [42]Roberts S. W. Control chart tests based on geometric moving averages [J]. Technometrics.1959,1(3):239-250.
    [43]Page E. S. Cumulative sum charts [J]. Technometrics.1961,3(1):1-9.
    [44]Wold S., Esbensen K., Geladi P. Principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems.1987,2(1-3):37-52.
    [45]Thornhill N. F., Shah S. L., Huang B., Vishnubhotla A. Spectral principal component analysis of dynamic process data [J]. Control Engineering Practice.2002,10(8): 833-846.
    [46]Kruger U., Kumar S., Littler T. Improved principal component monitoring using the local approach [J]. Automatica.2007,43(9):1532-1542.
    [47]Lee J. M., Qin S. J., Lee I. B. Fault detection of non-linear processes using kernel independent component analysis [J]. Canadian Journal of Chemical Engineering.2007, 85(4):526-536.
    [48]Lee J. M., Yoo C., Lee I. B. Statistical monitoring of dynamic processes based on dynamic independent component analysis [J]. Chemical Engineering Science.2004, 59(14):2995-3006.
    [49]Hyvarinen A., Oja E. Independent component analysis:algorithms and applications [J]. Neural Networks.2000,13(4-5):411-430.
    [50]Hyvarinen A., Oja E. A fast fixed-point algorithm for independent component analysis [J]. Neural Computation.1997,9(7):1483-1492.
    [51]Nomikos P., Macgregor J. F. Multi-way partial least squares in monitoring batch processes [J]. Chemometrics and Intelligent Laboratory Systems.1995,30(1):97-108.
    [52]Kruger U., Zhou Y., Wang X., Rooney D., Thompson J. Robust partial least squares regression:part i, algorithmic developments [J]. Journal of Chemometrics.2008, 22(1-2):1-13.
    [53]Kruger U., Zhou Y., Wang X., Rooney D., Thompson A. Robust partial least squares regression:part ii, new algorithm and benchmark studies [J]. Journal of Chemometrics. 2008,22(1-2):14-22.
    [54]Chiang L. H., Leardi R., Pell R. J., Seasholtz M. B. Industrial experiences with multivariate statistical analysis of batch process data [J]. Chemometrics and Intelligent Laboratory Systems.2006,81(2):109-119.
    [55]Kettaneh-Wold N. Analysis of mixture data with partial least squares [J]. Chemometrics and Intelligent Laboratory Systems.1992,14(1):57-69.
    [56]Hu Y., Ma H., Shi H. On-line batch process monitoring using multiway kernel partial [J]. Journal of DongHua University (English Edition).2011,28(6):585-590.
    [57]Chiang L. H., Russell E. L., Braatz R. D. Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems.2000,50(2):243-252.
    [58]He Q. P., Qin S. J., Wang J. A new fault diagnosis method using fault directions in fisher discriminant analysis [J]. AIChE Journal.2005,51(2):555-571.
    [59]Chiang L. H., Kotanchek M. E., Kordon A. K. Fault diagnosis based on fisher discriminant analysis and support vector machines [J]. Computers & Chemical Engineering.2004,28(8):1389-1401.
    [60]Zhu Z. B., Song Z. H. Fault diagnosis based on imbalance modified kernel fisher discriminant analysis [J]. Chemical Engineering Research and Design.2010,88(8): 936-951.
    [61]Choi S. W., Park J. H., Lee I. B. Process monitoring using a gaussian mixture model via principal component analysis and discriminant analysis [J]. Computers & Chemical Engineering.2004,28(8):1377-1387.
    [62]Yu J., Qin S. J. Multiway gaussian mixture model based multiphase batch process monitoring [J]. Industrial & Engineering Chemistry Research.2009,48(18): 8585-8594.
    [63]Chen T., Morris J., Martin E. Probability density estimation via an infinite gaussian mixture model:application to statistical process monitoring [J]. Journal Of The Royal Statistical Society Series C-Applied Statistics.2006,55(5):699-715.
    [64]Chen J. H., Chen H. H. On-line batch process monitoring using mhmt-based mpca [J]. Chemical Engineering Science.2006,61(10):3223-3239.
    [65]Yu J. Multiway discrete hidden markov model-based approach for dynamic batch process monitoring and fault classification [J]. AIChE Journal.2011,58(9):2714-2725.
    [66]Wold S., Eriksson L., Trygg J., Kettaneh N. The pls method-partial least squares projections to latent structures-and its applications in industrial rdp (research, development, and production) [C]. In:Proceedings Volume of CompStat Conference, 2004,44:1-44.
    [67]Li G., Qin S. J., Zhou D. H. Geometric properties of partial least squares for process monitoring [J]. Automatica.2010,46(1):204-210.
    [68]Wold S. Cross-validatory estimation of the number of components in factor and principal components models [J]. Technometrics.1978,20(4):397-405.
    [69]Valle S., Li W., Qin S. J. Selection of the number of principal components-the variance of the reconstruction error criterion compared to other methods [J]. Industrial & Engineering Chemistry Research.1999,38(11):4389-4401.
    [70]Macgregor J. F., Kourti T. Statistical process control of multivariate processes [J]. Control Engineering Practice.1995,3(3):403-414.
    [71]Jacksona J. E., Mudholkarb G. S. Control procedures for residuals associated with pricipal component analysis [J]. Technometrics.1979,21(3):341-349.
    [72]Nomikos P., Macgregor J. F. Multivariate spc charts for monitoring batch processes [J]. Technometrics.1995,37(1):41-59.
    [73]Lee J. M., Yoo C. K., Choi S. W., Vanrolleghem P. A., Lee I. B. Nonlinear process monitoring using kernel principal component analysis [J]. Chemical Engineering Science.2004,59(1):223-234.
    [74]Gunther J. C., Conner J. S., Seborg D. E. Process monitoring and quality variable prediction utilizing pls in industrial fed-batch cell culture [J]. Journal of Process Control.2009,19(5):914-921.
    [75]Faggian A., Facco P., Doplicher F., Bezzo F., Barolo M. Multivariate statistical real-time monitoring of an industrial fed-batch process for the production of specialty chemicals [J]. Chemical Engineering Research and Design.2009,87(3A):325-334.
    [76]Dayal B. S., Macgregor J. F. Improved pls algorithms [J]. Journal of Chemometrics. 1997,11(1):73-85.
    [77]Zhang X., Yan W. W., Shao H. H. Nonlinear multivariate quality estimation and prediction based on kernel partial least squares [J]. Industrial & Engineering Chemistry Research.2008,47(4):1120-1131.
    [78]郭明.基于数据驱动的流程工业性能监控与故障诊断研究[D].浙江大学,2004.
    [79]Gnanadesikan R. Methods for statistical data analysis of multivariate observations [M]. New York:Wiley,1997.
    [80]Hastie T., Stuetzle W. Principal curves [J]. Journal of the American Statistical Association.1989,84(406):502-516.
    [81]Dong D., Mcavoy T. J. Nonlinear principal component analysis-based on principal curves and neural networks [J]. Computers & Chemical Engineering.1996,20(1): 65-78.
    [82]Kramer M. A. Nonlinear principal component analysis using autoassociative neural networks [J]. AIChE Journal.1991,37(2):233-243.
    [83]Malthouse E. C., Mah R., Tamhane A. C. Some theoretical results on nonlinear principal components analysis [C]. In:Proceedings of the American Control Conference,1995,1:744-748.
    [84]Jia F., Martin E. B., Morris A. J. Non-linear principal components analysis for process fault detection [J]. Computers & Chemical Engineering.1998,22(3):S851-S854.
    [85]Wold S., Kettaneh-Wold N., Skagerberg B. Nonlinear pls modeling [J]. Chemometrics and Intelligent Laboratory Systems.1989,7(1-2):53-65.
    [86]Qin S. J., Mcavoy T. J. Nonlinear pls modeling using neural networks [J]. Computers & Chemical Engineering.1992,16(4):379-391.
    [87]Wold S. Nonlinear partial least squares modelling ii. Spline inner relation [J]. Chemometrics and Intelligent Laboratory Systems.1992,14(1-3):71-84.
    [88]Scholkopf B., Smola A., Muller K. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation.1998,10(5):1299-1319.
    [89]Cao D. S., Liang Y. Z., Xu Q. S., Hu Q. N., Zhang L. X., Fu G. H. Exploring nonlinear relationships in chemical data using kernel-based methods [J]. Chemometrics and Intelligent Laboratory Systems.2011,107(1):106-115.
    [90]Nguyen V. H., Golinval J. Fault detection based on kernel principal component analysis [J]. Engineering Structures.2010,32(11):3683-3691.
    [91]Jia M., Chu F., Wang F., Wang W. On-line batch process monitoring using batch dynamic kernel principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems.2010,28(9):1837-1847.
    [92]Mika S., Sch Lkopf B., Smola A. J., Muller K. R., Scholz M., R Tsch G. Kernel pea and de-noising in feature spaces [J]. Advances in Neural Information Processing Systems.1999,11(1):536-542.
    [93]Choi S. W., Lee C., Lee J. M., Park J. H., Lee I. B. Fault detection and identification of nonlinear processes based on kernel pca [J]. Chemometrics and Intelligent Laboratory Systems.2005,75(1):55-67.
    [94]Cho J. H., Lee J. M., Choi S. W., Lee D., Lee I. B. Fault identification for process monitoring using kernel principal component analysis [J]. Chemical Engineering Science.2005,60(1):279-288.
    [95]Zhang Y., Li S., Teng Y. Dynamic processes monitoring using recursive kernel principal component analysis [J]. Chemical Engineering Science.2012,72:78-86.
    [96]Zhang Y. W., Hu Z. Y. Multivariate process monitoring and analysis based on multi-scale kpls [J]. Chemical Engineering Research and Design.2011,89(12): 2667-2678.
    [97]Zhang Y. W., Hu Z. Y. On-line batch process monitoring using hierarchical kernel partial least squares [J]. Chemical Engineering Research and Design.2011,89(10): 2078-2084.
    [98]胡益,王丽,马贺贺,侍洪波.基于核PLS方法的非线性过程在线监控[J].化工学报.2011,62(9):2555-2561.
    [99]Zhang Y. W. Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (kica) and support vector machine (svm) [J]. Industrial & Engineering Chemistry Research.2008,47(18):6961-6971.
    [100]Tian X. M., Zhang X. L., Deng X. G., Chen S. Multiway kernel independent component analysis based on feature samples for batch process monitoring [J]. Neurocomputing.2009,72(7-9):1584-1596.
    [101]Zhao C. H., Gao F. R., Wang F. L. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (kica-pca) [J]. Industrial & Engineering Chemistry Research.2009,48(20): 9163-9174.
    [102]Jia-Fan Z., Zhi-Chu H. Kernel fisher discriminant analysis for bearing fault diagnosis [C]. In:Proceedings of 2005 International Conference on Machine Learning and Cybernetics,2005,5:3216-3220.
    [103]Zhang X., Yani W. W., Zhao X., Shao H. H. Nonlinear real-time process monitoring and fault diagnosis based on principal component analysis and kernel fisher discriminant analysis [J]. Chemical Engineering & Technology.2007,30(9): 1203-1211.
    [104]Zhang X., Yan W. W., Zhao X., Shao H. H. Nonlinear biological batch process monitoring and fault identification based on kernel fisher discriminant analysis [J]. Process Biochemistry.2007,42(8):1200-1210.
    [105]Bin He X., Yang Y. P., Yang Y. H. Fault diagnosis based on variable-weighted kernel fisher discriminant analysis [J]. Chemometrics and Intelligent Laboratory Systems. 2008,93(1):27-33.
    [106]Li J. H., Cui P. L. Improved kernel fisher discriminant analysis for fault diagnosis [J]. Expert Systems with Applications.2009,36(2):1423-1432.
    [107]Ge Z. Q., Gao F. R., Song Z. H. Batch process monitoring based on support vector data description method [J]. Journal of Process Control.2011,21(6):949-959.
    [108]Liu X., Li K., Mcafee M., Irwin G. W. Improved nonlinear pea for process monitoring using support vector data description [J]. Journal of Process Control.2011,21(9): 1306-1317.
    [109]谢磊,刘雪芹,张建明,王树青.基于NGPP-SVDD的非高斯过程监控及其应用研究[J].自动化学报.2009,35(1):107-112.
    [110]祝志博,宋执环.故障分离——一种基于FDA-SVDD的模式分类算法[J].化工学报.2009,60(8):2010-2016.
    [111]Ge Z. Q., Song Z. H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach [J]. Control Engineering Practice.2008,16(12): 1427-1437.
    [112]Tax D., Duin R. Support vector data description [J]. Machine Learning.2004,54(1): 45-66.
    [113]Kano M., Tanaka S., Hasebe S., Hashimoto I., Ohno H. Combination of independent component analysis and principal component analysis for multivariate statistical process control [C]. In:Proceedings of International Symposium on Design, Operation and Control of Chemical Plants (PSE Asia 2002),2002,319-324.
    [114]Martin E. B., Morris A. J. Non-parametric confidence bounds for process performance monitoring charts [J]. Journal of Process Control.1996,6(6):349-358.
    [115]Chen Q., Wynne R. J., Goulding P., Sandoz D. The application of principal component analysis and kernel density estimation to enhance process monitoring [J]. Control Engineering Practice.2000,8(5):531-543.
    [116]王海青,詹宜臣.小波闽值密度估计器的设计与应用[J].仪器仪表学报.2002,23(1):12-15.
    [117]Ge Z. Q., Song Z. H. Process monitoring based on independent component analysis-principal component analysis (ica-pca) and similarity factors [J]. Industrial & Engineering Chemistry Research.2007,46(7):2054-2063.
    [118]Liu X. Q., Xie L., Kruger U., Littler T., Wang S. Q. Statistical-based monitoring of multivariate non-gaussian systems [J]. AIChE Journal.2008,54(9):2379-2391.
    [119]Ge Z. Q., Song Z. H. Multimode process monitoring based on bayesian method [J]. Journal of Chemometrics.2009,23(12):636-650.
    [120]Yu J., Qin S. J. Multimode process monitoring with bayesian inference-based finite gaussian mixture models [J]. AIChE Journal.2008,54(7):1811-1829.
    [121]解翔,侍洪波.多模态化工过程的全局监控策略[J].化工学报.2012,63(7):2156-2162.
    [122]Zhao S. J., Zhang J., Xu Y. M. Monitoring of processes with multiple operation modes through multiple principle component analysis models [J]. Industrial & Engineering Chemistry Research.2004,43(22):7025-7035.
    [123]Ge Z. Q., Yang C. J., Song Z. H., Wang H. Q. Robust online monitoring for multimode processes based on nonlinear external analysis [J]. Industrial & Engineering Chemistry Research.2008,47(14):4775-4783.
    [124]Zhao C. H., Yao Y., Gao F. R., Wang F. L. Statistical analysis and online monitoring for multimode processes with between-mode transitions [J]. Chemical Engineering Science.2010,65(22):5961-5975.
    [125]Ge Z. Q., Gao F. R., Song Z. H. Two-dimensional bayesian monitoring method for nonlinear multimode processes [J]. Chemical Engineering Science.2011,66(21): 5173-5183.
    [126]Natarajan S., Srinivasan R. Multi-model based process condition monitoring of offshore oil and gas production process [J]. Chemical Engineering Research and Design.2010,88(5-6):572-591.
    [127]Chen J. H., Liu J. L. Mixture principal component analysis models for process monitoring [J]. Industrial & Engineering Chemistry Research.1999,38(4):1478-1488.
    [128]谭帅,王福利,常玉清,王姝,周贺.基于差分分段PCA的多模态过程故障监测[J].自动化学报.2010,36(11):1626-1636.
    [129]许仙珍,谢磊,王树青.基于PCA混合模型的多工况过程监控[J].化工学报.2011,62(3):743-752.
    [130]Garcia-Alvarez D., Fuente M. J., Sainz G. I. Fault detection and isolation in transient states using principal component analysis [J]. Journal of Process Control.2012,22(3): 551-563.
    [131]Zhao S. J., Zhang J., Xu Y. M. Performance monitoring of processes with multiple operating modes through multiple pls models [J]. Journal of Process Control.2006, 16(7):763-772.
    [132]Zhu Z. B., Song Z. H., Palazoglu A. Process pattern construction and multi-mode monitoring [J]. Journal of Process Control.2012,22(1):247-262.
    [133]Yu J. A particle filter driven dynamic gaussian mixture model approach for complex process monitoring and fault diagnosis [J]. Journal of Process Control.2012,22(4): 778-788.
    [134]Yu J. A nonlinear kernel gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes [J]. Chemical Engineering Science.2011,68(1):506-519.
    [135]Xie X., Shi H. B. Dynamic multimode process modeling and monitoring using adaptive gaussian mixture models [J]. Industrial & Engineering Chemistry Research.2012, 51(15):5497-5505.
    [136]Rashid M. M., Yu J. Hidden markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection [J]. Industrial & Engineering Chemistry Research.2012,51(15):5506-5514.
    [137]Yu J. B. Hidden markov models combining local and global information for nonlinear and multimodal process monitoring [J]. Journal of Process Control.2010,20(3): 344-359.
    [138]Tan S., Wang F. L., Peng J., Chang Y. Q., Wang S. Multimode process monitoring based on mode identification [J]. Industrial & Engineering Chemistry Research.2012, 51(1):374-388.
    [139]Wang F. L., Tan S., Penga J., Chang Y. Q. Process monitoring based on mode identification for multi-mode process with transitions [J]. Chemometrics and Intelligent Laboratory Systems.2012,110(1):144-155.
    [140]Teppola P., Mujunen S. P., Minkkinen P. Adaptive fuzzy c-means clustering in process monitoring [J]. Chemometrics and Intelligent Laboratory Systems.1999,45(1-2): 23-38.
    [141]Choi S. W., Martin E. B., Morris A. J., Lee I. B. Adaptive multivariate statistical process control for monitoring time-varying processes [J]. Industrial & Engineering Chemistry Research.2006,45(9):3108-3118.
    [142]Lee Y. H., Jin H. D., Han C. H. On-line process state classification for adaptive monitoring [J]. Industrial & Engineering Chemistry Research.2006,45(9):3095-3107.
    [143]Jin H. D., Lee Y. H., Lee G., Han C. H. Robust recursive principal component analysis modeling for adaptive monitoring [J]. Industrial & Engineering Chemistry Research. 2006,45(2):696-703.
    [144]Kano M., Hasebe S., Hashimoto I., Ohno H. Evolution of multivariate statistical process control:application of independent component analysis and external analysis [J]. Computers & Chemical Engineering.2004,28(6-7):1157-1166.
    [145]Hwang D. H., Han C. H. Real-time monitoring for a process with multiple operating modes [J]. Control Engineering Practice.1999,7(7):891-902.
    [146]Lane S., Martin E. B., Kooijmans R., Morris A. J. Performance monitoring of a multi-product semi-batch process [J]. Journal of Process Control.2001,11(1):1-11.
    [147]He Q. P., Wang J. Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes [J]. IEEE Transactions on Semiconductor Manufacturing. 2007,20(4):345-354.
    [148]He Q. P., Wang J. Principal component based k-nearest-neighbor rule for semiconductor process fault detection [C]. In:Proceedings of the American Control Conference,2008,1606-1611.
    [149]Alcala C. F., Qin S. J. Reconstruction-based contribution for process monitoring with kernel principal component analysis [J]. Industrial & Engineering Chemistry Research. 2010,49(17):7849-7857.
    [150]Cheng C., Hsu C., Chen M. Adaptive kernel principal component analysis (kpca) for monitoring small disturbances of nonlinear processes [J]. Industrial & Engineering Chemistry Research.2010,49(5):2254-2262.
    [151]Ge Z. Q., Yang C. J., Song Z. H. Improved kernel pca-based monitoring approach for nonlinear processes [J]. Chemical Engineering Science.2009,64(9):2245-2255.
    [152]Liu X. Q., Kruger U., Littler T., Xie L., Wang S. Q. Moving window kernel pca for adaptive monitoring of nonlinear processes [J]. Chemometrics and Intelligent Laboratory Systems.2009,96(2):132-143.
    [153]Cui P. L., Li J. H., Wang G. Z. Improved kernel principal component analysis for fault detection [J]. Expert Systems with Applications.2008,34(2):1210-1219.
    [154]Lee J. M., Qin S. J., Lee I. B. Fault detection and diagnosis based on modified independent component analysis [J]. AIChE Journal.2006,52(10):3501-3514.
    [155]He Q. P., Wang J. Statistics pattern analysis:a new process monitoring framework and its application to semiconductor batch processes [J]. AIChE Journal.2011,57(1): 107-121.
    [156]Wang J., He Q. P. Multivariate statistical process monitoring based on statistics pattern analysis [J]. Industrial & Engineering Chemistry Research.2010,49(17):7858-7869.
    [157]Downs J. J., Vogel E. F. A plant-wide industrial process control problem [J]. Computers & Chemical Engineering.1993,17(3):245-255.
    [158]Ricker N. L. Decentralized control of the tennessee eastman challenge process [J]. Journal of Process Control.1996,6(4):205-221.
    [159]Ricker N. L. Optimal steady-state operation of the tennessee eastman challenge process [J]. Computers & Chemical Engineering.1995,19(9):949-959.
    [160]M. A. A. Shoukat Choudhurya S. L. S. N. Diagnosis of poor control-loop performance using higher-order statistics [J]. Automatica.2004,40(10):1719-1728.
    [161]马贺贺,胡益,侍洪波.基于距离空间统计量分析的多模态过程无监督故障检测[J].化工学报.2012,63(3):873-880.
    [162]Ma H. H., Hu Y., Shi H. B. An improved pls method utilizing local standardization strategy for multimode process monitoring [J]. Journal of DongHua University (English Edition).2012,29(4):288-294.
    [163]Ash R. B., Doleans-Dade C. A. Probability & measure theory [M]. San Diego: Academic Press,2000.
    [164]Chen H. L., Chang Y. I. All-nearest-neighbors finding based on the hilbert curve [J]. Expert Systems with Applications.2010,38(6):7462-7475.
    [165]Frisken S. F., Perry R. N. Simple and efficient traversal methods for quadtrees and octrees [J]. Journal of Graphics Tools.2002,7(3):1-12.
    [166]Lilliefors H. W. On the kolmogorov-smirnov test for normality with mean and variance unknown [J]. Journal of the American Statistical Association.1967,62(318):399-402.
    [167]Miller P., Swanson R. E., Heckler C. E. Contribution plots:a missing link in multivariate quality control [J]. Applied Mathematics and Computer Science.1998, 8(4):775-792.
    [168]Wang L., Shi H. B. Multivariate statistical process monitoring using an improved independent component analysis [J]. Chemical Engineering Research and Design.2010, 88(4):403-414.
    [169]Breunig M. M., Kriegel H., Ng R. T., Sander J. Lof:identifying density-based local outliers [C]. In:Proceedings of the 2000 ACM SIGMOD International Conference on Mangement of Data,2000,29:93-104.
    [170]Chen S. Y., Wang W., van Zuylen H. A comparison of outlier detection algorithms for its data [J]. Expert Systems with Applications.2010,37(2):1169-1178.
    [171]Duan L., Xu L., Guo F., Lee J., Yan B. A local-density based spatial clustering algorithm with noise [J]. Information Systems.2007,32(7):978-986.
    [172]Ganeriwal S., Balzano L. K., Srivastava M. B. Reputation-based framework for high integrity sensor networks [J]. ACM T Sensor Network.2008,4(3).
    [173]Gao J., Hu W., Zhang Z., Zhang X., Wu O. Rkof:robust kernel-based local outlier detection [M]. Advances in Knowledge Discovery and Data Mining, Heidelberg:Springer,2011:6635,270-283.
    [174]Ma H. H., Hu Y., Shi H. B. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes [J]. Chemometrics and Intelligent Laboratory Systems.2012,118:287-300.
    [175]Silverman B. W. Density estimation for statistics and data analysis [M]. New York: Chapman and Hall,1986.
    [176]Hsu C, Chen L., Liu C. A process monitoring scheme based on independent component analysis and adjusted outliers [J]. International Journal of Production Research.2010,48(6):1727-1743.
    [177]Lee J., Kang B., Kang S. Integrating independent component analysis and local outlier factor for plant-wide process monitoring [J]. Journal of Process Control.2011,21(7): 1011-1021.
    [178]Lee J. M., Yoo C. K., Lee I. B. Statistical process monitoring with independent component analysis [J]. Journal of Process Control.2004,14(5):467-485.
    [179]Chen T., Martin E., Montague G. Robust probabilistic pca with missing data and contribution analysis for outlier detection [J]. Computational Statistics and Data Analysis.2009,53(10):3706-3716.
    [180]Choi S. W., Lee I. Multiblock pls-based localized process diagnosis [J]. Journal of Process Control.2005,15(3):295-306.
    [181]Qin S. J., Valle S., Piovoso M. J. On unifying multiblock analysis with application to decentralized process monitoring [J]. Journal of Chemometrics.2001,15(9):715-742.
    [182]Westerhuis J. A., Gurden S. P., Smilde A. K. Generalized contribution plots in multivariate statistical process monitoring [J]. Chemometrics and Intelligent Laboratory Systems.2000,51(1):95-114.
    [183]Alcala C. F., Qin S. J. Reconstruction-based contribution for process monitoring [J]. Automatica.2009,45(7):1593-1600.
    [184]Dunia R., Qin S. J. Subspace approach to multidimensional fault identification and reconstruction [J]. AIChE Journal.1998,44(8):1813-1831.
    [185]Yue H. H., Qin S. J. Reconstruction-based fault identification using a combined index [J]. Industrial & Engineering Chemistry Research.2001,40(20):4403-4414.
    [186]Lee C., Choi S. W., Lee I. B. Variable reconstruction and sensor fault identification using canonical variate analysis [J]. Journal of Process Control.2006,16(7):747-761.
    [187]Li Z. Z., Liu G. H., Zhang R., Zhu Z. C. Fault detection, identification and reconstruction for gyroscope in satellite based on independent component analysis [J]. ACTA Astronautica.2011,68(7-8):1015-1023.
    [188]Yu J. A bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses [J]. Computers & Chemical Engineering. 2012,41(11):134-144.
    [189]Chiang L. H., Pell R. J., Seasholtz M. B. Exploring process data with the use of robust outlier detection algorithms [J]. Journal of Process Control.2003,13(5):437-449.
    [190]Wang D. Robust data-driven modeling approach for real-time final product quality prediction in batch process operation [J]. IEEE Transactions on Industrial Informatics. 2011,7(2):371-377.
    [191]Daszykowski M., Kaczmarek K., Heyden Y. V., Walczak B. Robust statistics in data analysis-a review basic concepts [J]. Chemometrics and Intelligent Laboratory Systems.2007,85(2):203-219.
    [192]Yu J. Localized fisher discriminant analysis based complex chemical process monitoring [J]. AIChE Journal.2011,57(7):1817-1828.
    [193]Yu J. Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis [J]. Industrial & Engineering Chemistry Research.2011,50(6): 3390-3402.
    [194]Ku W., Storer R. H., Georgakis C. Disturbance detection and isolation by dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems. 1995,30(1):179-196.
    [195]Nomikos P., Macgregor J. F. Monitoring batch processes using multiway principal component analysis [J]. AIChE Journal.1994,40(8):1361-1375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700