用户名: 密码: 验证码:
部分无铅焊料体系的热力学与动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接材料在电子封装中起着重要的作用,然而传统的Sn-Pb焊料中的Pb对人类的身体健康和环境造成极大的危害。这一问题已经引起欧美、日本及我国政府的高度重视,并已制定出多项政策来限制含铅焊接材料的使用。无铅焊料的研究已是电子封装领域研究的热点之一。经过近十年有关无铅焊料的研究表明,无铅焊接材料不可能是简单的二元合金,而是由多元素构成的多元合金。目前在研究和开发该材料的过程中,主要是尝试研究法,这消耗了大量的人力和物力。相图热力学与动力学计算在材料的研究设计方面具有重要的指导作用,并且成为研究比较活跃的领域之一。无铅焊料热力学数据库和动力学数据库的建立可以减少大量的无铅焊料设计过程中的实验、减小设计开发成本,并且为界面反应研究提供了一个很有效的工具。
     本研究的主要工作是完善已有的无铅焊料设计系统和初步建立无铅焊料动力学数据库。本研究利用电子探针(EPMA:electron probe micro-analyzer)通过合金法和扩散偶法对部分无铅焊料三元系相平衡进行了实验测定;利用差示扫描量热分析(DSC:differential scanning calorimetry)测定了部分相变温度;利用相图计算的CALPHAD(calculation of phase diagrams)方法对无铅焊料部分二元和三元系的相图进行热力学计算,获得整个体系较为精确的相图和合理的热力学参数,从而完善无铅焊接材料热力学数据库。同时,利用DICTRA软件对纯组元和部分二元系的动力学参数进行优化,初步建立无铅焊接材料动力学数据库。本研究的主要内容如下:
     (1)基于合金法和扩散偶法实验方法,(a)测定了Sn-Ag-Au三元系在300℃、400℃和500℃的相平衡和部分不变反应的温度;(b)测定了Sn-Au-Bi三元系在200℃、250℃、300℃和400℃的相平衡和部分不变反应温度,结果表明在Sn-Au-Bi三元系有一个三元金属间化合物(ψ),该ψ相300℃时固溶度范围为Sn_(12.2)Au_(48.8)Bi_(39)到Sn_(13)Au_(49)Bi_(38)(at.%),熔点为312.7℃。X-射线衍射分析表明ψ相的空间群为P63/mmc,具有和AuSn相类似的结构;(c)测定了Sn-Cu-Ni和Sn-Au-Cu三元系在500℃的相平衡关系,初步确定了500℃的等温截面相图;(d)测定了Ag-Bi-Ni和Cu-Bi-Ni三元系的相平衡,并首次确定了在300℃、400℃和500℃的Ag-Bi-Ni和Cu-Bi-Ni三元系的等温截面相图,确定了Cu-Bi-Ni三元系300℃在Cu-Ni侧存在一个NiBi+fcc(Cu)+fcc(Ni)的三相平衡区;(e)测定了Bi-Ni-Zn体系在300℃、500℃和700℃的相平衡;(f)测定了Sn-Ni二元系和Sn-Bi-Ni三元系部分相平衡,确定Sn-Ni二元系内不存在NiSn相,而是一个固溶范围较大的Ni_3Sn_4相。
     (2)利用CALPHAD方法,根据本研究测定的实验数据和文献报道的实验数据,(a)对Sn-Ni、Sn-Ag-Au、Sn-Ag-Ni、Sn-Au-Bi、Ag-Bi-Ni、Cu-Bi-Ni等体系相图进行了热力学计算,其结果与实验数据吻合的较好:(b)对Sn-Cu-Ni和Sn-Au-Cu三元系相图进行了初步的热力学计算,计算结果与实验数据基本是一致的,但计算结果与实验数据存在一定偏差,热力学参数还需要进一步的优化;(c)利用二元系热力学参数外推计算了Sn-Bi-Ni和Bi-Ni-Zn三元系等温截面相图,计算结果与本研究的实验数据吻合的很好;(d)对Ag-Cu-Ni、Ag-Au-Cu、Ag-Au-Ni、Au-Cu-Ni三元系相图进行了热力学计算,计算结果与文献报道的实验数据吻合的比较好。
     (3)利用DICTRA软件,根据文献报道的数据对Sn、Ag、Cu、Ni、Au、In、Sb、Zn、Pb等纯组元在其稳定结构中的自扩散系数进行了优化,并采用了文献报道的根据第一原理计算的晶格常数对部分纯组元在Fcc_A1、Bcc_A2、Hcp_A3结构中的自扩散系数进行了计算,初步确定了焊接材料数据库中纯组元的原子移动能力参数;根据文献报道的数据对Sn-Ag-Cu-Au系的各二元系的动力学参数进行了优化,计算结果与实验数据取得了良好的一致性。
     (4)举例介绍了无铅焊料热力学数据库在无铅焊料设计、焊料与基板界面反应的预测方面的应用。在本研究中利用热力学计算设计了Bi-Ag-Ni共晶成分的高温无铅焊料,组织观察和熔点测定结果表明计算结果与实验结果取得了良好的一致性。利用热力学数据计算和实验研究了Bi-Ag-Ni焊料与Ni基板的界面反应。同时介绍了无铅焊料动力学数据库在焊料的扩散偶、界面反应时的界面移动方面的应用。
Solders play an important role in the electronic packaging.However,lead (Pb) inthe traditional Sn-Pb based solders is hurtful to the environment and human health.This problem has been paid the attention by all over the world,and many rules werecarried out in USA,Japan,European Unit,and China.Many investigations havefocused on the development of Pb-free solders.According to the recent researches,themost promising candidates should be the multi-component alloys.Thethermodynamic and kinetic calculations have been recognized as an important tool inthe design of materials and investigation on interfacial reaction,because itsignificantly decreases the amount of experimental work.
     The purpose of this work is to develop an extensive thermodynamic database anda basic kinetic database.In this work,the phase diagrams in some ternary systemswere determined by EPMA (electron probe micro-analyzer) using equilibrium alloysand diffusion couples,and transformation temperatures of alloys were determined byDSC (differential scanning calorimetry).Based on the experimental data determinedin this work and previous literature,some binary and ternary systems werethermodynamically assessed using the CALPHAD (calculation of phase diagrams)method.The kinetic parameters of pure elements and binary systems were alsooptimized in this work.The details of the results are described as follows:
     (1) Based on the experimental method,(a) the isothermal sections at 300℃,400℃,and 500℃of the Sn-Ag-Au system and the transformation temperatures of alloyswere determined;(b) the isothermal sections at 200℃,250℃,300℃,and 400℃ofthe Sn-Au-Bi system and the transformation temperatures of alloys were determined;(c) the isothermal section at 500℃of the Sn-Cu-Ni and Sn-Au-Cu systems weredetermined;(d) the isothermal sections at 300℃,400℃,and 500℃of the Ag-Bi-Niand Cu-Bi-Ni systems were firstly determined;(e) the isothermal sections at 300℃,500℃,and 700℃of the Bi-Ni-Zn system were determined;(f) the phase equilibriainformation on the Sn-Ni and Sn-Bi-Ni systems was determined,which shows that the Ni3Sn4 phase has a large solubility region.A new intermetallic compound ((?)) wasfound in the Sn-Au-Bi system.The space group of the (?) phase is P63/mmc and itscrystal structure is similar with that of the AuSn phase.
     (2) Based on the experimental data determined in this work and reported in theprevious literature,(a) the Sn-Ni,Sn-Ag-Au,Sn-Ag-Ni,Sn-Au-Bi,and Cu-Bi-Nisystems were thermodynamically assessed using the CALPHAD method;(b) theSn-Cu-Ni and Sn-Au-Cu systems were basically assessed,where there were slightdeviations between calculated and experimental results,and the thermodynamicparameters should be re-optimized based on further experimental data;(c) theSn-Bi-Ni and Bi-Ni-Zn systems were thermodynamically calculated by extrapolatingthe thermodynamic parameters of the sub-binary systems,and a good agreementbetween calculated and experimental results was obtained;(d) the Ag-Cu-Ni,Ag-Au-Cu,Ag-Au-Ni,and Au-Cu-Ni systems were also thermodynamically assessedas well,and agreement between calculated and experimental results was obtained.
     (3) Based on the experimental data,the slef-diffusion coefficients of Sn,Ag,Cu,Ni,Au,In,Sb,Zn,and Pb in their stable structures were optimized in the frame ofDICTRA.The self-diffusion coefficients of the pure elements in the Fcc_A 1,Bcc_A2,and Hcp A3 structures were also calculated.Based on the experimental data,kineticparameters in the sub-binary systems of the Sn-Ag-Cu-Au system were optimized,and a good agreement between calculated and experimental results was obtained.Onthe basis of the kinetic parameters of the pure elements and binary systems,thekinetic database was basically developed.
     (4) The present thermodynamic and kinetic databases were applied in the design oflead-free solders,research of interfacial reactions between lead-free solders andsubstrates,and simulation of movement of interface in the soldering process.TheBi-Ag-Ni solder was made on the basis of the calculation in this work.The calculatedresults illustrate that the CALPHAD method is a powerful tool to design lead-freesolders.The kinetic database was applied in the simulation of diffusion couple and themovement of interface in the soldering process.
引文
[1]田民波,梁彤翔,何卫,电子封装技术和封装材料[J],半导体情报,32 (4)(1995)42.
    [2]I.Karakaya,W.T.Thompson,The Pb-Sn (Lead-Tin)system[J],Bull.Alloy Phase Diagrams,9 (2)(1988)144.
    [3]夏志东,雷永平,史耀武,绿色高性能无铅钎料的研究与发展[J],电子工艺技术,23 (5)(2002)185.
    [4]M.Abtew,G.Selvaduray,Lead-free solders in microelectronics[J],Materials Science and Engineering,27 (2000)95.
    [5]马鑫,钱乙余,无铅化电子组装技术[M].北京:中国电子学会,2004.
    [6]US department of health and human services.Toxicology profile for lead[EB/OL]http://www.atsdr.cdc.gov/toxprofiles/tp 1 3.html.
    [7]戴家辉,刘秀忠,陈立博,无铅焊料的立法与发展[J],山东机械,1 (2005)7.
    [8]邬博义,吴懿平,张乐福,徐聪,新一代绿色电子封装材料[J],微电子学,32(5)(2002)357.
    [9]Japan Electronics and Information Technology Industries Association,Lead-free roadmap 2002 offfical version 2.1[EB/OL].http://tsc.jeita.or.jp/TSC/COMMS/7 EASM/english/leadfree/data/roadmap-v2 I -eHP.ppt.
    [10]Soldering technology center of tin technology ltd.Second European lead-free soldering technology roadmap[EB/OL].http://www.lead-free.org.
    [11]P.Casey,M.Pecht,The technical,social,and legal outlook for lead-free solders,IEEE 2002 International Symposium on Electronic Materials and Packaging[J],USA:IEEE (2002)483.
    [12]刘一波,吴懿平,吴丰顺,邬博义,张金松,无铅焊料的知识产权状况分析[J],电子元件与材料,23 (4)(2004)39.
    [13]史耀武,夏志东,雷永平,李晓延,郭福,电子组装生产的无铅技术与发展趋势[J],电子工艺技术,26 (1)(2005)6.
    [14]刘静,张富文,微电子互连锡基无铅焊料的发展[J],稀有金属快报,24 (4) (2005)6.
    [15]周甘宁,王长振,谭维,章四琪,无铅焊锡的研究进展[J],材料导报,17 (8)(2003)25.
    [16]庄鸿寿,无铅软钎料的新进展[J],电子工艺技术,22 (5)(2001)192.
    [17]F.Guo,Composite lead-free electronic solders,J Mater Sci: Mater Electron,18(2007)129.
    [18]K.Suganuma,无铅电子封装发展现状[J],电子工业专用设备,119 (2004)8.
    [19]K.N.Tu,A.M.Gusak,M.Li,Physics and materials challenges for lead-free solders,J.APPL.PHYS.93 (3)(2003)1335.
    [20]张富文,刘静,杨福宝,胡强,贺会军,徐骏,Sn-Ag-Cu无铅焊料的发展现状与展望[J],稀有金属,29 (2005)619.
    [21]L.Wang,D.Q.Yu,J.Zhao,M.L.Huang,Improvement of wettability and tensile property in Sn-Ag-RE lead-free solder alloy[J],Materials Letters 56 (2002)1039.
    [22]C.M.L.Wu,M.L.Huang,J.K.L.Lai,and Y.C.Chan,Developing a lead-free solder alloy Sn-Bi-Ag-Cu by mechanical alloying[J],J.Electron.Materi.29 (8)(2000)1015.
    [23]K.W.Moon,W.J.Boettinger,U.R.Kattner,F.S.Biancaniello,and C.A.Handwerker,Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys[J],J.Electron.Mater.29 (2000)1122.
    [24]马莒生,陈国海,无铅焊料在清华大学的研究与发展[J],电子元件与材料,23(11)(2004)45.
    [25]陈国海,耿志挺,马莒生,张岳,新型无铅焊料合金Sn-Ag-Cu-In-Bi的研究[J],电子元件与材料,2 (4)(2003)36.
    [26]张曙光,何礼君,张少明,石力开,绿色无铅电子焊料的研究与应用进展[J],材料导报,18 (6)(2004)72.
    [27]B.Li,Y.W.Shi,Y.P.Lei,et al.Effect of rare earth element addition on the microstructure of Sn-Ag-Cu solder joint[J],J.Electron.Materi.34 (3)(2005)217.
    [28]K.S.Kim,S.H.Huh,K.Suganuma,Effects of fourth alloying additive on microstructrues and tensile properties of Sn-Ag-Cu alloy and joints with Cu[J],Microelectron Reliab.43 (2)(2003)259.
    [29]王文海,王珺,唐兴勇,肖斐,俞宏坤,添加微量高熔点金属对无铅焊料性能的影响[J],电子元件与材料,24 (9)(2005)48.
    [30]C.M.Wu,D.Q.Yu,C.M.T.Law,L.Wang,Properties of lead-free solder alloys with rare earth element additions[J],Materials Science and Engineering R 44(2004)1.
    [31]C.W.Wang,K.S.Kim,and K.Suganuma,Interfaces in lead-free soldering[J],J Electron.Mater.32 (2003)1249.
    [32]C.E.Ho,S.C.Yang,C.R.Kao,Interfacial reaction issues for lead-free electronic solders[J],J Mater Sci: Mater Electron.18 (2007)155.
    [33]K.Zeng,K.N.Tu,Six cases of reliability study of Pb-free solder joints in electronic packaging technology[J],Materials Science and Engineering R,38 (2002)55.
    [34]M.Y.Chiu,S.S.Wang,and T.H.Chuang,Intermetallic compounds formed during interfacial reactions between liquid Sn-8Zn-3Bi solders and Ni substrates[J],J.Electron.Mater.31 (2002)494.
    [35]T.Laurila,V.Vuorinen,J.K.Kivilahti,Interfacial reactions between lead-free solders and common base materials[J],Materials Science and Engineering R,49 (2005)1.
    [36]Y.Takaku,X.J.Liu,I.Ohnuma,R.Kainuma,and K.Ishida,Interfacial reaction and morphology between molten Sn base solders and Cu substrate[J],Materials Transactions,45,(3)(2004)646.
    [37]G.Ghosh,A comparative study of the kinetics of interfacial reaction between eutectic solders and Cu/Ni/Pd metallization[J],J.Electron.Mater.29 (2000)1182.
    [38]H.Min,S.N.Ekpenuma,and V.L.Acoff,Microstructure and creep deformation of Sn-Ag-Cu-Bi/Cu solder joints[J],J.Electron.Mater.37 (2008)300.
    [39]熊胜虎,黄卓,田民波,电子封装无铅化趋势及瓶颈[J],电子元件与材料,23 (3)(2004)29.
    [40]L.J.Turbini,Processing and material issues related to lead-free soldering[J],J Mater Sci: Mater Electron.18 (2007)147.
    [41]B.J.Lee,N.M.Hwang,H.M.Lee,Prediction of Inter-face reaction products between Cu and various solder alloys by thermodynamic calculation[J],Acta Materialia,45 (50)(1997)1867.
    [42]柳春雷,金展鹏,刘华山,相图计算在电子材料焊接中的应用[J],中国有色金属学报,13 (6)(2003)1343.
    [43]陆学善,相图与相变[M],中国科学技术大学出版社,1990.
    [44]乔芝郁,郝士明,相图计算研究的进展[J],材料与冶金学报,4 (2)(2005)83.
    [45]S.Yellowstone,PANDAT software for multicomponent phase diagram calculation by computhermo,LLC,437,Madison,WI.2000.
    [46]C.W.Bale,A.D.Pelton.FACT (Facility for the Analysis of Chemical Thermodynamics).Version 2.1-User Manual[C],Ecole Plytechnique de Montreal Royal Military College,Canada,1996,July.
    [47]H.L.Lukas,Manual of Computer Programs: BINGSS,BINFKT,TERGSS and TERFKT[M],91-3,Germany,1991:3-55.
    [48]B.Sundman,B.Jansson,J.o.Andersson,The thermo-calc database system[J].CALPHAD,9 (1985)153.
    [49]R.H.Davies,A.T.Dinsdale,J.A .Gisby,Application of thermodynamics in the synthesis and processing of materials[M],P.Nash,B.Sundman.TMS,Warrendale,PA,1995: 371.
    [50]A.Borgenstam,A.Engstrom,L.Hoglund,and J.Agren,DICTRA,a tool for simulation of diffusional transformations in alloys[J],Journal of Phase Equilibria,21 (3)(2000)269.
    [51]M.Schwind,J.Kallqvist,J.-O.Nilsson,J.Agren,H.-O.Andr(?)n,Sigma phase precipitation in stainless steel[J],Acta Mater.48 (2000)2473.
    [52]M.Ekroth,R.Frykholm,M.Lindholm,H.-O.Andr(?)n,J.Agren,Gradient sintering of cemented carbides[J],Acta Mater.48 (2000)2177.
    [53]C.Campbell,W.J.Boettinger,Transient liquid phase binding of alloys[J],Metall Mater Trans A.22A(1991)1745.
    [54]X.J.Liu,Y.Takaku,I.Ohnuma,R.Kanuma,and K.Ishida,Design of Pb-free solders in electronic packing by computational t hermodynamics and kinetics,第十一届全国相图学术会议论文集[C],西宁(2002)10.
    [55]K.Ishida,Application to nonferrous systems,Mohri T.Phase diagrams as a tool for advanced materials design,Hokkaido Japan: Hokkaido University,(2003)41.
    [56]M.Palumbo,L.Battezzati,Thermodynamics and kinetics of metallic amorphous phases in the framework of the CALPHAD approach[J],CALPHAD,32 (2008)295.
    [57]Q.Chen,J.Jeppsson,J.Agren,Analytical treatment of diffusion during precipitate growth in multicomponent systems[J],Acta Materialia,56 (2008)1890.
    [58]F.Tancret,Thermo-Calc and Dictra simulation of constitutional liquation of gamma prime (c0)during welding of Ni base superalloys[J],Computational Materials Science,41 (2007)13.
    [59]G.Ghosh,Dissolution and interfacial reactions of thin-file Ti/Ni/Ag metallizations in solder joints[J],Acta mater.49 (2001)2609.
    [60]L.Zhang,Y.Dua,Y.Ouyang,H.Xu,X.-G.Lu,Y.Liu,Y.Kong,J.Wang,Atomic mobilities,diffusivities and simulation of diffusion growth in the Co-Si system[J],Acta Materialia 56 (2008)3940.
    [61]H.Ipser,H.Flandorfer,Ch.Luef,C.Schmetterer,U.Saeed,Thermodynamics and phase diagrams of lead-free solder Materials[J],J Mater Sci: Mater Electron 18(2007)3.
    [62]S.W.Chen,C.H.Wang,S.K.Lin,C.N.Chiu,Phase diagrams of Pb-free solders and their related materials systems[J],J Mater Sci: Mater Electron.18 (2007)19.
    [63]乔芝郁,谢允安,曹战民,袁文霞,孙勇,祁更新,无铅锡基钎料合金设计和合金相图及其计算[J],中国有色金属学报,14 (11)(2004)1789.
    [64]高峰,王翠萍,刘兴军,相图计算及其在无铅焊接材料中的应用[J],上海交通大学学报,41(2007)100.
    [65]陈志刚,夏志东,史耀武,热力学计算在无铅钎料合金设计中的应用[J],电子工艺技术,23 (2)(2002)77.
    [66]I.Ohnuma,X.J.Liu,H.Ohtani,and K.Ishida,Thermodynamic database for phase diagrams in micro-soldering alloys[J],J.Electron.Mater.28 (1999)1164.
    [67]X.J.Liu,I.Ohnuma,C.P.Wang,M.Jiang,R.Kainuma,K.Ishida,M.Ode,T.Koyama,H.Onodera,and T.Suzuki,Thermodynamic database on microsolders and copper-based alloy systems[J],J.Electron.Mater.32 (2003)1265.
    [68]X.J.Liu,K.Oikawa,I.Ohnuma,R.Kainuma,and K.Ishida,The use of phase diagrams and thermodynamic databases for electronic materials[J],JOM,55 (2003)53.
    [69]A.Kroupa,A.T.Dinsdale,A.Watson,J.Vrestal,J.Vizdal,and A.Zemanova,The development of the COST 531 lead-free solders thermodynamic database[J],JOM,59 (2007)20
    [70]吴本生,杨晓华,陈文哲,无铅焊接技术在微电子封装工业中的应用综述[J].理化检验(物理分册),41 (2005)77.
    [1] U. R. Kattner, Thermodynamic modeling of multicomponent phase equilibria [J], JOM, 49 (12) (1997) 14.
    [2] H. A. J. Onk, Phase Theory, Elsevier Sci. Pub. Comp., Amsterdam, 1981.
    [3] H. Kohler and A. D. Pelton, Calculation of one phase boundary of a binary two-phase region when the other phase boundary is known [J], CALPHAD, 6 (1982)39.
    [4] J. H. Hildebrand, Solubility. Ⅻ. Regular solutions [J], J. Amer. Chem. Soc. 51 (1929)66.
    [5] H. K. Hardy, A "sub-regular" solution model and its application to some binary alloy systems [J], Acta Metall. 1 (1953), 202.
    [6] M. Hillert and L. I. Stafansson, The Regular Solution Model for Stoichiometric Phases and Ionic Melts [J], Acta. Chem. Scand. 24 (1970) 3618.
    [7] A. T. Dinsdsle, SGTE data for pure elements [J], CALPHAD, 15 (1991) 317.
    [8] O. Redlich, A. T. Kister, Thermodynamics of Nonelectrolyte Solutions-x-y-t relations in a Binary System [J], Industr. Eng. Chem. 40 (1948) 345.
    [9] K. C. H. Kumar and P. Wollants. Some guidelines for thermodynamic operation of phase diagrams [J]. Journal of Alloys and Compounds, 2001, 32: 50-61.
    [10] 顾秉林.材料计算设计,863工作报告, 2000.
    [11] J. O. Andersson and J. Agren, Models for numerical treatment of multicomponent diffusion in simple phases [J], J. Appl. Phys. 72 (1992) 1350.
    [12] A. D. LeClaire, Diffusion in body-centered cubic metals, American Society for Metals [J], Metals park, Ohio (1965) 10.
    [13] S. Dushman and I. Langmuir, The diffusion coefficient in solids and its temperature [J], Phys. Rev. 20 (1922) 113.
    [14] A. Borgenstam, A. Engstrom, L. Hoglund, and J. Agren, DICTRA, a tool for simulation of diffusional transformations in alloys [J], J. Phase Equilibr. 21 (3) (2000) 269.
    [1]I.Ohnuma,X.J.Liu,H.Ohtani,and K.Ishida,Thermodynamic database for phase diagrams in micro-soldering alloys[J],J.Electron.Mater.28 (1999)1164.
    [2]X.J.Liu,I.Ohnuma,C.P.Wang,M.Jiang,R.Kainuma,K.Ishida,M.Ode,T.Koyama,H.Onodera,and T.Suzuki,Thermodynamic database on microsolders and copper-based alloy systems[J],J.Electron.Mater.32 (2003)1265.
    [3]X.J.Liu,K.Oikawa,I.Ohnuma,R.Kainuma,and K.Ishida,The use of phase diagrams and thermodynamic databases for electronic materials[J],JOM,55 (2003)53.
    [4]M.Abtew,G.Selvaduray,Lead-free solders in microelectronics[J],Materials Science and Engineering,27 (2000)95.
    [5]周甘宁,王长振,谭维,章四琪,无铅焊锡的研究进展[J],材料导报,17 (8)(2003)25.
    [6]王文海,王珺,唐兴勇,肖斐,俞宏坤,添加微量高熔点金属对无铅焊料性能 的影响[J],电子元件与材料,24 (9)(2005)48.
    [7]C.M.Wu,D.Q.Yu,C.M.T.Law,L.Wang,Properties of lead-free solder alloys with rare earth element additions[J],Materials Science and Engineering R,44 (2004)1.
    [8]D.G.Ivey,Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications[J],Micron.29 (4)(1998)281.
    [9]H.Okamoto,Au-Sn (Gold-Tin)[J],Journal of Phase Equilibria,14 (6)(1993)765.
    [10]D.S.Evans,A.Prince,Thermal analysis of the Ag-Au-Sn ternary system in the region from 20 to 100%Sn[J],Meta.Sci.8 (1974)286.
    [11]T.B.Massalsk and H.Pops,Axial ratio changes in ternary hcp c-phase alloys of the system Ag-Au-Sn[J],Acta Metallurgica,18 (1970)961.
    [12]D.B.Mahler,J.D.Adey,and J.V.Eysden,Microprob analysis of a Au-containing alloy and its amalgam[J],J.Dent.Res.55 (6)(1976)1012.
    [13]A.Prince,Silver-Gold-Tin,Ternary alloys[M],editor: G.Petzow and G. Effenberg, 1(1988)239.
    [14] J. Rakotomavo, M. Gaune-Escard, J.P. Bros, P. Gaune. Ber. Bunsenges, Enthalpies of formation at 1373 K of the liquid alloys Ag + Au, Ag + Sn and Ag + Au + Sn [J], Phys. Chem 88 (1984) 663.
    [15] Z. Li, M. Dallegri, S. Knott, Calorimetric measurements of the ternary Ag-Au- Sn system [J], Journal of Alloys and Compounds, 453 (2008) 442.
    [16] J. Wang, H.S. Liu, L.B. Liu, Z.P. Jin, Thermodynamic description of the Sn-Ag-Au ternary system [J], CALPHAD, 31 (2007) 545.
    [17] S. W. Chen and Y. W. Yen, Interfacial Reactions in the Sn-Ag/Au Couples [J], J. Electron. Mater. 30 (2001) 1133.
    [18] I. Karakaya and W. T. Thompson, The Ag-Sn (Silver-Tin) system [J], Bull. Alloy Phase Diagrams, 8 (4) (1987) 340.
    [19] C. S. Oh, J. H. Shim, B. J. Lee, D.N. Lee, A thermodynamic study on the Ag-Sb-Sn system [J], Journal of Alloys and Compounds, 238 (1996) 155.
    [20] A. T. Dinsdale, SGTE data for pure elements [J], CALPHAD, 15 (1991) 317.
    [21] H. Okamoto and T.B. Massalski, The Au-Sn (Gold-Tin) system [J], J. Phase Equilibria, 14 (3) (1993) 316.
    [22] H. S. Liu, C. L. Liu, K. Ishida, Z. P. Jin, Thermodynamic modeling of the Au-In-Sn system [J], J. Electron. Mater. 32 (2003) 1290.
    [23] S. Hassam, J. Agren, M. Gaune-Escard, J. P. Bros, The Ag-Au-Si system: Experimental and calculated phase diagram [J], Metall. Trans. A 21 (1990) 1877.
    [24] C. E. Ho, S. C. Yang, C. R. Kao, Interfacial reaction issues for lead-free electronic solders [J], J Mater Sci: Mater Electron. 18 (2007) 155.
    [25] K. Zeng, K. N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology [J], Materials Science and Engineering R, 38 (2002) 55.
    [26] T. Laurila, V. Vuorinen, J. K. Kivilahti, Interfacial reactions between lead-free solders and common base materials [J], Materials Science and Engineering R, 49(2005)1.
    [27] Y. Takaku, X. J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Interfacial reaction and morphology between molten Sn base solders and Cu substrate [J], Materials Transactions, 45,(3) (2004) 646.
    [28] G. Ghosh, A comparative study of the kinetics of interfacial reaction between eutectic solders and Cu/Ni/Pd metallization [J], J. Electron. Mater. 29 (2000) 1182.
    [29] M. Sinoleton and P. Nash, Ag-Ni (Silver-Nickel) [M], Phase Diagrams of Binary Nickel Alloys, 1991.
    [30] D.A. Stevenson and J. Wulff, Extractive metallurgy division: Liquid-solid phase distribution studies in the systems iron-lead, cobalt- lead, chromium-tin, and nickel-silver [J], Trans. Metall. Soc. AIME 221 (1961) 271.
    [31] G. Tammann and W. Oelson, Die Abha(?)ngigkeit der konzentration gesattigter mischkristalle von der temperatur [J], Z. Anorg. Chem. 186 (1930) 264.
    [32] J. Ladet, J. Beradini, and F. Cabane-Brouty, Comportement du fer, du cobalt et du nickel au voisanage des dislocations dans l'argent et le cuivre monocristallins [J], Scr. Metall. 10(1976)195.
    [33] C. Colinet and A. Pasturel, Theoretical calculation of the Cu-Ni, Ag-Ni and Au-Ni miscibility gaps [J], Z. Metallkd. 89 (1998) 863.
    [34] H.G. Zolla and F. Spaepen, Calorimetric and magnetic determination of the interfacial enthalpy and heat of mixing in Ag (Ni) alloys [J], Acta Mater. 47 (1999)2391.
    [35] U. Saeed, H. Flandorfer, and H. Ipser, Lead-free solders: Enthalpies of mixing of liquid alloys in the Ag-Ni and Ag-Ni-Sn systems [J], J. Mater. Res. 21 (2006) 1294.
    [36] H. F. Hsu and S.W. Chen, Phase equilibria of the Sn-Ag-Ni ternary system and interfacial reactions at the Sn-Ag/Ni joints [J], Acta Mater. 52 (2004) 2541.
    [37] S. W. Chen, H. F. Hsu, and C. W. Lin, Liquidus projection of the ternary Ag-Sn-Ni system [J], J. Mater. Res. 19 (2004) 2262.
    [38] H. Ipser, H. Flandorfer, C. Luef, and C. Schmetterer, Thermodynamics and phase diagrams of lead-free solder materials [J], J. Mater. Sci.: Mater. Electron. 18 (2007) 3.
    [39] U. Saeed, H. Flandorfer, and H. Ipser, Lead-free solders: Enthalpies of mixing of liquid alloys in the Ag-Ni and Ag-Ni-Sn systems [J], J. Mater. Res. 21 (2006) 1294.
    [40] P. Nash and A. Nash, Ni-Sn (Nickel-Tin), Phase Diagrams of Binary Nickel Alloys [M], 1991.
    [41] G. Ghosh, Thermodynamic modeling of the nickel-lead-tin system [J], Metall. Mater. Trans. A 30 (1999) 1481.
    [42] H. S. Liu, J. Wang, and Z. P. Jin, Thermodynamic optimization of the Ni-Sn binary system [J], CALPHAD, 28 (2004) 363.
    [43] X. J. Liu, M. Kinaka, Y. Takaku, I. Ohnuma, R. Kainuma, and K. Ishida, Experimental investigation and thermodynamic calculation of phase equilibria in the Sn-Au-Ni system [J], J. Electron. Mater. 34 (2005) 670.
    [44] S. I. Popel and V. N. Kozhurkov, Surface properties and mutual solubility of iron-nickel-silver and cobalt-nickel-silver melts [J], Izv. Akad. Nauk SSSR, Met. 2(1974)49.
    [45] G. Humpston, Ph.D. Thesis [M], Brunei University, 1985.
    [46] C. A. Maxwell, M. Sc. Thesis [M], Univ. Manchester, 1986.
    [47] O. Kubaschewski, Ternary Alloys [M], edited by G. Effenberg, F. Aldinger and A. Prince, 12(1995)207.
    [48] A. Prince, G. V. Raynor, and D. S. Evans, Phase Diagrams of Ternary Gold Alloys [M], The Institute of Metals, London, 168 (1990).
    [49] U. B. Kang, and Y. H. Kim, The microstructure characterization of ultrasmall eutectic Bi-Sn solder bumps on Au/Cu/Ti and Au/Ni/Ti under-bump metallization [J]. J. Electron. Mater. 33 (2004) 61.
    [50] M. G. Cho, K. W. Paik, H. M. Lee, S. W. Booh, and T. G. Kim, Interfacial reaction between 42Sn-58Bi solder and electroless Ni-P/immersion Au under bump metallurgy during aging [J]. J. Electron. Mater. 35 (2006) 35.
    [51] C. M. Chen, L. T. Chen, and Y. S. Lin, Electromigration-Induced Bi Segregation in Eutectic SnBi Solder Joint [J]. J. Electron. Mater. 36 (2007) 168.
    [52] B. L. Young, J. G. Duh, and G. Y. Jang, Compound formation for electroplated Ni and electroless Ni in the under-bump metallurgy with Sn-58Bi solder during aging [J], J. Electron. Mater. 32 (2003) 1463.
    [53] H. Ohtani, and K. Ishida, A thermodynamic study of the phase equilibria in the Bi-Sn-Sb system [J], J. Electron. Mater. 23 (1994) 747.
    [54] J. Wang, F. G. Meng, H. S. Liu, L. B. Liu, and Z. P. Jin, Thermodynamic Modeling of the Au-Bi-Sb Ternary System [J], J. Electron. Mater. 36 (2007) 568.
    [55] T. B. Massalski, Bi-Sn (Bismuth-Tin), Binary Alloy Phase Diagrams [M], The Materials Information Society.
    [56] S. K. Seo, M. G. Cho, and H. M. Lee, Thermodynamic assessment of the Ni-Bi binary system and phase equilibria of the Sn-Bi-Ni ternary system [J], J. Electron. Mater. 36(2007)1536.
    [57] Y. Takaku, Tohoku University, provided by communication, 2008.
    [58] G. P. Vassilev, X. J. Liu, and K. Ishida, Experimental studies and thermodynamic optimization of the Ni-Bi system [J], J. Phase Equil. Diff. 26 (2005) 161.
    [59] M. J. Rizvi, C. Bailey, Y. C. Chan, M. N. Islam, H. Lu, Effect of adding 0.3wt.% Ni into the Sn-0.7 wt.% Cu solder Part I(??). Wetting behavior on Cu and Ni substrates [J], J. Alloys Compounds, 438 (2007) 116.
    [60] M. J. Rizvi, C. Bailey, Y. C. Chan, M. N. Islam, H. Lu, Effect of adding 0.3 wt.% Ni into the Sn-0.7 wt.% Cu solder Part II(??). Growth of intermetallic layer with Cu during wetting and aging [J], J. Alloys Compounds, 438 (2007) 122.
    [61] N. Duan, J. Scheer, J. Bielen, M. V. Kleef, The influence of Sn-Cu-Ni(Au) and Sn-Au intermetallic compounds on the solder joint reliability of flip chips on low temperature co-fired ceramic substrates [J], Microelectronics Reliability 43 (2003)1317.
    [62] J. T. Plewes, High-strength Cu-Ni-Sn alloys by thermomechanical processing [J], Metallurgical Transactions A, 6 (1975) 537.
    [63] J. C. Zhao, and M. R. Notis, Spinodal decomposition ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloys [J], Acta Mater. 46 (12) (1998)4203.
    [64] J. W. Yoon, Y. H. Lee, D. G. Kim, H. B. Kang, S. J. Suh, C. W. Yang, C. B. Lee, J. M. Jung, C. S. Yoo, and S. B. Jung, Intermetallic compound layer growth at the interface between Sn-Cu-Ni solder and Cu substrate [J], J. Alloys. Compounds, 381(2004)151.
    [65] J. W. Yoon, S. W. Kim, and S. B. Jung, Effects of reflow and cooling conditions on interfacial reaction and IMC morphology of Sn-Cu/Ni solder joint [J], J. Alloys. Compounds, 415 (2006) 56.
    [66] J. W. Yoon, and S. B. Jung, High temperature reliability and interfacial reaction of eutectic Sn-0.7Cu/Ni solder joints during isothermal aging [J], Microelectronics Reliability 46 (2006) 905.
    [67] C. H. Wang and S. W Chena, Sn-0.7 wt.% Cu/Ni interfacial reactions at 250°C [J], Acta Materialia 54 (2006) 247.
    [68] J. Miettinen, Thermodynamic description of the Cu-Ni-Sn system at the Cu-Ni side [J], CALPHAD, 27 (2003) 309.
    [69] J. Veszelka, Investigation of the equilibrium condition in further alloyed bronzes [J], Mitt Berg U Hurt Abt K Ung Hochschule Berg U Forstwesen, Sopron, 4 (1932)163.
    [70] J. T. Eash, N. J. Byonne, and C. Upthegrove, The copper-rich alloys of the copper-nickel-tin system [J], Trans AIME, 104 (1933) 221.
    [71] B. D. Bastow, D. H. Kirkwood, Solid/Liquid equilibrium in the copper-nickel-tin system determined by microprobe analysis [J], Journal of the Institute of Metals, 99(1971)277.
    [72] E. Wachtel and E. Bayer, Aufbau und magnetische eigenschaften des dreistoffsystems Cu-Ni-Sn [J], Z. Metallkund. 75 (1) (1984) 61.
    [73] Y. Watanabe, Y. Murakami, S. Kachi, Martensitic and massive transformations and phase diagram in Ni3-xMxSn (M=Cu,Mn) alloys [J], Journal of the Japan Institute of Metals, 45 (1981) 551.
    [74] E. M. Wise, Alpha phase boundary of the copper nickel tin system [J], Trans AIME, 78(1928)503.
    [75] J. S. Lee Pak, K. Mukherjee, O. T. Inal. et al. Phase transformations in (Ni,Cu)_3Sn alloys [J]. Materials Science and Engineering, 117 A (1989) 167.
    [76] M. Miki and Y. Ogino, Effect of the addition of B and P on the cellular precipitation in Ni-Sn and Cu-Ni-Sn alloys [J], Journal of the Japan Institute of Metals, 47 (1) (1983) 983.
    [77] Y. A. Chang, Phase Diagrams and Thermodynamic Properties of Ternary Cooper-Metal System [J], Int Copper Research Association, (1979) 604.
    [78] K. P. Gupta, The Cu-Ni-Sn system, Phase Diagrams of Ternary Nickel Alloys [M], Indian Institute of Metals, Calcutta, India, 1 (1990) 195.
    [79] P. Villars, A. Prince, and H. Okamoto, Handbook of ternary Alloy Phase Diagrams [M], (1995) 9818.
    [80] M. J. Pool, I. Arpshoten, B. Predel, et al. Calculation and analysis of the mixing entralpies in liquid Cu-Ni-Sn alloys using various models [J], Z. Metallkund. 70 (1979)726.
    [81] M. J. Pool, I. Arpshoten, B. Predel, et al. Determination of mixing enthalpies of liquid alloys in the Cu-Ni-Sn ternary system using a SETARAM high temperature calorimeter [J], Z. Metallkund. 70 (1979) 656.
    [82] C. H. Wang and S. W. Chen, Isothermal section of the ternary Sn-Cu-Ni system and interfacial reaction in the Sn-Cu/Ni couples at 800°C [J], Metal. Mater. Trans. A, 34A (2003) 2281.
    [83] C. H. Lin, S. W. Chen, and C. H. Wang, Phase equilibria and solidification properties of Sn-Cu-Ni alloys [J], J. Electron. Mater. 31 (2002) 907.
    [84] C. Y. Li, G. J. Chiou, and J. G. Duh, Phase Distribution and Phase Analysis in Cu_6Sn_5, Ni_3Sn_4, and the Sn-Rich Corner in the Ternary Sn-Cu-Ni Isotherm at 240°C [J], J. Electron. Mater. 35 (2006) 343.
    [85] Y. Y. Lin, Ishida-Lab, Tohoku University, provided by communication, 2008.
    [86] S. A. Mey, Thermodynamic re-evaluation of the Cu-Ni system [J], CALPHAD, 16 (3)(1992) 255.
    [87] X. J. Liu, C. P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, Experimental investigation and thermodynamic calculation of the phase equilibria in the Cu-Sn and Cu-Sn-Mn systems [J], Metall. Mater. Trans. A. 35A(2004) 1641.
    [88] N. Saunders, A P.Miodownik, P. R. Subramanian, D. J. Chakrabarti, D. E .Laughlin ed. Phase Diagram of Binary Copper Alloys [J], Materials Park: ASM International (1994) 412.
    [89] Y. W. Yen, C. C. Jao, H. M. Hsiao, C. Y. Lin, and C. P. Lee, Investigation of the phase equilibria of Sn-Cu-Au ternary and Ag-Sn-Cu-Au quaternary systems and interfacial reactions in Sn-Cu/Au couples [J], J. Electron. Mater. 36 (2007) 147.
    [90] O. B. Karisen, A. Kjekshus, and E. Rost, Ternary phases in the system Au-Cu-Sn [J], Acta Chemica Scandinavica, 44 (1990) 197.
    [91] J. F. Roeder, M. R. Notis, and J. I. Goldstein, Compound formation and interfacial instability in the Au-Cu-Sn system at low temperatrue [J], Defect and Diffusion Forum, 59 (1988) 271.
    [92] O. B. Karisen, A. Kjekshus, and E. Rost, The ternary system Au-Cu-Sn [J], Acta Chemica Scandinavica, 46 (1992) 147.
    [93] O. B. Karisen, A. Kjekshus, C. Romming, and E. Rost, The crystal structure of AuCuSn [J], Acta Chemica Scandinavica, 46 (1992) 442.
    [94] O. B. Karisen, A. Kjekshus, C. Romming, and E. Rost, The crystal structure of the low-temperature Au_(80-v)Cu_vSn_(20) phase [J], Acta Chemica Scandinavica, 46 (1992) 1076.
    [95] N. B. Bochvar and Y. P. Liberov, Gold-Copper-Tin, Ternary Alloy Phase Diagrams [M], 1(1988)401.
    [96] B. Sundman, S. G. Fries, W. A. Oates, A thermodynamic assessment of the Au-Cu system [J], CALPHAD, 22 (2) (1998) 335.
    [97] I. Karakaya and W. T. Thompson, The Ag-Bi (Silver-Bismuth) System [J], Journal of Phase Equilibria, 14 (4) (1993) 525.
    [98] J. N. Lalena, N. F. Dean, and M. W. Weiser, Experimental investigation of Ge-doped Bi-11 Ag as a new Pb-free solder alloy for power die attachment [J], J. Electron. Mater. 31 (2002) 1244.
    [99] J. M. Song, H. Y. Chuang, and Z. M. Wu, Interfacial reactions between Bi-Ag high-temperature solders and metallic substrates [J], J. Electron. Mater. 35 (2006) 1041.
    [100] M. Rettenmayr, P. Lambracht, B. Kempf, and M. Graff, High melting Pb-free solder alloys for die attach applications [J], Advan. Eng. Mater. 7 (10) (2005) 965.
    [101] P. Nash, The Bi-Ni (Bismuth-Nickel) system, Bull. Alloy Phase Diagrams, 6 (4) (1985)345.
    [102] U. R. Kattner, W. J. Boettinger, On the Sn-Bi-Ag ternary phase diagram [J], J. Electron. Mater. 23 (1994) 603.
    [103] Y. Takaku, I. Ohnuma, R. Kainuma, Y. Yamada, Y. Yagi, Y. Nishibe, and K. Ishida, Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: thermodynamic calculation, microstructure, and interfacial reaction [J], J. Electron. Mater. 35 (2006) 1926.
    [104] Y. Yamada, Y. Takaku, Y. Yagi, Y. Nishibe, I. Ohnuma, and K. Ishida, Novel Bi-based high-temperature solder for mounting power semiconductor devices [J], R&D Review of Toyota CRDL, 41 (2) (2006) 43.
    [105] K. L. Meissner, Equilibrium studies of copper and bismuth over three mixtures containing [J], Z. Metallkd. 14 (1922) 173.
    [106] Y. A. Chang, J. P. Neumann, A. Mikula, and D. Goldberg, Bi-Cu-Ni phase diagram, Phase diagrams and thermodynamic properties of ternary copper-metals systems [C], Y A. Chang, international copper pesearch association, (1979) 346.
    [107] D. J. Chakrabarti, D. E. Laughlin, S. W. Chen, and Y A. Chang, Cu-Ni (Copper-Nickel), Phase Diagrams of Binary Nickel Alloys [M], 1991.
    [108] J. Niemela, A thermodynamic evaluation of the copper-Bismuth and Copper-Lead systems [J], CALPHAD, 10 (1) (1986) 77.
    [109] S. C. Dev, P. Basak, I. Singh, R. K. Dubey, and O. N. Mohanty, A copper-base brazing alloy for electronics industries [J], J. Mater. Sci. 27 (1992) 6646.
    [100] S. W. Chen, Mater. Chem. Phys. 33 (1993) 271.
    [111] P. D. Cesaris, Le leghe ternarie di Nichel-Rame-Argento [J], Chim. Ital. 43 (1913)365. (Italy)
    [112] W. Guertler and A. Bergmann, Studien am dreistoffsystem Silber-Kupfer- Nickel [J], Z. Metallkd. 25 (1933) 53. (Germany)
    [113] T.A. Siewert and W.R. Heine, Recent look at Ag-Cu-Ni system [J], Metall. Trans. 8A(1977) 515.
    [114] H.T. Luo and S.W. Chen, Phase equilibria of the ternary Ag-Cu-Ni system and the interfacial reactions in the Ag-Cu/Ni couples [J], J. Mater. Sci. 31 (1996) 5059.
    [115] P. R. Subramanian and J. H. Perepezko, Ag-Cu (Silver-Copper) [J], Journal of Phase Equilibria, 14 (1) (1993).
    [116] O. Kubaschewski, Ag-Cu-Ni system, Ternary Alloy Phase Diagrams [M], ed. G. Petzow and G. Effenberg, 1 (1998) 596.
    [117] A. Kusoffsky, Thermodynamic evaluation of the ternary Ag-Au-Cu system-including a short range order description [J], Acta Mater. 50 (2002) 5139.
    [118] S. W. Chen, C. H. Wang, S. K. Lin, C. N. Chiu, Phase diagrams of Pb-free solders and their related materials systems [J], J Mater Sci: Mater Electron. 18 (2007) 19.
    [119] L. J. Turbini, Processing and material issues related to lead-free soldering [J], J Mater Sci: Mater Electron. 18 (2007) 147.
    [120] C. F. Yang, S. W. Chen, K. H. Wu, and T. S. Chin, Interfacial Reactions of Sn-8wt.%Zn-3wt.%Bi Solder with Cu, Ag, and Ni Substrates [J], J. Electron. Mater. 36(2007)1524.
    [121] R. K. Shiue, L. W. Tsay, C. L. Lin, J. L. Ou, The reliability study of selected Sn-Zn based lead-free solders on Au/Ni-P/Cu substrate [J], Microelectronics Reliability 43 (2003) 453.
    [122] A. Sharif and Y. C. Chan, Retardation of spalling by the addition of Ag in Sn-Zn-Bi solder with the Au/Ni metallization [J], Materials Science and Engineering A, 445-446 (2007) 686-690
    [123] A. Sharif and Y. C. Chan, Effect of reaction time on mechanical strength of the interface formed between the Sn-Zn(-Bi) solder and the Au/Ni/Cu bond pad [J], J. Electron. Mater. 35 (2006) 1812.
    [124] M.Y. Chiu, S. S.Wang, and T. H. Chuang, Intermetallic compounds formed during interfacial reactions between liquid Sn-8Zn-3Bi solders and Ni substrates [J], J. Electron. Mater. 31 (2002) 494.
    [125] T. B. Massalski, H. Okamoto, et al. Bi-Zn (Bismuth-Zirconium), Bianary Alloy Phase Diagrams [M], The Materialslnformation Society, ASM International, 1990.
    [126] P. Nash and Y. Y. Pan, The Ni-Zn (Nickel-Zinc) system [J], Bull. Alloy Phase Diagrams, 8(5) (1987) 422.
    [127] D. V. Malakhov, Thermodynamic assessment of the Bi-Zn system [J], CALPHAD, 24 (2000)1.
    [128] G. P. Vassilev, T. Gomez-Acebo, and J. C. Tedenac, Thermodynamic optimization of the Ni-Zn system, Journal of Phase Equilibria [J], 21 (3) (2000) 287.
    [129] D. D. Fontaine, Ordering instabilities and pretransitional effects [J], Metall. Trans. A: Phys. Metall. Mater. Sci. 12A (1981) 559.
    [130] D. D. Fontaine, Spinodal and equilibrium reactions [J], Physica B and C, Amsterdam, 103B (1981) 57.
    [131] M. Nakagawa and K. Yasuda, A coherent phase diagram of the Au_xAg_(0.24)Cu_(0.76-(1-x)) section of the Au-Cu-Ag ternary system [J], Journal of the Less-Common Metals, 138 (1988) 95.
    [132] G. Petzow and G. Effenberg, Silver-Gold-Copper, Ternary Alloys [M], Vch Verlagsgesellschaft, Weinheim, Germany, 1 (1988) 165.
    [133] M. Ntukongu and I. Cadoff, Tie line compositions Cu-Ag-Au alloys within miscibility gap [J], Mat. Sci. Tech. 2 (1986) 528.
    [134] A. Prince, G. V. Raynor, and D. S. Evans, Ag-Au-Cu system, Phase Diagrams of Ternary Gold Alloys [M], The Institute of Metals, London, GB, (1990) 7.
    [135] A. Prince, G. V. Raynor, and D. S. Evans, Ag-Au-Ni system, Phase Diagrams of Ternary Gold Alloys [M], The Institute of Metals, London, GB, (1990) 44.
    [136] J. H. Wang, X. G. Lu, B. Sundman, X. P. Su, Thermodynamic assessment of the Au-Ni system [J], CALPHAD, 29 (2005) 263.
    [137] S. K. Tarby. C. J. Tyne. and M. L. Boyle, Computerized characterization of the Au-Cu-Ni ternary system, NBS, National Bureau of Standards, Special Publication, Sp-496
    [138] V. E. Raub and A. Engel, Das dreistoffsystem Gold-Nickel-Kupfer I(??) [J], Z. Metallkd. 38 (1947) 11.
    [139] A. Prince, G. V. Raynor, and D. S. Evans, Au-Cu-Ni system, Phase Diagrams of Ternary Gold Alloys [M], The Institute of Metals, London, GB, (1990) 226.
    [140] P. D. Cesaris, Le leghe ternaire di Nichel-Rame-Oro [J], Gazzetta Chimica Italiana, 44 (1914) 27. (Italy)
    [141] I. Ohnuma, X. J. Liu, H. Ohtani, and K. Ishida, Thermodynamic database for phase diagrams in micro-soldering alloys [J], J. Electron. Mater. 28 (1999) 1164.
    [142] X. J. Liu, I. Ohnuma, C. P. Wang, M. Jiang, R. Kainuma, K. Ishida, M. Ode, T. Koyama, H. Onodera, and T. Suzuki, Thermodynamic database on microsolders and copper-based alloy systems [J], J. Electron. Mater. 32 (2003) 1265.
    [143] X. J. Liu, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, The Use of Phase Diagrams and Thermodynamic Databases for Electronic Materials [J], JOM, 55 (2003) 53.
    [144] X. J. Liu, C. P. Wang, F. Gao, I. Ohnuma, and K. Ishida, Thermodynamic Calculation of Phase Equilibria in the Sn-Ag-Cu-Ni-Au System [J], J. Electron. Mater. 36 (2007) 1429.
    [1] A. Borgenstam, A. Engstrom, L. Hoglund, and J. Agren, DICTRA, a tool for simulation of diffusional transformations in alloys, Journal of Phase Equilibria [J], 21 (3) (2000) 269.
    [2] J. O. Andersson, T. Helander, L. Hoglund, P. F. Shi, and B. sundman, Thermo-calc & DICTRA, computational tools for materials science [J], CALPHAD, 26 (2) (2002) 273.
    [3] M. Schwind, J. Kallqvist, J. O. Nilsson, Sigma phase precipitation in stainless steel [J], Acta Mater. 48 (2000) 2473.
    [4] M. Ekroth, R. Frykholm, M. Lindholm, Gradient sintering of cemented carbides [J], Acta Materialia, 48 (2000) 2177.
    [5] C. Campbell, W. J. Boettinger, Transient liquid phase binding of alloys [J], Metall Mater Trans A, 22 (1991) 1745.
    [6] X. J. Liu, Y. Takaku, I. Ohnuma, R. Kanuma, and K. Ishida, Design of Pb-free solders in electronic packing by computational t hermodynamics and kinetics, 第十一届全国相图学术会议论文集 [C] 西宁(2002)10.
    [7] K. Ishida, Application to nonferrous systems, Mohri T. Phase diagrams as a tool for advanced materials design [C], Hokkaido Japan: Hokkaido University, (2003) 41.
    [8] R. E. Pawel and T. S. Lundy, A submicron sectioning technique for analyzing diffusion specimens of tantalum and niobium [J], J. Appl. Phys. 35 (1964) 435. [9] R. E. Pawel and T. S. Lundy, Anomalous diffusion rate for small penetration distance in copper [J], J. Appl. Phys. 34 (1964) 1001.
    [10] R. E. Pawel, Procedure for stripping anodic oxide films from tantalum and niobium [J], Rev. Sci. Instr. 35 (1964) 1066.
    [11] P. L. Gruzin, Problems of metallography and physics of metals, Fourth Symposium, Moscow, AEC-tr-2924 (1955) 329.
    [12] D. Gupta, On the direct measurement of diffusion at temperatures less than 0.5 Tm [J], Thin Solid Films 25 (1975) 231.
    [13] F. R. Peart, D. Graham, D. H. Tomlin, Tracer diffusion in niobium and molybdenum [J], Acta Metall. 10 (1962) 519.
    [14] A. D. LeClaire, Diffusion in body-centered cubic metals, American Society for Metals [J], Metals park, Ohio (1965) 10.
    [15] S. Dushman and I. Langmuir, The diffusion coefficient in solids and its temperature [J], Phys. Rev. 20 (1922) 113.
    [16] B. N. Oshyarin, Phys. Status Solidi. 3 (1963) K61.
    [17] G. B. Gibbs, C. E. G. B. Report RD/B/N.355, Nov. 1964.
    [18] G. Askill, Phys. Status Solidi, 11 (1965) K49.
    [19] F. S. Buffington and M. Cohen, On self-diffusion in cubic metals [J], Acta Met. 2 (1954)660.
    [20] Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L. Q. Chen, and Z. K. Liu, Ab initio lattice stability in comparison with CALPHAD lattice stability [J], CALPHAD, 28 (2004) 79.
    [21] J. J. Han, Xiamen University, provided by communication, 2008.
    [22] A. T. Dinsdale, SGTE data for pure elements [J], CALPHAD, 15 (1991) 317.
    [23] Y. Takaku, Master thesis [M], Tohoku University, 2002.
    [24] J. D. Meakin and E. Klokholm, Institute of metals division: self-fiffusion in tin single crystals [J], Trans. AIME, 218 (1960) 463.
    [25] P. P. Kuzmenko and G. P. Grinevich, Self-diffusion in tin at high pressure [J], J. Phys. Chem. 68(1964)2219.
    [26] F. H. Huang and H. B. Huntington, Diffusion of Sb~124, Cd~109, Sn~113, and Zn~65 in tin [J], Phys. Rev. B, 9 (1974) 1479.
    [27] C. T. Tomizuka and E. Sonder, Self-diffusion in silver [J], Phys. Rev. 103 (1956) 1182.
    [28] V. N. Kaygorodov, S. M. Klotsman, A. N. Timofeyev, I. S. Trakhtenberg, Diffusion in polycrystalline silver V Intercrystalline diffusion of antimony in the temperature interval 180-100°C [J], Fiz. Met. Metalloved. 25 (1968) 910; Phys. Met. Metallogr. 25 (5) (1972) 150 (English transl.).
    [29] R. E. Hoffman and D. Turnbull, Lattice and Grain Boundary Self-Diffusion in Silver [J], J. Appl. Phys. 22 (1951) 634.
    [30] S. J. Rothman, N. L. Peterson, J. T. Robinson, Isotope effect for self-diffusion in single crystals of silver [J], Phys. Stat. Sol. 39 (1970) 635.
    [31] P. Reimers, D. Bartdorff, Selbstdiffusion und isotopieeffekt in silbereinkristallen [J], Phys. Stat. Sol. (b) 50 (1972) 305.
    [32] N. Q. Lam, S. J. Rothman, H. Mehrer, L. J. Nowicki, Self-diffusion in silver at low temperatures [J], Phys. Stat. Sol. (b) 57 (1973) 225.
    [33] J. G. E. M. Backus, H. Bakker, H. Mehrer, Self-diffusion measurements in silver at low temperatures using single crystals and slightly deformed [J], Phys. Stat. Sol. (b) 64 (1974) 151.
    [34] J. Bihr, H. Mehrer, K. Maier, A comparison between microsectioning studies of low-temperature self-diffusion [J], Phys. Stat. Sol. (a) 50 (1978) 171.
    [35] G. Rein, H. Mehrer, Effect of hydrostatic-pressure and temperature on the self-diffusion rate in single-crystals of silver and gold [J], Phil. Mag. A 45 (1982) 467.
    [36] H. Mehrer, F. Hutter, in: Point Defects and Defect Interactions in Metals [M], Eds. J. Takamura, M. Doyama, M. Kiritani, Univ. of Tokyo Press, Tokyo (1982), p. 558.
    [37] G. Neumann and V. Tolle, Monovacancy and divacancy contributions to self-diffusion in face-centered cubic metals-reanalysis for copper, silver, gold, nickel and platinum [J], Phil. Mag. A, 54 (1986) 619.
    [38] G. Ghosh, Dissolution and interfacial reactions of thin-film Ti/Ni/Ag metallizations in solder joints [J], Acta mater. 49 (2001) 2609.
    [39] A. Kuper, H. Letaw, L. Slifkin, E. Sonder, C.T. Tomizuka, Self-diffusion in copper [J], Phys. Rev. 96 (1954) 1224.
    [40] K. Monma, H. Suto, H. Oikawa, Diffusion of Ni~63 and Cu~64 in nickel-copper alloys (On the relation between high-temperature creep and diffusion in nickel base solid solutions, Ⅱ) [J], J. Japan Inst. Metals 28 (1964) 192.
    [41] M. Beyeler, Y. Adda, Determination of activation volumes for diffusion pf atoms in gold copper and aluminum [J], J. Physique 29 (1968) 345.
    [42] S. J. Rothman, N. L. Peterson, Isotope effect and divacancies for self-diffusion in copper [J], Phys. Stat. Sol. 35 (1969) 305.
    [43] U. El-Hanany, D. Zamir, NMR Study of Self-Diffusion and the Electronic Structure of Metallic Copper in the Solid and Liquid States [J], Phys. Rev. 183 (1969)809.
    [44] H. G. Bowden, R. W. Balluffi, Measurements of self-diffusion coefficients in copper from annealing of voids [J], Phil. Mag. 19 (1969) 1001.
    [45] J. Kucera, B. Million, Self-diffusion of copper in Cu-Al solid solutions [J], Metall. Trans. 1(1970)2599.
    [46] K. J. Anusavice, R. T. DeHoff, Diffusion of the tracers Cu~67, Ni~66, and Zn~65 in copper-rich solid solutions in the system Cu-Ni-Zn [J], Metall. Trans. 3 (1972) 1279.
    [47] N. Q. Lam, S. J. Rothman, L. J. Nowicki, Self-diffusion in copper at low temperatures [J], Phys. Stat. Sol. (a) 23 (1974) K35.
    [48] B. V. Rollin, Self-diffusion in copper [J], Phys. Rev. 55 (1939) 231.
    [49] K. Maier, Self-diffusion in copper at "low" temperatures [J], Phys. Stat. Sol. (a) 44(1977)567.
    [50] D. Bartdorff, G. Neumann, P. Reimers, Self-diffusion of Cu~64 in copper single-crystals mono-vacancy and divacancy contributions [J], Phil. Mag. A 38 (1978) 157.
    [51] J. Steigman, W. Shockley, and F. C. Nix, The self-diffusion of copper [J], Phys. Rev. 56(1939)13.
    [52] S. Fujikawa, K. Hirano, in: Point Defects and Defect Interactions [M], Eds. J. Takamura, M. Doyama, K. Kiritani, The University of Tokyo Press, Tokyo (1982), p. 554.
    [53] R. E. Hoffman, F. W. Pikus, R. A. Ward, Institute of metals division: self-diffusion in solid nickel [J], Trans. AIME 206 (1956) 483.
    [54] J. E. Reynolds, B. L. Averbach, M. Cohen, Self-diffusion and interdiffusion in gold-nickel alloys [J], Acta Metall. 5 (1957) 29.
    [55] J. R. MacEwan, J. U. MacEwan, L. Yaffe, Self-diffusion in polycrstalline nickel [J], Can. J.Chem. 37 (1959) 1623.
    [56] J. R. MacEwan, J. U. MacEwan, L. Yaffe, Diffusion of Ni~63 in iron, cobalt, nickel, and two iron-nickel alloys [J], Can. J. Chem. 37 (1959) 1629.
    [57] K. Hirano, M. Cohen, B. L. Averbach, Trans. ASM 53 (1961) 910.
    [58] K. Hirano, R. P. Agarwala, B. L. Averbach, M. Cohen, Diffusion in cobalt-nickel alloys [J], J. Appl. Phys. 33 (1962) 3049.
    [59] A. Ya. Shinyayev, Fiz. Met. Metalloved. 15 (1963) 100.
    [60] K. Monma, H. Suto, H. Oikawa, Self-Diffusion and Impurity Diffusion in Group VⅢ Metals 313 [J], J. Jpn. Inst. Metals 28 (1964) 188.
    [61] H. Bakker, A curvature in lnD versus 1/T plot for self-diffusion in nickel at temperatures from 980 to 1400°C [J], Phys. Stat. Sol. 28 (1968) 569.
    [62] K. Maier, H. Mehrer, E. Lessmann, W. Schule, Self-diffusion in nickel at low temperatures [J], Phys. Stat. Sol. (b) 78 (1976) 689.
    [63] A. B. Vladimirov, V. N. Kaygorodov, S. M. Klotsman, I. S. Trakhtenberg, Volumetrical diffusion of cobalt and tungsten in nickel [J], Fiz. Met. Metalloved. 46 (1978) 1232; Phys. Met. Metallogr. 46 (6) (1978) 94 (English transl.).
    [64] B. Jonsson, Assessment of the mobilities of Cr, Fe and Ni in binary fee Cr-Fe and Cr-Ni alloys [J], Scand. J. Metall. 24 (1995) 21.
    [65] S. M. Makin, A. H. Rowe, A.D. Le Claire, Proc. Phys. Soc. B 70 (1957) 545.
    [66] D. Duhl, K. Hirano, M. Cohen, Diffusion of iron, cobalt and nickel in gold [J], Acta Metall. 11 (1963)1.
    [67] H. M. Gilder, D. Lazarus, Self-diffusion in gold [J], J. Phys. Chem. Sol. 26 (1965) 2081.
    [68] A. Gainotti, L. Zecchina, self-diffusion of Au [J], Nuovo Cimento 40 (1965) 295.
    [69] A.D. Kurtz, B.L. Averbach, M. Cohen, Self-diffusion of gold in gold-nickel alloys [J], Acta Metall. 3 (1955) 442.
    [70] W. Rupp, U. Ermert, R. Sizmann, Self-diffusion measurements in gold single crystal between 286°C and 412°C [J], Phys. Stat. Sol. 33 (1969) 509.
    [71] K. Dreyer, Ch. Herzig, Th. Heumann, in: Atomic Transport in Solids and Liquids [M], Eds. A. Lodding, T. Lagerwall, Verlag der Zeitschrift fur Naturforschung, Tubingen (1971) 237.
    [72] C. Herzig, H. Eckseler, W. Bussmann, D. Cardis, The temperature dependence of the isotope effect for self-diffusion and cobalt impurity-diffusion in gold [J], J. Nucl. Mater. 69/70(1978)61.
    [73] B. Okkerse, Self-diffusion of gold [J], Phys. Rev. 103 (1956) 1246.
    [74] M. Werner, H. Mehrer, in: DIMETA 82, Diffusion in Metals and Alloys [M], Eds. F.J. Kedves, D.L. Beke, Trans. Tech. Publ., Switzerland (1983), p. 393.
    [75] J. Wang, L.B. Liu, H.S. Liu, Z.P. Jin, Assessment of the diffusional mobilities in the face-centred cubic Au-Ni alloys [J], CALPHAD, 31 (2007) 249.
    [76] R. E. Eckert, H.G. Drickamer, Diffusion in indium near the melting point [J], J. Chem. Phys. 20(1952)13.
    [77] J. E. Dickey, Self-diffusion in indium [J], Acta Metall. 7 (1959) 350.
    [78] H. B. Huntington, P. B. Ghate, J. H. Rosolowski, Self-diffusion in antimony [J], J. Appl. Phys. 35(1964)3027.
    [79] A. Hassner, R. Hassner, Phys. Stat. Sol. 11 (1965) 575.
    [80] H. Cordes, K. Kim, Self-diffusion in antimony [J], J. Appl. Phys. 37 (1966) 2181.
    [81] P. P. Kuzmenko, G.P. Grinevich, Metallofizika 47 (1973) 98.
    [82] G. A. Shirn, E. S. Wajda, H. B. Huntington, Self-diffusion in zinc [J], Acta Metall. 1(1953)513.
    [83] A. P. Batra, Anisotropic Isotope Effect for diffusion of zinc and cadmium in zinc [J], Phys. Rev. 159(1967)487.
    [84] N. L. Peterson, S. J. Rothman, Isotope effect in self-diffusion in zinc [J], Phys. Rev. 163(1967)645.
    [85] Y. W. Cui, K. Oikawa, R. Kainuma, K. Ishida, Study of diffusion mobility of Al-Zn solid solution [J], J. Phase Equilib. Diffus. 27 (2006) 333.
    [86] N. H. Nachtrieb, G. S. Handler, Self-diffusion in lead [J], J. Chem. Phys. 23 (1955) 1569.
    [87] H. A. Resing, N. H. Nachtrieb, Self-diffusion of lead, thallium and bismuth in the solid lead-thallium system [J], J. Phys. Chem. Sol. 21 (1961) 40.
    [88] J. B. Hudson, R.E. Hoffman, Institute of metals division: The effect of hydrostatic pressure on self-diffusion in lead [J], Trans. AIME 221 (1961) 761.
    [89] J. W. Miller, Diffusion of cadmium in lead [J], Phys. Rev. 181 (1969) 1095.
    [90] W. K. Warburton, Diffusion of Pb and Hg in Dilute Pb: Hg Alloys [J], Phys. Rev. B 7(1973)1330.
    [91] C. E. Ho, S. C. Yang, and C. R. Kao, Interfacial reaction issues for lead-free electronic solders [J], J Mater Sci: Mater Electron, 18 (2007) 155.
    [92] K. Zeng and K. N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology [J], Materials Science and Engineering R, 38 (2002) 55.
    [93] D. R. Frear, Issues related to the implementation of Pb-free electronic solders in consumer electronics [J], J Mater Sci: Mater Electron, 18 (2007) 319.
    [94] C. W. Hwang, K. S. Kim, and K. Suganuma, Interfaces in lead-Free soldering [J], J. Electron. Mater. 32 (2003) 1249.
    [95] Y. Takaku, X. J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Interfacial reaction and morphology between molten Sn base solders and Cu substrate [J], Materials Transactions, 45 (3) (2004) 646.
    [96] H. Flandorfer, U. Saeed, C. Luef, A. Sabbar, H. Ipser, Interfaces in lead-free solder alloys: Enthalpy of formation of binary Ag-Sn, Cu-Sn and Ni-Sn intermetallic compounds [J], Thermochimica Acta 459 (2007) 34.
    [97] J. Wang, L. G. Zhang, H. S. Liu, L. B. Liu, Z. P. Jin, Interfacial reaction between Sn-Ag alloys and Ni substrate [J], Journal of Alloys and Compounds, 455 (2008) 159.
    [98] A. Sharif, M. N. Islam, Y. C. Chan, Interfacial reactions of BGA Sn-3.5% Ag- 0.5% Cu and Sn-3.5% Ag solders during high-temperature aging with Ni/Au metallization [J], Materials Science and Engineering B 113 (2004) 184.
    [99] D. Q. Yua, L. Wang, C. M. L. Wu, C. M. T. Law, The formation of nano-Ag3Sn particles on the intermetallic compounds during wetting reaction [J], Journal of Alloys and Compounds, 389 (2005) 153.
    [100] G. Ghosh and Z. K. Liu, Modeling the atomic transport kinetics in high-lead solders [J], J. Electron. Mater. 27 (1998) 1362.
    [101] C. T. Tomizuka and L. M. Slifkin, Diffusion of cadmium, indium, and tin in single crystals of silver [J], Phys. Rev. 96 (1954) 610.
    [102] V. N. Kaygorodov, S. M. Klotsman, A. N. Timofeyev, I. S. Trakhtenberg, Diffusion in polycrystalline silver. VII(??). Diffusion of tin [J], Fiz. Met. Metalloved. 28 (1969) 128; Phys. Met. Metallogr. 28 (1) (1969) 128. (English transl.)
    [103] T. Hehenkamp and F. Faupel, Solvent diffusion in a-Silver-Tin alloys [J], Acta Metall. 31 (5) (1983) 691.
    [104] C. Herzig and T. Heumann, Z. Naturforsch. 27a (1972) 1109.
    [105] C. Herzig and W. Wiemann, Experimental determination of the electrostatic driving force in the electromigration of tin in gold and gold-tin alloys [J], Phys. Status Solidi A, 26 (1974) 459.
    [106] J. W. Yoon, Y. H. Lee, D. G. Kim, H. B. Kang, S. J. Suh, C. W. Yang, C. B. Lee, J. M. Jung, C. S. Yoo, and S. B. Jung, Intermetallic compound layer growth at the interface between Sn-Cu-Ni solder and Cu substrate [J], J. Alloys. Compounds, 381(2004)151.
    [107] J. W. Yoon, S. W. Kim, and S. B. Jung, Effects of reflow and cooling conditions on interfacial reaction and IMC morphology of Sn-Cu/Ni solder joint [J], J. Alloys. Compounds, 415 (2006) 56.
    [108] J. W. Yoon, and S. B. Jung, High temperature reliability and interfacial reaction of eutectic Sn-0.7Cu/Ni solder joints during isothermal aging [J], Microelectronics Reliability 46 (2006) 905.
    [109] C. H. Wang and S. W. Chena, Sn-0.7 wt.%Cu/Ni interfacial reactions at 250°C [J], Acta Materialia 54 (2006) 247.
    [110] V. A. Gorbachev, S. M. Klotsman, Y. A. Rabovskiy, V. K. Talinskiy, and A. N. Timofeyev, Diffusion of impurities in copper 3 volume diffusion of silver, cadmium and indium in copper [J], Fiz. Met. Metalloved. 34 (1972) 879; Phys. Met. Metallogr. 34 (4) (1972) 202. (English transl.)
    [111] R. L. Fogelson, Y. A. Ugay, I. A. Akimova, Fiz. Met. Metalloved. 37 (1974) 1107: Phys. Met. Metallogr. 37 (5) (1974) 201. (English transl.)
    [112] L. C. Correa and R. F. Mehl, Extractive metallurgy division: Interface and marker movements in diffusion in solid solutions of metals [J], AIME, 19 (1951) 155.
    [113] K. Hoshino, Y. Iijima, K. Hirano, Interdiffusion and kirkendall effect in Cu-Sn alloys [J], Trans. J. I. M. 21 (1980) 674.
    [114] H. Oikawa and A. Hosoi, Interdiffusion in Cu-Sn solid solutions confirmation of anomalously large kirkendall effect [J], Scripta Metallurgies 9 (8) (1975) 823.
    [115] K. Hoshino, Y. Iijima, and K. I. Hirano, Solute enhancement of self-diffusion of Copper in Copper-Tin, Copper-Indium and Copper-Antimony dilute alloys [J], Acta Metallurgies 30 (1982) 265.
    [116] H. E. Cook and J. E. Hilliard, Effect of gradient energy on diffusion in gold-silver alloys [J], J. Appl. Phys. 40 (1969) 2191.
    [117] N. Zotov and A. Ludwig, Atomic mechanisms of interdiffusion in metallic multilayers [J], Mater. Sci. Eng. C, 27 (2007) 1470.
    [118] F. E. Jaumot and A. Sawatzky, Diffusion of gold in single crystals of silver [J], J. Appl. Phys. 27 (1956) 1186.
    [119] H. W. Mead and C. E. Birchenall, Institute of metals division: Diffusion in gold and Au-Ag alloys [J], Trans. AIME, 209 (1957) 874.
    [120] W. C. Mallard, A. B. Gardner, R. F. Bass, and L. M. Slifkin, Self-diffusion in silver-gold solid solutions [J], Phys. Rev. 129 (1963) 617.
    [121] S. M. Klotsman, N. K. Arkhipova, A. N. Timofeyev and I. S. Trakhtenberg, Fiz. Met. Metalloved. 20 (1965) 390; Phys. Met. Metallogr. 20 (3) (1965) 70. (English transl.)
    [122] C. Herzig and D. Wolter, Z. Metallk. 65 (1974) 273.
    [123] H. Oikawa. H. Takei, and S. Karashima, Interdiffusion in copper-rich Cu-Ag solid solutions [J], Metall. Trans. 4 (1973) 653.
    [124] O. Kubaschewski, The diffusion rates of some metals in copper, silver, and gold [J], Trans. Faraday Soc. 46 (1950) 713.
    [125] G. Krautheim, A. Neidhardt, and U. Reinhold, Impurity diffusion of 110m Ag in Cu [J], Phys. Stat. Sol. (a) 49 (1978) K125.
    [126] A. Sawatzky and F. E. Jaumot, Institute of metals division: Diffusion of the elements of the ⅠB and ⅡB subgroups in silver [J], Trans. AIME, 209 (1957) 1207.
    [127] T. Heumann and T. Rottwinkel, Measurement of the interdiffusion, interinsic, and tracer diffusion coefficients in Cu-rich Cu-Au solutions [J], J. Nucl. Mater. 69-70(1978)567.
    [128] B. Straumal, E. Rabkin, W. Gust, and B. Predel, The influence of an ordering transition on the interdiffusion in Au-Cu alloys [J], Acta Metall. Mater. 43 (5) (1995)1817.
    [129] A. Vignes and G. E. Birchenall, Concentration dependence of the interdiffusion coefficient in binary metallic solid solution [J], Acta Metall. 16 (1968) 1117.
    [130] P. M. Hall, J. M. Morabito, and N. T. Panousis, Interdiffusion in the Cu-Au thin film system at 25°C to 250°C [J], Thin Solid Films, 41 (1977) 341.
    [131] A. Vignes, J. P. Haeussler Mem. Sci. Rev. Metall. 63 (1966) 1091.
    [132] G. Neumann and C. Tuijn, Self-diffusion and impurity diffusion in pure metals: handbook of experimental data [M], Elsevier, 2008.
    [133] R. F. Sippel, Diffusion measurements in the system Cu-Au by elastic scattering [J], Phys. Rev. 115(1959)1441.
    [134] V. A. Gorbachev, S. M. Klotsman, Y. A. Rabovskiy, V. K. Talinskiy, and A. N. Timofeyev, Impurity diffusion in copper 5 diffusion of gold, lead and bismuth in copper [J], Fiz. Met. Metalloved. 44 (1977) 214; Phys. Met. Metallogr. 44 (1) (1977) 191. (English transl.)
    [135] S. Fujikawa and A. Seeger, Res. Rep. Nucl. Sci. [C] Tohoku University. 20 (1987)375.
    [136] S. Fujikawa, M. Werner, H. Mehrer, A. Seeger, Diffusion of gold in copper over a wide range of temperature [J], Mater. Sci. Forum, 15-18 (1987) 431.
    [137] S. Fujikawa and H. Mehrer, in: Application of Ion Beams in Materials Science [M], Hosei University, Press, Tokyo (1988) 265.
    [138] T. O. Zirbold, Ph. Thesis M. I. T. (1965).
    [139] C. E. Birchenall, Atoms movements [J], American Society for Metals. (1951) 112.
    [140] W. Jost, Z. Phys. Chem. Abt. B, 16 (1932) 123.
    [141] W. Jost, Z. Phys. Chem. Abt. B, 21 (1933) 158.
    [142] S. U. Campisano, G. Foti, F. Grasso, and E. Rimini, Determination of concentration profile in thin metallic films: Applications and limitations of He+ backscattering [J], Thin Solid Films, 25 (1975) 431.
    [143] I. B. Borovskii, N. I. Ilin, E. L. Loseva, Tr. Inst. Metall. Akad. Nauk SSSR, (6) (1960)77.
    [144] B. Y. Pines, I. P. Grebennik, and V. F. Gribko, Ukr. Fiz. Zh. 13 (1968) 280.
    [145] J. Ladet, J. Bernardini, F. Cabane-Brouty, Comportement du fer, du cobalt et du nickel au voisanage des dislocations dans l'argent et le cuivre monocristallins [J], Scr. Metall. 10(1976)195.
    [146] A. B. Vladimirov, V. N. Kaygorodov, S. M. Klotsman, I. S. Trakhtenberg, Volum and inter-crystalline diffusion of silver in nickel [J], Fiz. Met. Metalloved. 45 (1978) 1015; Met. Metallogr. 45 (5) (1978) 100. (English transl.)
    [147] A. B. Vladimirov, V. N. Kaygorodov, S. M. Klotsman, I. S. Trakhtenberg, Volume diffusion of silver impurities in nickel [J], Fiz. Met. Metalloved. 48 (1979) 352; Met. Metallogr. 48 (2) (1979) 107. (English transl.)
    [1]I.Ohnuma,X.J.Liu,H.Ohtani,and K.Ishida,Thermodynamic database for phase diagrams in micro-soldering alloys[J],J.Electron.Mater.28 (1999)1164.
    [2]X.J.Liu,I.Ohnuma,C.P.Wang,M.Jiang,R.Kainuma,K.Ishida,M.Ode,T.Koyama,H.Onodera,and T.Suzuki,Thermodynamic database on microsolders and copper-based alloy systems[J],J.Electron.Mater.32 (2003)1265.
    [3]X.J.Liu,K.Oikawa,I.Ohnuma,R.Kainuma,and K.Ishida,The Use of Phase Diagrams and Thermodynamic Databases for Electronic Materials[J],JOM,55 (2003)53.
    [4]A.Kroupa,A.T.Dinsdale,A.Watson,J.Vrestal,J.Vizdal,and A.Zemanova,The development of the COST 531 lead-free solders thermodynamic database[J],JOM,59 (2007)20
    [5]乔芝郁,谢允安,曹战民,袁文霞,孙勇,祁更新,无铅锡基钎料合金设计和合金相图及其计算[J],中国有色金属学报,14 (11)(2004)1789.
    [6]柳春雷,金展鹏,刘华山,相图计算在电子材料焊接中的应用[J],中国有色金属学报,13 (6)(2003)1343.
    [7]高峰,王翠萍,刘兴军,相图计算及其在无铅焊接材料中的应用[J],上海交通大学学报,41 (2007)100.
    [8]B.J.Lee,N.M.Hwang,H.M.Lee,Prediction of Inter-face reaction products between Cu and various solder alloys by thermodynamic calculation[J],Acta Materialia,45 (50)(1997)1867.
    [9]陈志刚,夏志东,史耀武,热力学计算在无铅钎料合金设计中的应用[J],电子工艺技术,23 (2)(2002)77.
    [10]K.Zeng and J.K.Kivilahti,Use of multicomponent phase diagrams for predicting phase evolution in solder/conductor systems[J],J.Electron.Mater.30 (2001)35.
    [11]F.Guo,Composite lead-free electronic solders,J Mater Sci: Mater Electron,18 (2007)129.
    [12]Soldering technology center of tin technology ltd.Second European lead-free soldering technology roadmap[EB/OL].http://www.lead-free.org.
    [13]Y.Takaku,I.Ohnuma,R.Kainuma,Y.Yamada,Y.Yagi,Y Nishibe,and K Ishida,Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: thermodynamic calculation,microstructure,and interfacial reaction[J],J.Electron.Mater.35 (2006)1926.
    [14]Y.Yamada,Y.Takaku,Y.Yagi,Y.Nishibe,I.Ohnuma,and K.Ishida,Novel Bi-based high-temperature solder for mounting power semiconductor devices[J],R&D Review of Toyota CRDL,41 (2)(2006)43.
    [15]J.N.Lalena,N.F.Dean,and M.W.Weiser,Experimental investigation of Ge-doped Bi-1 1Ag as a new Pb-free solder alloy for power die attachment[J],J.Electron.Mater.31 (2002)1244.
    [16]J.M.Song,H.Y.Chuang,and Z.M.Wu,Interfacial reactions between Bi-Ag high-temperature solders and metallic substrates[J],J.Electron.Mater.35 (2006)1041.
    [17]M.Rettenmayr,P.Lambracht,B.Kempf,and M.Graff,High melting Pb-free solder alloys for die attach applications[J],Advan.Eng.Mater.7 (10)(2005)965.
    [18]I.Ohnuma,M.Miyashita,K.Anzai et al.Phase equilibria and the related properties of Sn-Ag-Cu based Pb-free solder alloys[J],J.Electron.Mater.29 (2000)1137.
    [19]张富文,刘静,杨福宝等,Sn-Ag-Cu无铅焊料的发展现状与展望[J],稀有金属,29 (2005)619.
    [20]C.P.Wang,X.J.Liu,I.Ohnuma,R.Kainuma,and K.Ishida,Formation of immiscible alloy powders with egg-type microstructure[J],Science,297 (2002)990.
    [21]A.Borgenstam,A.Engstrom,L.Hoglund,and J.Agren,DICTRA,a tool for simulation of diffusional transformations in alloys[J],Journal of Phase Equilibria,21 (3)(2000)269.
    [22]L.C.Correa and R.F.Mehl,Extractive metallurgy division: Interface and marker movements in diffusion in solid solutions of metals [J], AIME, 19 (1951) 155.
    [23] G. Ghosh, Dissolution and interfacial reactions of thin-film Ti/Ni/Ag metallizations in solder joints [J], Acta mater. 49 (2001) 2609.
    [24] X. J. Liu, C. P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, Experimental investigation and thermodynamic calculation of the phase equilibria in the Cu-Sn and Cu-Sn-Mn systems [J], Metall. Mater. Trans. A, 35A (2004) 1641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700