用户名: 密码: 验证码:
铝合金正弦波调制脉冲MIG焊电流波形控制及专家系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迅猛发展的现代信息技术,促进数字化弧焊电源的控制系统越来越智能化,这是弧焊电源不断发展的必然趋势。由于现代焊接条件的不断复杂化和焊接工艺过程控制的发展进步,人们对焊机的控制功能及其专家数据库系统的要求也不断提高,特别是诸如铝合金类难焊材料的广泛应用,对焊机的控制性能要求更高、更特殊。
     论文基于DSP和ARM数字化控制的电源设计思路,针对越来越广泛应用的铝合金类轻质材料难焊的特点,提出了正弦波调制脉冲MIG焊的新型电流波形控制方法,并据此研发铝合金的焊接过程控制及专家数据库系统,从而建立新型的智能化弧焊电源以满足轻质难焊材料更高更特殊的需求。
     论文提出了新型的正弦波调制脉冲MIG焊的电流波形参数设计原理,系统地建立了具有普适性的正弦波调制脉冲焊参数计算的数学模型,使得焊接能量输入可有效地精确调控、脉冲变化过渡平稳,焊接过程稳定可靠。利用正弦波形所具有的无限阶导数连续性、永恒周期性、控制参数少等特点,为新型正弦波调制脉冲MIG焊过程中的参数精确匹配、一元化及其最优化等奠定了理论基础。试验选择纯铝板试件进行平板堆焊,结果表明:焊接过程中电流瞬时波形稳定清晰,相应的电压与焊接能量的瞬时波形均很稳定,U-I图重复性好,其边缘线族清晰、分布集中,说明焊接过程稳定性好,获得了美观优质的鱼鳞纹焊缝。
     基于铝合金类轻质材料焊接的低能量输入等难点的要求,论文建立了正弦波调制脉冲MIG焊铝控制参数关系式,可实现焊接能量有效精确调节,试验验证了所建立的正弦波调制脉冲控制参数关系式的正确性和实用性,且易于获得稳定的高质量鱼鳞纹焊缝。试验表明:关系式中疏密系数m的数值范围在2~3时,正弦波调制脉冲焊接具有参数匹配范围宽,受焊接外部环境因素影响小等优点,为正弦波调制脉冲MIG焊过程的参数一元化开发奠定了理论基础。
     论文建立了正弦波调制脉冲MIG焊铝正弦振幅参数的简化关系式,试验验证了所建参数简化关系式的正确性,且易于稳定获得理想的鱼鳞纹焊缝。该简化关系式中振幅系数k的取值范围在[15.0%,23.1%]时,正弦波调制脉冲MIG焊参数值匹配区间宽、要求低,稳定工作点区域大,受外部环境干扰小。
     针对铝合金焊接稳定性、控制参数优化与鲁棒性等问题,特别是其薄板极易焊穿等难点,论文通过引入降能系数k t以及正弦波电流振幅系数kAI与时间振幅系数kAt等,分别建立了可以通用的单脉冲与对称正弦波调制脉冲MIG焊参数关系式,通过1mm薄板铝合金焊接试验验证了其可行性,经试验对比证实了正弦波调制脉冲MIG焊参数取值范围宽、鲁棒性好、易于操控并能稳定地获得理想的鱼鳞纹焊缝。
     论文进一步引入时间振幅系数k At、电流振幅系数k AI和降能系数kt,以及强脉冲群降能系数k tq、弱脉冲群降能系数k tr和电流增强系数kI等,建立了非对称正弦波调制脉冲MIG焊和的双脉冲MIG焊的通用参数关系式,对1mm薄板铝合金进行了焊接试验,验证了其可行性。试验对比表明:双脉冲MIG焊方法可以参照非对称正弦波调制脉冲MIG焊方法选定参数,但后者更具优势。
     经统一归纳,论文通过引入能量系数k t、振幅系数kA以及正弦波负半周中脉冲个数n,同时引入最大脉冲平均电流I a概念及最小焊接电流即维弧电流Im,建立了可以通用的正弦波调制脉冲MIG焊参数的数学模型,采用正交试验对其参数取值进行优化匹配,建立了基于数学建模的铝合金正弦波调制脉冲MIG焊专家数据库系统。通过铝合金焊接试验验证了正弦波调制脉冲MIG焊参数取值范围宽、鲁棒性好、易于操控等特点。为研发高性能数字化焊接设备及其专家数据库提供了新的理论和试验基础。
The rapid development of modern information technology advances the controlsystem of the digital arc welding power supply intelligent more and more, and it is aninevitable trend of the continuous development of the arc welding power source. Onaccount of the increasing complexity of modern welding conditions and the progressof welding process control, the requirements of control functions and the expertdatabase system of welding machines are also enhanced continually, in particular,materials to weld difficultly, such as aluminum alloy, are widely used, performancerequirements of welding machine control are higher and more specific.Based on the power supply design thought for DSP and ARM to control digitally, inallusion to characters of difficult welding of lightweight materials which are usedmore and more widly, such as aluminum alloy, this paper advanced a new typecurrent waveform control methodology of the sinusoid modulation pulse MIGwelding, and hereby developed the welding process control of aluminum alloy and itsexpert database system, in order to establish a new type of intelligent arc weldingpower supply to meet the higher and more specific requirement of difficult welding oflightweight materials.
     This article advanced a new current waveform parameter design principle of thesinusoid modulation pulse MIG welding, and systematically established the universalmathematical model of the parameter computation of the sinusoid modulation pulse,making that the welding energy input can be effectively controlled and preciselyregulated, the transition of pulse change is smooth and the welding process is stableand reliable. With the characteristics of sinusoidal waveform, such as infinitederivative continuity, eternal periodicity and limited control parameters, this articleestablished the theoretical foundation for exactitude matching, unification andoptimization of the parameters in the new sinusoid modulation pulse MIG weldingprocess. Bead-on-plate overlay welding was carried out on the pure aluminum sheettest sample for the test. The result indicated that during the welding process, theinstantaneous current waveform is stable and clear, the instant waveforms of both thecorresponding voltage and the welding energy are very stable, the repeatability of theU-I graph is good and its family of lines is clear and its distribution is concentrated,showing that the welding process is stable and the neat and high quality ripple weld seam may be produced.
     Based on the difficulties in welding of light material like aluminum alloy, such aslow energy supply and other requirements, this article established the controlparameter relationship formulas in sinusoid modulation pulse MIG welding aluminum,achieving that the welding energy can be regulated effectively and precisely. And theexperiments validated the correctness and practicability of the control parameterrelationship formulas established by using sinusoid modulation pulse, and that thestable and high quality fish scale welding seams were attained easily. Theexperiments indicated that while the change range of values of the density coefficientm in the relationship formula is from2to3, there are advantages such as widerparameters matching range and less interference from external welding environmentalfactors in sinusoid modulation pulse MIG welding, and it has set the theoreticalfoundation for the parameter unification exploitation in the sinusoid modulation pulseMIG welding process.
     This article deduced the simplified formulas to describe the sinusoidal swingparameters in the aluminum welding with sinusoid modulation pulse MIG welding.Then, some experiments carried out validated the correctness of the formulas, andthat ideal fish-scale welding seams are easily and stably formed. Experimental resultsindicate, when k is in the duration of [15.0%,23.1%], the sinusoid modulation pulseMIG welding is of wide parameter matching range, low parameter requirement, largerstable working region and low sensitivity to external interference.On problems of the stability, control parameter optimization and robustness inaluminum alloy welding, especially on difficulties that aluminum alloy sheets is veryeasy perforation in welding process, by introducing the decrease energy coefficientk t, sinusoid current swing coefficient k AI and time swing coefficient k At, this articlerespectively established the universal relationship formulas of parameters in themonopulse MIG welding and the symmetry sinusoid modulation pulse MIG welding.And processing1mm aluminum alloy sheet welding tests respectively validated theirfeasibility. The test contrast validated that the sinusoid modulation pulse MIGwelding is of large welding parameter working confine, good robustness, easy controland steadily producing ideal ripple weld seams.
     Furthermore, by introducing the time swing coefficient k At, current swing coefficientk AI and decrease energy coefficient k t, and decrease energy coefficient k tqin dense pulses, decrease energy coefficient k trin sparse pulses andcurrent increase coefficient k I, this article respectively established the universalrelationship formulas of parameters in the double-pulsed MIG welding and thedissymmetry sinusoid modulation pulse MIG welding. And processing1mmaluminum alloy sheet welding tests respectively validated their feasibility. The testcontrast validated that parameters of the double-pulsed MIG welding are chosereferring to parameters of the dissymmetry sinusoid modulation pulse MIG welding,but the dissymmetry sinusoid modulation pulse MIG welding is more advantage.
     In summary, by introducing the energy coefficient k t, the swing coefficient k A, thepulse number n in per negative half periods of sinusoid, the most average I aof currentpulses and the least welding current (i.e. maintaining arc current) I m, this articleestablished the universal mathematical models of parameters in the sinusoidmodulation pulse MIG welding, and by using orthogonal test to optimize and matchthe parameters, built the expert database system in sinusoid modulation pulse MIGwelding based on the mathematical models. And processing aluminum alloy weldingtests validated validated the advantages of large welding parameter working confine,good robustness, easy control, etc. in the sinusoid modulation pulse MIG welding.And these provide a new theory and test foundation on developing of digital highperformance welding machines equipped the expert database.
引文
[1]殷树言.气体保护焊工艺基础[M].北京:机械工业出版社,2007:192-197.
    [2]杨文杰.电弧焊方法及设备[M].哈尔滨:哈尔滨工业大学出版社,2007:175-177.
    [3]柳刚,李俊岳,李桓,等.焊接电弧光谱的分布特征[J].机械工程学报,2000,36(5):58-61.
    [4]潘际銮等.脉冲MIG焊接电弧的闭环控制[J].焊接学报,1985,6(2):91-98.
    [5]仝红军,上山智之.低频调制型脉冲MIG焊接方法的工艺特点[J].焊接,2001(11):33-35.
    [6]刘嘉,卢振洋,殷树言,等.电焊机的数字化[J].焊接学报,2002,23(1):88-92.
    [7]刘松强.数字信号处理系统及其应用[M].北京:清华大学出版社,1996.
    [8] Digital Revolution: Inverter Power Source Management and ProcessControl.Fronius Inc.,2000.
    [9]包晔峰,吴毅雄,李武波,等.铝合金MIG焊机的辅助控制系统[J].电焊机,2002,32(1):28-31.
    [10] Nemchinsky V A.Electrode melting during arc welding with pulsed current [J].J.Phys. D:Appl. Phys.1998,31:2797-2802.
    [11] Amin M.Pulsed current parameters for arc stability and controlled metal transferin arc welding [J].Metal Construction,1983,15(5):272-278.
    [12] Brosilow R. Welding better with pulsed power [J]. Welding Design andFabrication,1984,57(10):57-70.
    [13]吕耀辉.铝合金变极性等离子弧焊接工艺的研究[D].北京:北京工业大学博士学位论文.2003.
    [14]潘际銮.二十一世纪焊接科学研究的展望[C].第九次全国焊接会议论文集第一册.哈尔滨:黑龙江人民出版社,1999:1-17.
    [15]曾军辉.变极性PMIG焊接设备数字化控制系统研制[D].北京:北京工业大学硕士学位论文,2008.
    [16]黄石生.电子控制的弧焊电源[M].北京:机械工业出版社,1990.
    [17]张占松,蔡宣三.开关电源的原理与设计.电子工业出版社,1999:105-148.
    [18]刘嘉,殷树言,丁京柱.数字化焊机及其特点[J].电焊机,2001,31(6):8-10.
    [19] LM3S818Microcontroller Data Sheet,Luminary Micro,Inc.2007.
    [20]易志华.国外电焊机发展概况[J].电焊机,1996(5):1-5.
    [21]黄石生.新型弧焊电源及其智能控制.机械工业出版社,2001.
    [22] G. Hua,F. C. Lee.Soft-Switching Techniques in PWM Comverters.IEEETransactions on Industrial Electronics.1995,42(6):595-603.
    [23] R. L. Steigerwald,et al.A comparison of high-power DC-DC soft-switchedconverter topologies.IEEE Transactions on Industry Applications.1996,32(5):1139-1145.
    [24] R. A. Fisher,et al.A500kHz250W DC/DC Converter with Multi-OutputsControlled by Phasa Shifted PWM and Magnetic Amplifiers.Proceedings ofHigh Frequency Power Conversion.1988:100-110.
    [25]何建萍,张春波,孙广,等.数字化焊接电源系统特征分析[J].电焊机,2003,33(11):5-8.
    [26]李阳,吴开源,黄石生,等.DSP在弧焊逆变器中的应用[J].电焊机,2003,33(4):29-31.
    [27]曾尧,张秀兰.数字化焊接电源[J].中国机械工程学会.全国CO2逆变焊机和焊丝技术交流会.上海,2002,10:43-52.
    [28] P. Drews,Schulle.United States Patent,4-427-875Jan.24,1980.
    [29]刘岩,常佶,田立欣.电流控制型开关电源[J].现代电子技术,2001,10:60-62.
    [30]吴开源,陆沛涛,李阳,等.脉冲MIG焊控制的研究现状与展望[J].电焊机,2001,33(2):1-4.
    [31] Wang Weiming,Liu Jia,Su Jianzhong,et al.Study of modeling and simulationof full digital controlled PMIG/MAG welding system based on Matlab/Simulink [J].China Welding,2004,13(1):31-35.
    [32] Wilson J L,Claussen G E,Jackson C E.The effect of I2R heating on electrode meltingrate [J].Weld. J.,1956,35:1s-8s.
    [33] Lesnewich A.Control of melting rate and metal transfer in gas-shielded metal-arcwelding,Part1-control of electrode melting rate [J].Weld. J.,1958,37:343s-353s.
    [34] Waszink J H,Van Den Heuvel.Measurements and calculations of the resistance of thewire extension in arc welding [C].Int. conf. Arc Physics and Weld Pool Behavior,TheWelding Institute,London,Englang,1979:227-239.
    [35] Palani P K,Murugan N.Modeling and simulation of wire feed rate for steady currentand pulsed current gas metal arc welding using317L flux cored wire [J].Int. J. Adv.Manuf. Technol.,2007,34:1111-1119.
    [36]傅希圣,李烨,王夏冰.熔化极气体保护焊焊丝伸出长度和电弧弧长的稳定性[J].焊接学报,1995,16(2):100-105.
    [37]傅希圣,李烨.焊丝熔化率公式研究[J].焊接学报,1995,16(4):226-232.
    [38] Halmoy E.Wire melting rate,droplet temperature,and effective anode melting potential
    [C].in Proc. Arc Physics and Weld Pool Behavior Int. Conf.,London,U. K.,1979:49-58.
    [39] Halmoy E.Electrode Wire Heating in Terms of Welding Parameters [M].In ThePhysics of Welding,ed. Lancaster J.F.,Oxford:Pergamon Press,1986:330-336.
    [40] Quinn T P,Madigan R B,Siewert T A.An electrode extension model for gas metal arcwelding [J].Weld. J.,1994,73:241s-248s.
    [41] Huismann G,Hoffmeister H.Sensing metal inert gas process by measuring wire feedrateand current [J].Science and Technology of Welding&Joining,1999,4:352-356.
    [42] Kim Y S,McEligot D M,Eager T W.Analysis of electrode heat transfer in gas metalarc welding [J].Weld. J.,1991,70:20s-30s.
    [43] Nemchinsky V A.Heat transfer in an electrode during arc welding with a consumableelectrode [J].J. Phys. D:Appl. Phys.,1998,31:730-736.
    [44] Nemchinsky V A.The rate of melting of the electrode during arc welding.The influenceof discrete removal of the melt [J].J. Phys. D:Appl. Phys.,1998,31:1565-1569.
    [45] Bingul Z,Cook G E.A real-time prediction model of electrode extension for GMAW[J].IEEE/ASME Transaction on Mechatronics,2006,11:47-54.
    [46] Modenesi P J,Reis R I.A mode for melting rate phenomena in GMA welding [J].J.Materials Proc. Tech.,2007,189:199-205.
    [47] Ladislav Grad.Feasibility Study of Acoustic Signals for On-line MonitoringinShort Circuit Gas Metal Arc Welding [J].Machine Tools&Manufacture,2004,44:555-561.
    [48] Q. L. Wang,P. J. Li.Arc Light Sensing of Droplet Transfer and Its AnalysisinPulsed GMAW Process [J].Welding Journal,1997,76(11):458-469.
    [49] Amin M.Synergic pulse MIG welding [J].Metal Construction,1981,6.
    [50] Amin M,Ahmed N.Synergic control in MIG welding.1. Parametric relationships forsteady DC open arc and short circuiting arc operation [J].Metal Construction,1987,19(1):331-340.
    [51] Ueguri, Shigeo,et al.European Patent Application.Application N0.81105288.5.
    [52]潘际銮.现代弧焊控制[M].北京:机械工业出版社,2000:63-99.
    [53]韩赞东,都东,吴文楷,等.数字化控制IGBT逆变式脉冲MIG焊电源的研究[J].电焊机,1998,28(6):11-13.
    [54] Ohshima K,Abe M,Kubota T.Effect of power source characteristic on stability ofpulsed current transfer-sampled-data control pulsed arc[A].JWS-I-3.
    [55]曾敏,曹彪,黄石生,等.脉冲熔化极气体保护焊的模糊控制[J].机械工程学报,2003,39(11):113-115.
    [56]吴开源,黄石生,蒙永民.脉冲MIG焊电弧双模模糊控制[J].控制理论与应用,2006,23(1):74-78.
    [57]上山智之,仝红军.微机数控电流波形GMA脉冲焊机的控制方法及焊接性能[J].焊接,2000,(5):33-38.
    [58]柳刚.熔化极气体保护焊熔滴过渡的光谱信息及其检测的研究[D].天津:天津大学博士学位论文,1998.
    [59]杨立军,李桓,胡胜钢.光谱控制的逆变脉冲MIG焊电源及控制系统[J].焊接学报,2001,22(1):41-44.
    [60] Zhang Y M,Liguo E,Walcott B L.Robust control of pulsed gas metal arc welding[J].ASME Journal of Dynamic Systems,Measurement,and Control,2002,124(2):281-289.
    [61] Jesper S Thomen.Feedback linearization based arc length control for gas metal arcwelding [C].2005American control conference,2005.
    [62]黄鹏飞,卢振洋,吕耀辉,等.熔化极脉冲氢弧焊弧长动态调节性能研究[J].机械工程学报,2005,41(1):194-197.
    [63] Vender J R,Tyler K L,Moore D S.Modeling, calibration, and control-theoretic analysisof the gmaw process [C].In Nonlinear Analysis, Methods and Applications, volume3,.Proc. American Control Conference(ACC),1998:1747-1751.
    [64] Naidu S D,Tyler J,Ozcelik S.Classical control of gas metal arc welding [C].In Trendsin Welding Research: Proc.5th International Conference,1998:1033-1038.
    [65] Abdelrahman M.Feedback linearization control of current and arc length in G system
    [C].Proc. of the American Control Conference,1998.
    [66] Naidu D S,K L Moore,M A Abdelrahman.Gas metal arc welding control: Part2-control strategy [M].Nonlinear Analysis,1999(35):85-93.
    [67] Moore K L,Naidu D S,Ozcelik S.Modeling, Sensing and Control of Gas Metal ArcWelding [M].Elsevier,2003.
    [68] Subbaram D,Naidu Selahattin Ozcelik,Kevin L.Application of mimo direct adaptivecontrol to gas metal arc welding [C].Proc. of the American Control Conference,1998.
    [69] Walcott B L,Zhang Y M,Liguo E.Interval model based control of gas metal arcwelding [C].Proc. of the American Control Conference,1998.
    [70] Puklavec A,Torvornik B,Golob M.Modelling, simulation and fuzzy control of thegmaw welding process [C].In15th Triennial World Congr. Int. Fed. of AutomaticControl,2002.
    [71] Zadeh L A.Fuzzy sets [J].Information and Control,1965,8(3):338-353.
    [72] Mamdani E H.Application of fuzzy algorithms for control of simple dynamic plant[J].Proc. IEEE,1974,121(12):1585-1588.
    [73]刘曙光,魏俊民,竺志超,等.模糊控制技术[M].北京:中国纺织出版社,2001.
    [74]陶永华,尹怡欣,葛芦生.新型PID控制及应用[M].北京:机械工业出版社,1998.
    [75]胡绳荪.现代弧焊电源及其控制[M].北京:机械工业出版社,2006.
    [76]薛家祥,杨国华,董飞,等.基于模糊逻辑的弧焊电源动特性分析[J].电焊机,2007,37(1):31-34.
    [77] Oshima Kenji.Fuzzy Expert System for Robotic Arc Welding [J].ASME. ProductionEngineering Division,1991,51:85-90.
    [78]艾盛,王坚.PMIG焊焊接电弧电压的模糊控制[J].电焊机,1993,23(5):1-5.
    [79]赵举东,杨虹.脉冲MIG/MAG焊接熔滴过渡的自适应模糊控制[J].电子与自动化,1997,26(1):14-18.
    [80]孙栋,赵举东,赵家瑞.智能控制MIG焊熔滴过渡[J].电焊机,1996,26(2):11-14.
    [81]杜宏旺,刘铮,赵亚楠,等.基于观测器与前馈的送丝机模糊PI速度控制[J].焊接学报,2010,31(1):85-88.
    [82]徐应群,黄松涛.熔化极气体保护焊送丝速度的模糊控制[J].现代焊接,2006,48(12):16-18.
    [83]郑春红,苏玉鑫.基于遗传算法的模糊控制送丝系统[J].西安石油学院学报(自然科学版),2001,16(3):50-52.
    [84]赵举东,杨虹,肖锦辉.机器人用逆变弧焊电源的神经元网络控制研究[J].电子技术应用,1997,23(7):13-16.
    [85] Dilthey U,et al.On-line Quality in Gas shielded Metal Arc Welding Using ArtificialNeural Networks[J].Welding and Cutting,1997,49(2):22-24.
    [86] P K Palani,N Murugan.Selection of parameter of pulsed current gas metalarcwelding [J].Journal of Materials Processing Technology,2006:172:1-10.
    [87] Y S Kim,T W Eagar.Metal transfer in pulsed current gas metal arc welding[J].Welding Journal,1993:72(7):279-287.
    [88] Essers W G,Van Gompel M R M.Arc control with pulsed GMA welding[J].Welding Journal,1984,63(6):26-32.
    [89] C S Wu,M A Chen,Y F Lu.Effect of current waveforms on metal transferinpulsed gas metal arc welding [J].Measurement Science and Technology,2005,16:2459-2465.
    [90] Svetsaren,Klas Weman.Equipment for aluminium welding [J].2000.54(2):l2.
    [91]胡特生.电弧焊[M].北京:机械工业出版社,1996.
    [92]胡胜钢.脉冲MIG焊熔滴过渡光谱控制法的研究[D].天津大学博士学位论文,1999.
    [93] Hirata Y.Pulse arc welding [J].Journal of Japan Welding Society,2002,71(3):115-130.
    [94]姚屏,薛家祥,蒙万俊,等.工艺参数对铝合金双脉冲MIG焊焊缝成形的影响[J].焊接学报,2009,30(3):69-72.
    [95] Kuagais M.Recent technological developments in welding of aluminum and its alloys[J].Journal of Japan Welding Society,2002,71(5):109-114.
    [96]陆晓明.双脉冲MIG焊及其专家系统[D].广州:华南理工大学,2009.
    [97]丁荣辉,黎文献,路彦军,等.快速凝固耐热铝合金焊接技术的研究现状[J].材料导报,2005,19(5):73-76.
    [98]易志平,薛家祥.弧焊过程电信号分析系统的研究[J].华南理工大学学报:自然科学版,2002,30(5):22-28.
    [99] Lutz D,Peter R,Egbert S.An examination of metal transfer during shielded metal-arcwelding under mixed gas and carbon dioxide [J].Schweiben and Schneiden,1982,34(8):378-385.
    [100] Jorn B.Fuzzy logic-not just a fashionable trend [J].Schweiben and Schneiden,1991,43(9):200-203.
    [101] Rajasekaran S,Kulkarni S D,Mallya U D,et al.Drop let detachment and plate fusioncharacteristics in pulsed current gas metal arc welding [J].Welding Journal,1998,77(6):254-269.
    [102] Mendes da Silva C L.Evaluation of the thermal pulsation technique in aluminumwelding [D].Brazil:Federal University of Uberlandia,2003.
    [103]马德,殷树言,刘嘉,等.脉冲MIG焊铝工艺特性的研究[J].电焊机,2004,34(5):44-46.
    [104]姚屏,黄文超,薛家祥,等.脉冲参数对脉冲M IG焊焊接行为的影响[J].华南理工大学学报:自然科学版,2008,36(10):140-145.
    [105]姚屏,薛家祥,黄文超,等.脉冲MIG焊熔滴过渡阶段的波形控制[J].华南理工大学学报:自然科学版,2009,37(4):52-56.
    [106] Palani P K,Murugan N.Selection of parameters of pulsed current gas metal arcwelding [J].Journal of Materials Processing Technology,2006,172(1):1-10.
    [107]刘伯春.智能PID调节器的设计和应用[J].电气自动化,1995,(3):18-21.
    [108]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002:14-23.
    [109]吴麒.自动控制原理[M].北京:清华大学出版社,2001.
    [110]余文松.新型大功率软开关弧焊逆变器的研究[D].广州:华南理工大学博士学位论文,2000:1-5.
    [111] T. Takagi,M. Sugeno.Fuzzy identification of systems and its applications to modelingand control [J].IEEE Trans,on Systems. Man. And Cybern.,SMC-15(1):116-132,(1985).
    [112] S. Yamane,G. Alzamora and T. Kubota.Fuzzy Control of Wire Feed Rate in RobotWelding [J]. Proc. IEEE1992Conf. on Intelligent Control and Instrumentation.Singapore,1992,Vol2,1375-1379.
    [113] Z. Bingul,G. E. Cook and A. M. Strauss.Application of fuzzy logic to spatial thermalcontrol in fusion welding [J].IEEE Trans, on Industry application,2000,36(6):1523-1530.
    [114] P. Koseeyaporn,G. E. Cook,A. M. Strauss,et al.Adaptive voltage control in fusionarc welding [J].IEEE Trans,on Industry Applications,2000,36(5):1300-1307.
    [115] J. L. Castro,M. Delgado.“Fuzzy systems with defuzzification are universalapproximators”. IEEE Trans,on Systems. Man. And Cybern.,SMC-26(1),pp.149-152,(1996).
    [116] L. X. Wang.“Fuzzy systems are universal approximators”.Proc. IEEE1992Conf.on Fuzzy Systems. San Diego,pp.1163-1170,(1992).
    [117] L. X. Wang,J. M. Mendel.“Fuzzy basis functions,universal approximation andorthogonal least squares learning”. IEEE Trans. on Neural Networks,3(5),pp.807-814,Sept.(1992).
    [118] H. Ying.“General SISO takagi-sugeno fuzzy systems with linear rule consequent areuniversal approximators”.IEEE Trans,on Systems. Man. And Cybern,SMC-6(4),pp.582-587,(1998).
    [119] H. Ying,Y. S. Ding,S. K. Li, et al.“Comparison of necessary conditions for typicalTakagi-Sugeno and Mamdani fuzzy systems as universal approximators”.IEEE Trans,on Systems, Man and Cybern,Part A,29(5),pp.508-514(1999).
    [120] H. Ying.“Sufficient conditions on uniform approximation of multivariate functionsby general Takagi-Sugeno fuzzy systems with linear rule consequent”.IEEE Trans,on Systems,Man and Cybern,Part A,80(4),pp.515-520(1998).
    [121] K. Zeng,N. Y. Zhang and W. L. Xu.“A comparative study on sufficient conditionsfor Takagi-Sugeno fuzzy systems as universal approximators”.IEEE Trans,on FuzzySystems,8(6),pp.773-780(2000).
    [122] K. Zeng,N. Y. Zhang and W. L. Xu.“Sufficient condition for lineaer T-S fuzzysystems as universal approximators”.Acta Automatica Sinica,27(5),pp.606-612,(2001).
    [123] X. J. Zeng,M. G. Singh.“Approximation properties of fuzzy systems generated bymin inference”.IEEE Trans,on Systems. Man. And Cybern.,SMC-26(1),pp.187-193,(1996).
    [124]吴开源.基于DSP的弧焊逆变电源数字化控制系统[J].电子设计应用,2002,1(11):71-73.
    [125]卢红影,姜继海,王頔,等.基于模糊自适应PID控制策略的液压变压器驱动直线负载系统研究[J].机床与液压,2009,37(1):58-61.
    [126]刘涛.基于微机测控网络的扩散∕氧化系统的研究与开发[D].长沙:湖南大学硕士论文.2006.
    [127]许乐平.基于直线电机的经编机电子横移控制系统[D].武汉:武汉纺织大学硕士论文.2010.
    [128]陈奎.桶装焊丝生产线控制系统的研究[D].天津:天津大学硕士论文.2006.
    [129]蒙万俊,薛家祥,高理文,等.基于ARM和CPLD的弧焊电源数字化面板[J].电焊机,2009,39(9):67-71.
    [130]蒙万俊.双丝焊数字化电源的研究[D].广州:华南理工大学硕士论文.2010.
    [131]黄文超.智能弧焊电源的优化控制及其专家系统[D].广州:华南理工大学硕士论文.2010.
    [132]左敦桂.基于DSP的数字化脉冲MIG焊接电源的弧长控制及仿真研究
    [D].上海:上海交通大学硕士论文.2007.
    [133]王卫彬.基于Logistic回归脉冲MIG熔滴过渡判断模型及焊接过程评估
    [D].上海:上海交通大学硕士论文.2008.
    [134]孟疌. GMAW-P脉冲参数与熔滴过渡及焊缝成形关系建模及分析研究
    [D].上海:上海交通大学硕士论文.2008.
    [135]李芳. GMAW-P数字电源设计及熔滴过渡特征信号提取与建模研究
    [D].上海:上海交通大学博士论文.2008.
    [136]李芳,华学明,吴毅雄.脉冲熔化极气体保护焊研究现状与发展[J].热加工工艺,2007,15:84-87.
    [137]荣晓飞.脉冲MIG焊的数字化研究[D].济南:山东大学硕士论文.2006.
    [138]樊佳伟.脉冲MIG焊电源快速原型系统开发平台设计[D].兰州:兰州理工大学硕士论文.2010.
    [139]王伟明.逆变式GMA单脉冲和双脉冲焊机数字控制系统研究[D].北京:北京工业大学博士论文.2004.
    [140]马德.数字控制铝合金双脉冲MIG焊工艺的研究[D].北京:北京工业大学硕士论文.2004.
    [141]王金柱.基于DSP的脉冲MIG焊全数字化控制[D].北京:北京工业大学硕士论文.2007.
    [142]刘俊海.基于XC164CS单片机MIG焊机控制系统的研究[D].北京:北京工业大学硕士论文.2008.
    [143]周志军.单片机控制PMIG逆变焊机[D].北京:北京工业大学硕士论文.2002.
    [144]张红兵.基于ARM的双丝脉冲MIG高速焊分布式控制系统的研究[D].广州:华南理工大学博士论文.2010.
    [145]黄文超,薛家祥,王瑞超,等.基于DSP的铝合金双脉冲焊工艺过程优化[J].电焊机,2009,39(9):48-54.
    [146]殷树言.气体保护焊技术问答[M].北京:机械工业出版社,2004:174-175.
    [147]夏田,朱锦洪.峰值电流模式逆变焊机控制电路的设计[J].通讯电源技术,2004,21(1):7-9.
    [148]黄鹏飞,卢振洋,吕耀辉,等.熔化极脉冲氩弧焊弧长动态调节性能研究[J].机械工程学报,2005,41(1):194-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700