用户名: 密码: 验证码:
单元光电探测器在连续激光辐照下的响应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光电探测器在军事和民用等诸多领域的广泛应用,半导体光电探测器的激光辐照效应越来越受到人们的重视。光电探测器的种类繁多,每种探测器都有其特定的光谱探测范围,即存在探测的截止波长。在实际的光电对抗中,对探测器进行干扰和损伤的激光波长不一定恰好位于探测器的响应波段内,本文将光子能量大于探测器材料禁带宽度的激光称为该探测器的波段内激光;把光子能量小于探测器材料禁带宽度的激光称为该探测器的波段外激光。
     本文以光伏(PV)型和光导(PC)型单元光电探测器为研究对象,分别在实验和理论上系统地研究了PV型探测器和PC型探测器在波段内激光辐照下的非线性响应机理以及在波段外激光辐照下的响应机理。研究内容如下:
     1.研究了PC型探测器在波段内连续激光辐照下动态响应的物理过程。进行了PC型InSb红外探测器的波段内激光辐照实验,建立了PC型探测器在波段内连续激光辐照下的载流子输运模型,数值计算结果与实验结果吻合,分析了PC型探测器在波段内激光辐照下的响应机制。研究表明,PC型探测器对波段内激光的响应机制包括光激发载流子效应和热效应,热效应主要体现为温度对载流子迁移率的影响和温度对载流子浓度的影响。在分析PC型探测器在波段内激光辐照时的电压信号时,必须考虑以上三种效应对输出电压信号的影响。
     2.系统地研究了PV型探测器在波段内连续激光辐照下非线性响应的物理机制。在大量实验的基础上,明晰了PV型探测器在强光辐照下的一般规律性现象,和由探测器个体差异导致的特殊现象。发现并对比研究了两种典型的过饱和现象,理论上,从等效电路模型出发,分析了两种过饱和现象的发生条件,建立了数值计算的理论模型,对两种过饱和现象进行了数值模拟,计算结果与实验结果吻合得较好。研究表明,PV型探测器在波段内激光辐照下引起的过饱和现象有两种产生机制,一种是热效应引起的暗电流增大机制;另一种强光引起的漏电流增大效应,该机制是由于探测器材料制备过程中引入缺陷导致的。
     3.系统地研究了PC型探测器在波段外连续激光辐照下动态响应的物理过程。实验上,分别进行了PC型InSb和HgCdTe两种典型红外探测器的波段外激光辐照实验,发现了一种普遍存在于PC型探测器在波段外激光辐照下的新现象,深入分析了新现象的产生机理。建立了PC型探测器在波段外连续激光辐照下的载流子输运模型,分析了PC型探测器在波段外激光辐照下电压响应的机制,数值计算结果与实验结果吻合。研究表明,PC型探测器对波段外激光有响应,其响应机制仅为热效应,具体表现为温度对载流子迁移率的影响和温度对载流子浓度的影响。波段外激光辐照下,探测器温升,当探测器芯片温度小于特征温度(电导率出现极小值时对应的温度)时,温度对载流子迁移率的影响起主导作用,探测器的输出电压信号表现为随温度升高而增大;当探测器芯片温度大于特征温度时,温度对载流子浓度的影响起主导作用,探测器的输出电压信号表现为随温度升高而减小。探测器输出电压信号是由温度对载流子迁移率的影响和温度对载流子浓度的影响共同决定。
     4.研究了PV型探测器对波段外激光的响应机制,研究表明,热生电动势为PV型探测器对波段外激光响应的主要机制,并阐明了不同初始开路电压条件对探测器输出信号的影响。利用Si太阳能电池重现了HgCdTe探测器在波段外激光辐照下的实验现象,并围绕着热生电动势是否存在、与光生电动势的区别与联系以及与温差电动势的区别等问题设计了实验,从实验的角度验证了热生电动势的正确性。
With the widespread use of photoelectric detectors in different aspects, especiallyfor military and civil purpose, more and more attentions are being paid to the irradiationeffects of semiconductor materials and photoelectric detectors. There are kinds ofphotoelectric detectors. However, for a specific detector, it could only response to aspecific spectrum range. In other words, every kind of detector has a cut-off wavelength.In the practical photoelectric confrontation, the lasers, which are adopted to disturbphotoelectric detectors, are probably not in the spectrum range of the photoelectricdetector. In this paper, we call the laser above-band gap laser, whose photon energy islarger than the band gap energy; otherwise call it sub-band gap laser.
     In this paper, the photovoltaic (PV) detectors and photoconductive (PC) detectorshave been taken as the investigated subjects. The nonlinear response mechanisms of PVdetectors under above-band gap laser radiation and response mechanisms of PCdetectors under sub-band gap laser radiation are carefully investigated. The investigatedcontents are as follows:
     1. The dynamic response physical process of PC detectors under above-band gaplaser radiation is investigated. The above-band gap laser irradiates the PC InSb detectorsin experiment. The carrier transport model of PC detector under above-band gap CWlaser radiation is established. The calculation results agree well with the experimentalresults. The response mechanism of PC detector under CW laser radiation is analyzed.It’s shown that the response mechanism of PC detector under above-band gap laserradiation is composed of optical excited carriers and thermal effects. The thermal effectsinclude temperature-dependence mobility effect and temperature-dependence carrierconcentration effect. When the voltage signals of PC detector under above-band gaplaser radiation are analyzed, the above three effects must be considered.
     2. The nonlinear response physical mechanisms of PV detector under above-bandgap laser radiation are carefully investigated. Based on many experimental results, theregular phenomena of PV detector under intense light radiation and specific phenomenainduced by individual difference are definite. Two typical over-saturation processes arediscovered and investigated. In theory, the generation conditions of the two typicalover-saturation processes are analyzed from the equivalent circuit model. The numericalcalculation model is established, and the two kinds of over-saturation processes arenumerical simulated. The numerical results and experimental results are in goodagreement. It’s shown that two generation mechanisms of the over-saturationphenomena of PV detector under above-band gap laser exist. One is increased darkcurrent due to thermal effect. The other is leak current due to intense light radiation. Theleak current is caused by the bugs, which are formed during the preparation process.
     3. The dynamic response physical process of PC detectors under sub-band gaplaser radiation is investigated. In experiment, two typical infrared detectors (PC InSband HgCdTe detector) are taken in the sub-band gap laser radiation experiment. A newphenomenon, which universally exist in the experiments of PC detectors under sub-bandgap laser radiation. The generation mechanism of the new phenomenon is thoroughanalyzed. The carrier transport model of PC detector under sub-band gap laser radiationis established. The voltage response mechanism of PC detector under sub-band gaplaser radiation is analyzed. The numerical results and experimental results are in goodagreement. It’s shown that PC detector can response to the sub-band gap laser and theresponse mechanism is only thermal effect. The thermal effects are composed oftemperature-dependence mobility effect and temperature-dependence carrierconcentration effect. The temperature of the detector increased during the sub-band gaplaser radiation process. A critical temperature T0exists in this process, which istemperature corresponding to the minimum of the electrical conductivity.When thetemperature of the detector, T, is lower than T0, the dominant mechanism istemperature-dependence mobility effect. The output voltage signals increase with thetemperature. When the T is higher than T0, the dominant mechanism istemperature-dependence carrier concentration. The output voltage signals decrease withthe temperature. The output voltage signals of the detector are decided bytemperature-dependence mobility effect and temperature-dependence carrierconcentration effect.
     4. The response mechanism of PV detector under sub-band gap laser radiation isinvestigated. It’s shown that the dominate response mechanism of PV detector undersub-band gap laser radiation is thermovotage. The influence of output voltage signalswith different initial open-circuit voltage is analyzed. The Si solar cells are used toreproduce the experimental results of HgCdTe detector under sub-band gap laserradiation. The experiments are designed to demonstrate the existence of thermovoltage,the difference and relationship of thermovolatge and photovolatge, and the difference ofthermovoltage and thermoelectric voltage. The trueness of thermovolatge isdemonstrated from experiment.
引文
[1] Tian Jiang, Xiang-Ai Cheng, Xin Zheng, Hou-man Jiang and Qi-Sheng Lu. Theover-saturation phenomenon of a Hg0.46Cd0.54Te photovoltaic detector irradiated by aCW laser [J].Semicond. Sci. Technol.,2011,26:115004.
    [2]褚君浩.窄禁带半导体物理学[M].北京:科学出版社,2005.
    [3]Arias J M, Shin S H, Pasko J G et al. Long and middle wavelength infraredphotodiodes fabricated with HgCdTe grown by molecular-beam epitaxy[J]. J. Appl.Phys.1989,65:1747-1753.
    [4]Elliott C T. New detector for thermal imaging systems[J]. Electron. Lett.1981,17:312-314.
    [5]Kane E O.1957. J. Phys. Chem. Solids,1:249
    [6]Reago Donald A, Horn Stuart B, Campbell James, et al. Third-generationimaging sensor system concept[J]. SPIE,1999,3701:108-117.
    [7]何力,杨定江等.先进焦平面技术导论[M].北京:国防工业出版社,2011.
    [8]孙承伟,陆启生,范正修,等.激光辐照效应[M].北京:国防工业出版社,2002:371.
    [9]F. J. Bartoil, L. Esterowitz, M. R. Kruer, and R. E. Allen. Thermal recoveryprocesses in laser irradiated HgCdTe (PC) detectors[J]. Applied Optics,1975,14(10):2499-2507.
    [10]Kruer M, Esterowitz L, Allen R. Thermal models for laser damage in InSbphotovoltaic and photoconductive detectors[J]. Infrared Physics.1976,16(3):375-384.
    [11]Meyer J R, Bartoli F J, Kruer M R. Optical heating in semiconductors[J].Physical Review B.1980,21(4):1559-1568.
    [12]Meyer J R, Kruer M R, Bartoli F J. Optical heating in semiconductors:Laserdamage in Ge,Si,InSb,and GaAs[J]. Journal of Applied Physics.1980,51(10):5513-5522.
    [13]F. J. Bartoli, L. Esterowitz, et al. A Generalized Thermal Model for LaserDamage in Infrared Detectors [J]. Journal of Applied Physics.1976,47(7):2875-2881.
    [14]F. J. Bartoli, L. Esterowitz, et al. Laser Induced Donor Centers in P-InSb [J].Semiconductor Physics.2000,1(3):31-34.
    [15]M. R. Kruer,L. Esterowitz,F. J. Bartoli, andR. E. Allen.Optical radiationdamage of SBN materials and pyroelectric detectors at10.6μm[J].1975,46(3):1072-1079.
    [16]Lax M. Temperature rise induced by laser beam[J]. Journal of Applied Physics.1977,48(9):3919-3924.
    [17]Lax M. Temperature rise induced by laser beam II. The nonlinear case[J].Applied Physcics Letters.1978,33(8):786-788.
    [18]Yoffa E J. Dynamics of defense laser-induced plasmas[J]. Physical Review B.1980,21(6):2415-2425.
    [19]Yoffa E J. Role of carrier diffusion in lattice heating during pulsed laserannealing[J]. Applied Physics Letters.1980,36(1):37-38.
    [20]Kim D M, Kwong D L. Laser heating of semiconductors-effect of diffusion innonlinear dynamic heat transport progress[J]. Journal of Applied Physics.1981,52(8):4995-5006.
    [21]Kim D M, Kwong D L. Pulsed laser annealing of single-crystal andion-implanted semiconductors[J]. IEEE Journal Of Quantum Electronics.1982,18(2):224-232.
    [22]A. V. Kuanr, S. K. Bansal, G. P. Srivastava. Laser-induced damage in inSb at1.06μm wavelength-a comparative study with Ge, Si and GaAs[J].Optics&LaserTechnology,1996,28(5):345-353.
    [23] A. V. Kuanr, S. K. Bansal, G. P. Srivastava. Laser-induced damage in GaAs at1.06μm wavelength: surface and effect[J].Optics&Laser Technology,1996,28(5):25-34.
    [24] A. V. Kuanr, S. K. Bansal, G. P. Srivastava. Surface effects on laser-induceddamage in Si[J]. J. Phys. D: Appl. Phys.,1990,23:153-155.
    [25]Bertolotti M., Stagni L. Vitali G., Muzil L. Role of surface treatment in laserdamage of germanium[J]. J. Appl. Phys.,1971,42:5893-5895.
    [26]Matsuoka Y. Laser-induced damage to semicondutors[J], J. Phys. D: Appl.Phys.,1976,9:215-224.
    [27]Macdonald C. M., Mcgoech S. P., Mclnnes A. A., Nelson C. H., Wilson A. D.Laser induced damage mechanisms in model optical materials[J], J. Phys. D: Appl.Phys.,1988,321:S85-S87.
    [28]Tsu R., Baglin J. E., Lasher G. J., Tsang J. C. Laser-induced recrystallizationand damage in GaAs[J]. Appl. Phys. Lett.,1979,34(2):153-155.
    [29]Screckovic M., Vedlin B., Backovic N., Laser damage in silicon[J]. Optics&Laser Technology,1984,26:145-150.
    [30]Gibson D. R., MacDonald C. M., Wilson A. D. CO2laser induced damage togermanium: relation to surface preparation[J]. Laser induced Damage in OpticalMaterials, NBS Special Publication no.746,1988,203-214.
    [31]Willis L. J. Emmony D. C. laser damage in Germanium[J].Optics&LaserTechnology,1975,222.
    [32]Srinivasan Krishnamurthy, Zhi Gang Yu, leonel P. Gon zalez, Shekhar Guha.Accurate evaluation of nonlinear absorption coefficients in InAs, InSb, and HgCdTealloys[J]. J. Appl. Phys.,2007,101:113104.
    [33]J M Doviak, A F Gibson, M F Kimmitt and A C Walker. Two-photonabsorption in indium antimonide at10.6μm[J]. J. Phys. C: Solid State Phys.,1973,6:593-600.
    [34]M. Shei-bahaei, P. Mukherjee, H. S. Kwok. Two-photon and three-photonabsorption coefficients of InSb[J]. J. Opt. Soc. Am. B,1986,3(3):379-385.
    [35]J. Dempsey, J. Smith, G. D. Holah, A. Miller. Nonlinear absorption and pulseshaping in InSb[J]. Opt. Commun.1978,26:265-268.
    [36]A. Miller, A. Johnson, J. Dempsey, J. Smith, C. R. Pidgeon, G. D. Holah. Twophoton absorption in InSb and Hg1-xCdxTe[J]., J. Phys. C,1979,12:4838-4849.
    [37]A. M. Johnson, C. R. Pidgeon, J. Dempsey. Frequency dependence of twophoton absorption in InSb and Hg1-xCdxTe[J]., Phys. Rev. B,1980,22:825-831.
    [38]S. S. Mitra, N. H. K. Judell, A. Minafra. The two photon absorption indirect-gap crystals[J].,Opt. Lett.,1982,7:307-310.
    [39]J. G. H. Mathew, A. J. Kar, N. R. Heckenberg, I. Galbraith. Time-resolved self–defocusing in InSb at room temperature[J].,1985,QE-21:94-100.
    [40]H. S.Brandi and C. B. De Arsujo. Multiphton absorption coefficients in solid:auniversal curve[J]. J. Phys. C,1983,16,5929-5936.
    [41]Piyush Kumar Srivastava, Amit Pratap Singh, Avinashi Kapoor. Theoreticalanalysis of pit formation in GaAs surfaces in picosecond and femtosecond laser laserablation regimes[J]. Optics&Laser Technology,2006,38:649-653.
    [42]French P. Focus issue: laser ablation[J]. Opt. Exp.,2000,1.7:39-40.
    [43]Perriere J., Millon E., Chamarro M., Morcrette M., An dreazza C. Formationof GaAs nanocystals by laser ablation[J]. Appl. Phys. Lett.,2001,78:2949-2951.
    [44]Huang L., Callan J. P., Glezer E. N., Majur E., GaAs under ultra fast excitation:response of the dielectric function[J]. Phys. Rev. Lett.,1998,80:185-188.
    [45]Glezer E. N., Siegal Y., Huang L., Mazur E. Laser induced bandgap collapsein GaAs[J]. Phys. Rev. B,1995,51:6959-6970.
    [46]Singh A. P., Kapoor A., Tripathi. KN, Kumar TG. R. Thermal and mechanicaldamage of GaAs in picosecond regime[J]. Opt. Laser Technology,2001,33:363-369.
    [47]P. Prikryl, E. Gatskevich, R. Cerny. Computational model of pulsedlaser-induced melting, evaporation and solidification of CdZnTe[J]. Comput. Mater.Sci.,2004,31:389-404.
    [48]M. Scepanovic, M. Jevtic Raman. Studies of compositional changes inHg1-xCdTe due to pulsed laser annealing in air[J].,Solid State Phenom.,1998,61/62:251-255.
    [49]R. Cerny, R. Sasik, I. Lukes. V. Chab. Excimer laser induced melting andsolidification of monocrystalline Si: equilibrium and nonequilibrium models[J].,Phys.Rev. B,1991,44:4097-4102.
    [50]M. Scepanovic, M. Jevtic. Numerical simulation of laser-induced mercurydiffusion in HgCdTe using nonconstant segregation coefficients[J].,Phys. Status. Solidi(a),1995,147:379-387.
    [51]A. V. Gusarov, I. Smurov. Near-surface laser-vapour coupling in nanosecondpulsed laser ablation[J]., J. Phys. D: Appl. Phys.,2003,36:2963-2971.
    [52]L. A. Golovan, B. A. Markov, P. K. Kashkarov, V. Yu. Timoshenko.Evaporation effect on laser induced soildliquid phase transitions in CdTe andHgCdTe[J]. Solid State Comm.,1998,108:707-712.
    [53]R. Cerny, V. Chab, G. Ivlev, E. Gatskevich. P. Prikryl. Modeling thephase-change processes in pulsed laser irradiated InSb[J]. Phys. Rev. B,1999,59:10685-10690.
    [54]I. Lukes, R. Sasik, R. Cerny. Study of excimer laser induced melting andsolidification of Si by time-resoved reflectivity measurements[J]., Appl. Phys. A,1992,54:327-33.
    [55]R. Cerny, P. Prikryl. Computational model of nohnequilibrium phasetransitions in a Si-Ge system, Comput. Mater. Sci.,1998,10:468-474.
    [56]R. Cerny, P. Prikryl. Numerical solution of a Stefan-like problem in laserprocessing of semiconducting alloys[J]. Math. Comput. Simul.,1999,50:165-173.
    [57]W. Becker, J. K. Mciver. Laser induced damage threshold derived fromchaotic electron dynamics[J]. Phys. Lett. A,1987,121(6):286-292.
    [58]Bjorkas C., Nordlund K., Arstila K., Keinonen J., Dhaka VDS., Pessa M.Damage production in GaAs and GaAsN induced by light and heavy ions[J]. J. Appl.Phys.,2006,100(5):053516.
    [59]Vonder Linde D., Sokolowski-Tinten K. The physical mechanisms ofshort-pulse laser ablation[J]. Appl. Surf. Sci.,2000,154:1-10.
    [60]Huang A. L., Becker M. F, Wafser R. M. Laser induced damage and ionemission of GaAs at1.06μm[J]. Appl. Opt.,1986,25(21):3864-3870.
    [61]Trelenberg T.W., Dinh L. N., Saw C. K., Stuart B. C., Balooch M.Femotosecond pulsed laser ablation of GaAs[J]. Appl. Surf. Sci.,2004,221:363-369.
    [62]Raff M. Schutz M. Trappe C., Hannot R., Kurz H. Laser-stimulatednonthermal particle smossion from InP and GaAs surface[J]. Phys. Rev. B,1994,50(15):11031-11036.
    [63]Ric (H.)M.A.Schleijpen. Laser Dazzling of Focal Plane ArrayCameras[C].Proc of SPIE,2007, Vol.6453:65431B-1-10.
    [64] B.T. Wysocki, M.A. Marciniak. Discrimination between electronic and opticalblooming in an InSb focal-plane array under high-intensity excitation [J].InfraredPhysics&Technology,2008(51):137-145.
    [65]Michael F.Becker, Chenzhi Zhang, Steve E.Watkins etc. Laser-inducedDamage to Silicon CCD Imaging Sensors[J].SPIE Vol.1105,Materials for OpticalSwitches, isolators, and Limiters,1989:68-77.
    [66]Michael F.Becker, Chenzhi Zhang, Ludovic Blarre etc. Laser-inducedfunctional damage to silicon CCD sensor arrays[J].SPIE Vol.1624Laser-InducedDamage in Optical Materials,1991:67-79.
    [67]Zhang C Z, Steve E.W, Rodger M.W. et al. Laser-induced Damage to SiliconCharge-coupled imaging devices [J]. Optical Engineering,1991,30(5):651-656
    [68]Zhang C Z,Blarre L D,Walser R M,et a1.Mechanisms for laser inducedfunctional damage to silicon charge-coupled imaging sensors [J].Applied Optics,1993,32(27):5201-5210.
    [69]N.Machet, C.Hubert-Habart, V.Baudinaud.Study of the mechanism ofelectronic diffusion in a CCD camera subject to intense laser illumination[C].RADECS,1997,97:417-423.
    [70]Flora M. Li, Nixon O, and Arokia Nathan.Degradation behavior and damagemechanisms of CCD image sensor with deep-UV laser radiation [J]. IEEE Transactionson Electron Devices, Vol.51, No.12,2004:2229-2236.
    [71]P.G.Chua, Y.Tanaka, M.Takeda, and T.Kurokawa.Infrared Image Detectionwith Si-CCD Image Sensor due to Two-Photon Absorption [C].Process.4th PacificRim Conference on Lasers and Electro-Optics[A], vol.1,2001:pp.I-482-I-483.
    [72]Matthias Loch, Ralf Widenhorn and Erik Bodegom, Infrared Response ofCharge-coupled Devices[A].proc of SPIE[C],2005,5677:201-208.
    [73]李彦文,刘成海. InSb材料的激光吸收机制和熔融破坏阈值的研究[J].强激光与粒子束.1990,2(3):334-337.
    [74]蒋志平,陆启生,刘泽金.激光辐照InSb(PV型)探测器的温升计算[J].强激光与粒子束.1990,2(2):247-255.
    [75]蒋志平,梁天骄,陆启生.激光辐照PC型HgCdTe探测器的热效应计算[J].应用激光.1995,15(4):155-156.
    [76]陆启生,蒋志平,刘泽金.激光辐照下InSb探测器(PV型)瞬变行为[J].强激光与粒子束.1991,3(1):102-107.
    [77]陆启生,蒋志平,刘泽金等. PC型HgCdTe探测器的记忆效应[J].红外与毫米波学报.1998,17(4):317-320.
    [78]Lu Q S, Jiang Z P, Liu Z J. The power saturation of the photovoltage (PV) ininfrared detector when laser irradiated[J]. Semiconductor Science and Technology.1991,6:1039-1041.
    [79]强希文,张健泉,刘峰等.强激光辐照探测器材料力学效应的解析研究[J].红外与激光工程.1999,28(6):47-51.
    [80]强希文,刘峰,张建泉.脉冲强激光辐照半导体材料损伤效应的解析研究[J].光电子技术.2000,20(1):52-58.
    [81]程湘爱,陆启生,马丽芹等.1.319μm连续波激光辐照PV型HgCdTe探测器的实验研究[J].光学学报.2003,23(5):622-626.
    [82]李修乾,程湘爱,王睿等.激光辐照PC型HgCdTe探测器的实验研究[J].强激光与粒子束.2003,15(1):40-44.
    [83]马丽芹,程湘爱,许晓军等. PV型HgCdTe光电探测器中的混沌及其诊断[J].强激光与粒子束.2003,15(1):37-39.
    [84]马丽芹,陆启生,程湘爱等.激光辐照光电探测器的非线性效应研究[J].青岛科技大学学报.2003,24(1):87-90.
    [85]马丽芹,程湘爱,陆启生等.1.319m激光诱导HgCdTe(PV型)探测器混沌的研究[J].激光与红外.2003,33(1):61-63.
    [86]Ma L Q, Cheng X A, Xu X J, et al. Chaos in photovoltaic HgCdTe detectorsunder laser irradiation[J]. Applied physics B.2002,75:667-670.
    [87]马丽芹,陆启生,杜少军,唐松生,程湘爱.光导性光电探测器瞬变行为的仿真[J].中国激光,2004,31(3):342-346.
    [88]马丽芹,陆启生,杜少军.强激光辐照PC型探测器动态响应[J].光电子激光光,2005,16(2):155-158.
    [89]马丽芹,陆启生,杜少军.光导型半导体探测器中载流子分布的数值计算[J].青岛科技大学学报,2003,24(3):273-276.
    [90]贺元兴,江厚满.激光辐照下PV型HgCdTe反常响应机理[J].强激光与粒子束,20(8):1233-1237.
    [91]王睿,程湘爱,陆启生.3.8um激光破坏三元PC型HgCdTe探测器系统的实验研究[J].强激光与粒子束.2004,16(1):31-34.
    [92]王睿,司磊,陆启生.响应波段外激光辐照PC HgCdTe探测器系统实验研究[J].激光与红外.2003,33(5):335-338.
    [93]李修乾,程湘爱,王睿等.波段外CW CO2激光辐照HgCdTe探测器热效应研究[J].中国激光.2003,30(12):1070-1074.
    [94]贺元兴,江厚满.波段外10.6μm激光辐照下光导型HgCdTe探测器的电学响应[J].2010,22(12):2828-2833.
    [95]李莉,陆启生,江厚满,程湘爱.双光束组合激光辐照光导型CdS光电探测器的实验研究[J].光学学报,2007,29(1):85-89.
    [96]李莉,陆启生.光导型HgCdTe光电探测器对双波段组合激光辐照动态响应的数值模拟[J].光学学报,2008,28(10):1952-1958.
    [97]李莉,陆启生. PC型HgCdTe光电探测器在双波段组合激光辐照下的温升计算[J].强激光与粒子束2008,20(6):912-916.
    [98]李莉,陆启生.波段外激光辐照PV型HgCdTe光电探测器的实验研究[J].强激光与粒子束,2010,22(11):2535-2539.
    [99]刘璞.飞秒激光对光伏型256x1线阵碲镉汞探测器的辐照效应研究[D].长沙国防科学技术大学,2009.
    [100]崔昊杨,李志峰,马法君,胡晓宁,陆卫.皮秒脉冲激光辐照下碲镉汞光伏红外探测器的负光伏响应新现象.2008,03:161-164.
    [101]H. Y. Cui, Z. F. Li, Z. L. Liu, C. Wang, X. S. Chen, X. N. Hu, Z. H. Ye andW. Lu. Modulation of the two-photon absorption by electric fields in HgCdTephotodiode. Appl. Phys. Lett.,2008,92,021128.
    [102]许晓军,曾交龙,陆启生等.1.06μm激光对PC型HgCdTe探测器的破坏阈值研究[J].强激光与粒子束.1998,10(4):552-556.
    [103]强希文,刘峰,张健泉等.连续波激光辐照半导体InSb材料的熔融破坏[J].中国激光.2000,27(4):372-376.
    [104]强希文,刘峰,张建泉.红外激光辐照探测器材料温升的数值计算[J].红外与激光工程.1999,38(3):46-50.
    [105]强希文.连续波激光辐照光伏型探测器的光电饱和效应[J].半导体光电.2000,21(5):352-354.
    [106]朱克学,张赟,李向阳.激光辐照对HgCdTe长波光导探测器性能的影响[J].激光与红外.2001,31(4):234-235.
    [107]朱克学,张赟,李向阳.激光辐照对长波HgCdTe光导探测器电学参数的影响[J].红外与激光工程.2000,31(1):55-59.
    [108]陈金宝,陆启生,舒柏宏等. CW CO2激光对PV型InSb探测器的破坏效应[J].激光技术.2002,2:47-49.
    [109]陈金宝,陆启生,钟海荣等.连续波氧碘激光对光伏型锑化铟探测器的破坏阈值[J].强激光与粒子束.1998,10(2):221-224.
    [110]刘天华,钟海荣,陆启生等.光电探测器的激光破坏机理研究[J].激光杂志.2001,22(6):5-8.
    [111]柯常军,万重怡.红外光电探测器的激光损伤分析[J].光学技术.2002,28(2):118-122.
    [112]H. Cai, Z. H. Cheng, H. H. Zhu, D. L. Zuo. Fracture mechanisms ofHg0.8Cd0.2Te induced by pulsed TEA-CO2laser[J].Applied Surface Science,2005,252:1685-1692.
    [113]张红,薛建国,成斌等.10.6μmCO2激光对HgCdTe探测器的破坏阈值的实验研究[J].光电工程.2006,33(5):41-56.
    [114]王思雯,李岩,郭立红等. CO2激光对长波红外HgCdTe探测器干扰的分析[J].红外与毫米波学报.2010,29(2):102-104.
    [115]王思雯,郭立红,郭立红等.高功率CO2激光对远场HgCdTe探测器的干扰实验[J].光学精密工程.2010,18(4):798-803.
    [116]Haifeng Qi,Qingpu Wang,Xingyu Zhang,Zejin Liu,Shaojun Zhang,JunChang,Wei Xia,Guofan Jin.Theoretical and experimental study of laser induced damageon GaAs by nanosecond pulsed irradiation[J].Optics and lasers in Engineering,2011,49:285-291.
    [117]吕楠楠.激光辐照HgCdTe的动力学研究[D].长春:长春理工大学,2006.
    [118]马丽芹.半导体光电探测器中载流子输运过程研究[D].长沙:国防科学技术大学,2005.
    [119]李莉.双波段组合激光辐照光电探测器的研究[D].长沙:国防科学技术大学,2010.
    [120]贺元兴.激光辐照下HgCdTe探测器电学响应机理研究[D].长沙:国防科学技术大学,2009.
    [121]郑鑫,江天,程湘爱,江厚满,陆启生.波段外激光辐照光导型InSb探测器的一种新现象[J].物理学报,2012,61(4):047302.
    [122]郑鑫.锑化铟探测器在波段外连续激光辐照下的效应研究[D].长沙:国防科学技术大学,2011.
    [123]李文煜,程湘爱,陆启生等.连续波激光辐照PV型HgCdTe探测器的新效应[J].强激光与粒子束,2002,14(6):902-805.
    [124]刘恩科,朱秉升,罗晋生.半导体物理学(第6版)[M].北京:电子工业出版社,2003.
    [125]蒋志平,刘泽金.陆启生等.InSb(PV型)探测器开路电压与温度的关系[J].强激光与粒子束,1990,2(2):245-247.
    [126]高观志,黄维.固体中的电输运[M].北京:科学出版社.1991.
    [127]Seeger K. Semicondutor Physics[M].3rded. Berlin, Springer,1985.
    [128]叶良修.半导体物理学[M].北京:高等教育出版社,1993.
    [129]王印月.半导体物理学[M].兰州:兰州大学出版社.1990.
    [130]Aoki K,Kobayshi T,Yamamot K. J. Phys. Colloq.,1981(C7):51.
    [131] Aoki K,Kobayshi T,Yamamot K. J. Phys. Soc. Jan.,1982,51:2373.
    [132]Teitsorth S W,Westervelt R M. Rhts. Rev. Lett.,1986,56:516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700