用户名: 密码: 验证码:
油菜联合收获纵轴流脱离系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是中国面积最大的油料作物。针对我国油菜联合收获技术研究中存在的脱粒分离装置结构复杂、性能较低,尤其是损失率、含杂率居高不下的现实问题,研究设计了一种新型油菜脱离系统,将传统割台的割断、输运和脱粒等功能进行集成。利用虚拟样机技术设计集成作业滚筒,并设计制作台架试验装置;建立油菜输运的动力学模型,利用MATLAB软件进行模型的分析与模拟,探求油菜运送机理;利用离散元方法分析油菜在脱粒腔内的受力状态与运动规律,揭示油菜脱粒机理;开展了集成作业滚筒脱粒效果的台架试验。主要研究内容有如下几个方面:
     (1)开展了油菜茎秆与果荚基础力学特性的测试实验,阐释了油菜茎秆与果荚在剪切和压缩作用下的力学特性。结果表明:茎杆剪切力和压缩力随时间的变化并不明显,靠近最后收获期的油菜茎杆剪切力并不是实验测得的最大值,因而在确定油菜收获时间时可以不将割断功耗作为影响因素。油菜果荚挤压力变化和其生长日期有一定关联,随着成熟度的提高,果荚含水率逐步降低,其生物质结构变得易于发生变形和开裂,这有利于油菜的脱粒作业。
     (2)开展了不同脱粒方式对收获期油菜果荚脱粒效果的对比分析研究,阐释了不同脱粒方式对油菜果荚的脱粒效果。结果表明:果荚脱净率和脱粒功耗之间呈对数关系,在脱粒功耗较低时,油菜果荚脱净率随脱粒功耗的增加而大幅度提高,但是随着脱粒功耗继续增加,增加速率逐渐变缓并趋于其极限值。同时功耗的增加也易于导致果荚壳的破碎和籽粒的破损,进而增大分离和清选过程的难度和降低收获油菜籽粒的品质,因而不宜为了提高脱净率而一味地增大脱粒功耗;搓擦脱粒油菜果荚脱净率高达99%,而碾压脱粒脱净率小于86%,冲击脱粒脱净率小于66%,在单位脱粒量功耗大于0.5J/g后,相同脱粒功耗下,揉搓脱粒的脱净率高于碾压脱粒和冲击脱粒,油菜联合收割机脱粒装置宜选择冲击脱粒和搓擦脱粒组合的脱粒方式。为此论文选择脱粒钉齿和编织筛网组合、轴流方向自下而上的技术实施油菜联合收获后的脱离。
     (3)设计了一种新型的组合式油菜脱离系统。在传统收获机割台的割断和输送功能的基础上,在割台滚筒上增设脱粒钉齿和切刀,使得割台滚筒在输送功能的基础上同时具有脱粒和割断功能;取消传统机型中的链耙式输送装置,将纵轴流脱离滚筒的喂入机构直接和割台滚筒的伸缩拨齿机构相接,缩短了物料传送环节,简化了结构。为有效开展该系统的试验研究,分别配套设计并试制了纵轴流脱离试验装置和组合式脱离试验装置。
     (4)利用高速摄影技术和离散元分析方法,对油菜在伸缩拨齿机构作用下进入到纵轴流脱离系统以及在该系统中运动的过程进行了观察和分析。结果表明:油菜在伸缩拨齿作用下按抛物线轨迹运动到纵轴流脱离系统,并在该脱离系统内作不规则圆周螺旋运动,其轴向运动速度呈现出近似脉动变化特征,受到的作用力主要来自于和脱粒钉齿与顶盖螺旋撞击产生的间歇震荡的冲击力。籽粒在脱离滚筒内的轴向运动速度较快,螺旋轨迹线的螺距较大,秸秆的轴向运动速度慢于籽粒,其螺旋轨迹线的螺距较小。物料在上升时段的速度较低,在下落阶段和遭受撞击后的速度较高。
     (5)开展了纵轴流脱离滚筒对完熟期油菜的脱离试验。结果表明:脱粒滚筒转速、钉齿间距、脱粒间隙和滚筒轴线倾斜角等因素都影响到筛下籽粒脱出比率。筛下籽粒脱出比率与滚筒转速之间呈现出抛物线关系,转速为771r/min时筛下籽粒脱出比率最高。钉齿间距取为100Omm、225mm、前半段间距200mam与后半段间距为100mm组合三种形式均可得到较高的筛下籽粒脱出比率;脱粒间隙取为25mam和滚筒轴线倾斜角度为250的筛下籽粒脱出比率较高;筛下物由籽粒、颖杂和茎杆等成分组成,筛下脱出各成分沿滚筒轴线呈现出小尺寸脱出物前多后少、大尺寸脱出物前少后多的分布规律,籽粒、杂余等几何尺寸较小的脱出物在滚筒前端脱出量较大后端脱出量较少,几何尺寸较大的茎秆则在滚筒前端的脱出量较小后端脱出量较大。
As the main oil crop, rape has the largest plant area in China. Aiming to the problems of the rape combine harvesting technique development with complicated structure and worse performance, especially great loss ratio and low purity, a new threshing and separating system was designed by combining the functions of cutting, conveying and threshing on the traditional header. The integrated roller was designed by virtual prototype technology, and the testing device was manufactured to do the experiment; the dynamic model of conveying on rape was established to analyze on MATLAB software for researching the rape conveying mechanization; The force issue and motion law of rape in threshing cavity were analyzed by discrete element method to reveal the rape threshing mechanization; The threshing effect of the integrated roller were conducted on bench test. So the main researches of my subject listed as below:
     (1) The basic mechanical characteristic experiments for the rape stalk and capsule were introduced on the sheared and compressed characteristic, the results showed that shear force and compressing force of rape stalk were not significant changing with the time, while the shear force of rape stalk near the harvesting time was not the maximum value in the experiment, so the power consumption of cutting should not be considered as the influence factor on the harvesting time; The compressing force of capsules was related with the time. With the promotion of maturity, the moisture content of capsule decreased, the biomass structure of capsule easily became to deform and crack, and it was beneficial to thresh.
     (2) The effects on different threshing methods for rape capsule with rubbing, rolling and impact were conducted. The results showed that the threshing rate had a logarithm relation with the power consumption. When the power consumption of threshing was very low, the threshing rate would greatly increase with the power consumption increasing, and then reach the maximum; meanwhile the percentage of broken capsule and seeds would increase with the power consumption increasing, thus the difficulty of separating and cleaning would appear and the quality of seeds on harvesting process would be worse, so it is not reasonable to enlarge power consumption for improving the threshing rate. The results showed that the threshing rate of rubbing was99%, the threshing rate of rolling was lower than86%, the threshing rate of impact was less than66%; and the threshing effect of rubbing was better than the other methods when the power consumption per unit rape seed was more than0.5J/g. It was recommended for rape threshing mechanism that rubbing method combined with impact method. So the technologies of thresh tooth combined with the woven screen and materials flowing up along with the axial direction were used in the threshing and separating system.
     (3) A new combined threshing system was designed. The thresh teeth and cutting knives were installed in the header roller to make the conventional header roller have new functions of threshing and cutting; the chain rake conveyor in conventional style was abandoned, and the feeding device of longitude axial threshing roller was connected directly back to the telescopic tooth unit of head roller, thus it would shorten the stage of conveying and simplified the structure of threshing system. In order to conduct the experiments, the longitude axial threshing device and combine threshing device were manufactured to test.
     (4) The process that the materials enter the longitude axial threshing system and move in it was observed and analyzed through the high-speed photography technique and the discrete element analysis method. The results showed that rape was pushed into the threshing system as the parabolic trajectory and take an irregular spiral motion in the threshing system; the axial velocity of rape revealed the approximate pulsating feature, the forces affected on rape came from the intermittent impact between the threshing teeth and the spiral guide plate. The axial speed of rape seed was faster than rape stalk, and the screw pitch of spiral trajectory was longer than rape stalk's as well. The velocities of rape seed and rape stalk were higher in the periods of falling down and impacting than the period of rising up.
     (5)The longitude axial threshing roller was used to conduct the threshing test of ripe rape. Single factor experimental results showed that all factors such as roller speed, spike tooth space, roller screen gap and threshing drum axis tilt angle affect the grain prolapsed ratio. The grain prolapsed ratios has a parabolic relationship with the roller speed, in whi ch the ratio reach the maximum value when the roller speed is771rpm. It has a high valu e when the spike tooth space is100mm,225mm or200mm for front half of it and100mm for back half. It also has a good performance when roller screen gap is25mm or the thres hing drum axis tilt angle is25degree. The distribution of all of the ingredients prolapsed have a regularity that most of the small size extractions such as rapeseeds are in front of the area along the axis of roller while most of the large size extractions such as stem are i n the back area.
引文
1.布瑞克. 我国油菜籽种植面积和产量处于相对高位.2013-01-07. http://www.100ppi.com/news/detai1-20130107-267688. html
    2. 查跃华.新型油菜联合收割机割台的研究[J].农业装备技术,2007,33(6):19-20.
    3. 车刚,万霖,韩红兵,等.小型稻麦联合收割机谷物回弹问题的研究计算机模拟[J].黑龙江八一农垦大学学报,2002,14(3):44-47.
    4. 陈进,周韩,赵湛,等.基于EDEM的振动种盘中水稻种群运动规律研究[J].农业机械学报,2011,42(10):79-83,100.
    5. 陈霓,熊永森,陈德俊,等.联合收获机同轴差速轴流脱离滚筒设计和试验[J].农业机械学报,2010,41(10):67-71.
    6. 陈霓,黄东明,陈德俊,等.风筛式清选装置非均布气流清选原理与试验[J].农业机械学报,2009,40(4):73-77.
    7. 陈志.油菜收获机械化技术的发展机遇[J].农机市场,2008(7):19-24.
    8. 陈志.油菜收获机械化技术进展[J].农机质量与监督,2008(3):9-14.
    9. 陈霓,黄东明,陈德俊,等.风筛式清选装置非均布气流清选原理与试验[J].农业机械学报,2009,40(4):73-77.
    10.陈翠英,王新忠,何增富.谷物联合收获机油菜收获割台的设计[J].农业机械学报,2003,34(5):54-56,60.
    11.陈翠英,王志华,李青林.油菜脱出物物理机械特性及振动筛参数优化[J].农业机械学报,2005,36(3):60-70.
    12.陈德俊,龚永坚,黄东明,等. 履带式全喂人稻麦联合收获机工作装置设计[J].农业机械学报,2007,38(8):82-85.
    13.陈立平,张元清,任卫群等.机械系统动力学分析及ADAMS教程.北京:清华大学出版社.2007
    14.董月亮,李耀明,徐立章.油菜联合收割机割台损失影响因素的试验研究[J].农机化研究,2008(5):109-112.
    15.付刚,董钢.油菜收获机清选装置虚拟样机的建模与仿真实验[J].农机化研究,2006(7):96-98.
    16.韩贺麟.油菜收割机拨禾轮设计要点.第十届全国联合收获机技术发展及市场动态研讨会.天津,2003:46-51.
    17.韩增德,郭键,李耀明,等.纵向双轴流脱离分离装置优化设计与试验[J].农业机械,2009(15):68-70.
    18.韩正晟,粟震霄,魏宏安,等.齿形链式切割器的试验研究[J].农业工程学报,1998,14(2):86-89.
    19.胡俊鹏.油菜三系组合性状与产量相关分析[J].陕西农业科学,2002(5):4-6.
    20.季海清.联合收获机圆筒筛孔板式二次清选装置[J].农业机械学报,2004,35(4):207-208
    21.季海清,曹振东.油菜联合收割机脱粒装置的改进设计[J].江苏农机化,2003(4):12.
    22.姜楠.钉齿式轴流脱离与分离装置参数的试验研究.[硕士学位论文].大庆,八一农垦大学图书馆:2011
    23.蒋恩臣,王立军,刘坤,等.联合收获机惯性分离室内气固两相流数值模拟[J].江苏大学学报:自然科学版,2006,27(3):193-196.
    24.金诚谦,吴崇友.油菜收获技术基础研究现状与展望[J].农机化研究,2010,32(1): 5-9.
    25.金奇志,曲爱丽.《基于ADAMS的RC—5.5型揉草机的建模与仿真》.农机化研究,2008.12
    26.敬志臣,韩正晟,高爱民,等.小区小麦联合收获机清选系统的仿真分析[J].甘肃农业大学学报,2010,45(3):140-144,155.
    27.李杰,阎楚良,杨方飞.基于虚拟样机技术的联合收获机切割机构的仿真[J].农业机械学报,2006,37(10):74-76,135.
    28.李杰,闫楚良,杨方飞.联合收割机振动筛的动态仿真与参数优化[J].吉林大学学报:工学版,2006,36(5):701-704.
    29.李杰,阎楚良,杨方飞.联合收获机数字化建模与关键部件仿真[J].农 业机械学报,2006,37(9):83-85,96.
    30.李杰,阎楚良,杨方飞.纵轴流脱离装置的理论模型与仿真[J].江苏大学学报:自然科学版,2006,27(4):299-302.
    31.李帅,李晔,马履翱,等.基于EDEM对圆形导料溜槽的仿真分析[J].煤矿机械,2012,33(6):71-72.
    32.李洪昌,李耀明,唐忠,等.基于EDEM的振动筛分数值模拟与分析[J].农业工程学报,2011,27(5):117-121.
    33.李洪昌,李耀明,徐立章.联合收割机脱粒分离装置的应用现状及发展研究[J].农机化研究,2008(1):223-225,228.
    34.李家军.油菜脱粒及秸秆切碎机的开发与研究[J].南方农机,2005(1):27-28.
    35.李青林,陈翠英,马成稹.4LYZ-2油菜收获机割台框架有限元模态分析[J].农业机械学报,2005,36(1):54-56,60.
    36.李青林,戴青玲.基于ADAMS油菜联合收获机割刀驱动机构的仿真[J].农机化研究,2009(3):56-58.
    37.李青林,戴青玲.基于ANSYS的割台框架谐响应分析[J].农机化研究,2009(10):28-30,34.
    38.李万英,王明义,吴中民,等.立式割台割晒机前进速度的选择与作业质量关系的探讨[J].农机化研究,2000(4):83-85,88.
    39.李耀明,李洪昌,徐立章,等.短纹杆-板齿式轴流脱离分离装置性能试验[J].农业机械学报,2009,40(7):88-92.
    40.李耀明,李洪昌,徐立章,等.短纹杆-板齿与钉齿脱粒滚筒的脱粒对比试验研究[J].农业工程学报,2008,24(3):139-142.
    41.李耀明,唐忠,李洪昌,等.风筛式清选装置筛面气流场试验[J].农业机械学报,2009,,40(12):80-83.
    42.李耀明,赵湛,陈进,等.风筛式清选装置上物料的非线性运动规律[J].农业工程学报,2007,23(11):142-147.
    43.李耀明,李洪昌,徐立章,等.短纹杆-板齿式轴流脱离分离装置性能试验[J].农业机械学报,2009,40(7):88-92.
    44.李耀明,赵湛,张文斌,等.基于Mean shift的筛面物料颗粒目标运动轨迹跟踪[J].农业工程学报,2009,25(5):119-122.
    45.李耀明,林恒善,陈进,等.基于神经网络的风筛式清选气流场研究[J].农业机械学报,2006,37(7):197-198.
    46.李耀明,赵湛,陈进,等.气吸振动式排种器种盘内种群运动的离散元分析[J].农业机械学报,2009,40(3):56-59,76.
    47.李耀明,丁为民,陈进.梳脱式联合收获机脱粒输送装置自动控制系统[J].农业机械学报,2004,35(5):86-89.
    48.李耀明,周金芝,徐立章,等.水稻复脱分离系统脱粒分离性能的试验[J].江苏大学学报:自然科学版,2005,26(1):1-4.
    49.李耀明,孙夕龙,徐立章.水稻穗头连接力的试验与分析[J].江苏大学学报:自然科学版,2008,29(2):97-100,105.
    50.李耀明,周金芝,徐立章,等.油菜联合收割机脱粒分离装置的试验[J].江苏大学学报:自然科学版,2005,26(4):281-284.
    51.李耀明,徐立章,陆林.油菜脱出物清选性能的试验[J].农业机械学报,2006,37(11):63-66.
    52.李耀明,王智华,徐立章,等.油菜脱出物振动筛分运动分析及试验研究[J].农业工程学报,2007,23(9):111-114.
    53.李耀明,徐立章,杨秀景,等.油菜轴流脱离滚筒性能对比试验[J].农业机械学报,2007,38(8):86-89.
    54.李耀明,董钢,徐立章.油菜籽透筛过程的仿真实验与分析[J].农业机械学报,2007,38(9): 189-190.
    55.李耀明,乔明光,徐立章,等.纵轴流复脱分离装置设计与试验[J].农业机械学报,2009,40(11):50-54.
    56.李耀明,贾毕清,徐立章,等. 纵轴流联合收割机切流脱粒分离装置的研制与试验[J].农业工程学报,2009,25(12):93-96.
    57.李媛媛,孙曙光,林爱琴.凹板间隙对谷物联合收割机作业性能影响的试验研究[J].装备制造技术,2009(3):22-23.
    58.廖娜,黄光群等.《玉米秸秆芯结构建模与径向压缩过程模拟》.农业机械 学报,2011.11
    59.刘庆庭,区颖刚,卿上乐,等.农作物茎秆力学研究[A].中国农业工程学会2005年学术年会论文集[C].2005,5(1):441-446.
    60.刘师多,张利娟,师清翔,等.微型小麦联合收获机旋风分离清选系统研究[J].农业机械学报,2006,37(6):45-48.
    61.刘艳华.湖北油菜种植面积及总产量连续17年居全国第一.2012-06-08.http://ww. amic.agri.gov.cn/nxtwebfreamwork/ztzl.
    62.刘兆朋,谢方平,吴明亮.成熟期油菜茎秆力学特性试验研究[J].农机化研究,2009,2(2):147-149.
    63.卢晏,吴崇友,金诚谦,等.油菜机械化收获方式的选择[J].农机化研究,2008(11):240-242,245.
    64.卢宏宇,王薇,周凤波.4TG-500型白瓜子脱粒机挤搓结构的设计[J].农村牧区机械化,2008(5):22-24.
    65.卢文涛,张东兴,邓志刚.联合收获机脱粒滚筒的PID恒负荷控制[J].农业机械学报,2008,39(5):49-51,55.
    66.马朝兴,李耀明,徐立章.联合收割机谷物流量传感器的现状与分析[J].农机化研究,2008(7):74-76.
    67.毛欣,衣淑娟.轴流脱离、分离机理及仿真研究的发展探讨[J].农机化研究,2007(10):202-205.
    68.毛 欣,衣淑娟.组合式轴流装置脱分空间谷物流密度分布规律的研究[J].黑龙江八—农垦大学学报,2008,20(3):40-42.
    69.毛 欣,衣淑娟.组合式轴流装置谷物流运动分析一基于高速摄像技术[J].农机化研究,2009(2):112-116.
    70.毛欣,衣淑娟.基于fluent的组合式轴流装置板齿处谷物流运动分析.中国农业工程学术年会.2009.
    71.倪军,毛罕平,程秀花.脱粒滚筒自调整模糊控制及VLSI实现技术[J].农业工程学报,2010,26(4):134-138.
    72.倪军,毛罕平,程秀花.基于FPGA的联合收获机脱粒滚筒模糊控制系统[J].农业机械学报,2009,40(7):83-87,92.
    73.乔西铭.小型梳穗收获机收获损失的分析与试验[J].农机化研究,2007(8):103-105.
    74.秦云,赵德安,李发忠,等.基于RBF网络的联合收获机脱粒滚筒恒速控制[J].农业机械学报,2009,40(11):59-63.
    75.邱美田,马建国,刘军.试述谷物收获方法及收获机现状[J].农机使用与维修,2008(6):33.
    76.任文涛,王洪来,崔红光,等.拨禾轮工作中作物回弹的模拟分析[J].沈阳农业大学学报,2003,34(2):121-123.
    77.绍兴农机厂,浙江省机科所.LS140三圆盘联合收割机割台的运动分析[J].科技简报,1976(2):5-11.
    78.申德超,李秉仁,孙来思,等.双风道清选装置在谷物联合收获机上应用[J].农业机械学报,1996,26(4):151-155.
    79.万霖,衣淑娟,马永财.纵置单轴流滚筒脱粒与分离装置功耗性能试验研究[J].黑龙江八一农垦大学学报,2005,17(2):56-58.
    80.王国强,郝万军,王继新.离散单元法及其在EDEM上的实践.西安:西北工业大学出版社.2010
    81.王立军,蒋恩臣,李瑰贤.4ZTL-1800收获机惯性沉降分离室工作机理[J].农业工程学报,2008,24(9):108-110.
    82.王立军,李瑰贤,姜广君.割前摘脱联合收获机惯性沉降分离室能耗研究[J].农机化研究,2009(1):17-19.
    83.王立军,蒋恩臣,李名家.惯性沉降分离室内三维定常气流流动数值计算[J].农业机械学报,2007,38(4):58-61.
    84.王立军,蒋恩臣,孙占峰,等.联合收获机惯性沉降分离室内籽粒运动规律[J].农业机械学报,2007,38(8):90-92,85.
    85.王网山.油菜收获机械化技术初探[J].农业开发与装备,2007,(10):40-41.
    86.王锡波,尹凯航.悬挂式割台仿形机构设计[J].农村牲区机械化,1998(2):32-33.
    87.王志华,陈翠英.基于ADAMS的联合收割机振动筛虚拟设计[J].农业机械 学报,2003,34(4):53-56.
    88.王志华.油菜收获机械化综述.2001收获加工机械学术研讨会.北京,2001:11-15.
    89.魏亨令.谷物收获机改装油菜收获机技巧[J].农机科技推广,2008:43.
    90.魏新华,李耀明,陈进,等.联合收割机工作过程智能监控装置的系统集成[J].农业工程学报,2009,25(增刊2):56-60.
    91.吴彬,汤楚宙,罗海峰.组合式清选风机的试验研究[J].湖南农机,2009,36(3):7-9.
    92.吴崇友,丁为民,石磊,等.油菜分段收获捡拾脱粒机捡拾损失响应面分析[J].农业机械学报,2011,42(8):89-93.
    93.吴崇友,丁为民,张敏,等.油菜分段收获脱粒清选试验[J].农业机械学报,2010,41(8):72-76.
    94.吴福良.多功能油菜联合收获机的研究[D].上海:上海交通大学,2007.
    95.吴福良.多功能油菜联合收获机的现状及发展方向[J].农业装备与车辆工程,2007(4):3-5.
    96.吴福良,刘建政,李长兴.油菜联合收割机的研究[C].农业工程科技创新与建设现代农业(第1分册).中国农业工程会,2005.169-173.
    97.吴丽红.谷物割晒机汇流式割台输送装置的改进探讨[J].内蒙古科技与经济,2001(5):111-112.
    98.吴明亮,官春云,汤楚宙等.油菜茎秆切割力影响因素试验[J].农业工程学报,2009,25(6):141-144.
    99.吴叙田,苏伟中,张勤,等.关于倾斜割台和悬挂仿型机构的设计[J].粮油加工与食品机械,1978:13-17.
    100.谢方平,罗锡文,卢向阳,等.柔性杆齿滚筒脱粒机理[J].农业工程学报,2009,25(8):110-114.
    101.辛福志,郑瑞军,席永忠,等.油菜收割机脱粒分离装置的试验研究[J].农机化研究,2009,31(6):129-131.
    102.徐立章,李耀明,马朝兴,等.4LYB1-2.0型油菜联合收获机主要部 件的设计[J].农业机械学报,2008,39(8):54-57,88.
    103.徐立章,李耀明,王显仁.谷物脱粒损伤的研究进展分析[J].农业工程学报,2009,25(1):303-307.
    104.徐立章,李耀明,马朝兴,等.横轴流双滚筒脱粒分离装置设计与试验[J].农业机械学报,2009,40(11):55-58.
    105.徐立章,李耀明,李洪昌.水稻谷粒脱粒损伤的影响因素分析[J].农业机械学报,2008,39(12):55-59.
    106.徐立章,李耀明,丁林峰.水稻谷粒与脱粒元件碰撞过程的接触力学分析[J].农业工程学报,2008,24(6):146-149.
    107.徐立章,李耀明,张立功,等.轴流式脱粒清选装置试验台的设计[J].农业机械学报,2007,38(12):85-88.
    108.徐立章,李耀明,李洪昌,等.纵轴流脱离分离一清选试验台设计[J].农业机械学报,2009,40(12):76-79,134.
    109.徐立章,李耀明,马朝兴.梳脱式联合收割机新型割台的研究设计[J].农机化研究,2002(3):75-77.
    110.徐立章.梳脱式联合收割机复脱装置的仿真及试验研究.[硕士学位论文]镇江,江苏大学图书馆:2003
    111.许江平,李耀明,徐立章.MATLAB在脱粒装置试验数据分析中的应用[J].农机化研究,2007(2):189-190,206.
    112.许江平.油菜脱粒分离装置的研究及参数优化[D].镇江:江苏大学,2007.
    113.许绮川,周勇.关于加快发展油菜收获机械化的思考[J].中国农机化,2008(2):54-56.
    114.杨松,廖庆喜,陈立,等.2BFQ-6型油菜精量联合直播机播种油菜的田间植株分布规律[J].农业工程学报,2011,27(11):23-28.
    115.杨方飞,阎楚良.谷物在纵轴流滚筒脱粒空间中的运动状态分析[J].农业机械学报,2008,39(11):48-50,25.
    116.杨秀景.油菜联合收割机脱粒分离系统实验研究及系统优化[D].镇江:江苏大学,2006.
    117.杨亚峰,刘丽,徐茂志,等.卷翼型风扇清选装置在联合收割机上的应用[J].现代化农业,2009(9):39.
    118.杨亚敏,赵方,段德荣,等.基于EDEM的立轴破碎机转子对物料粒径加速效果的研究[J].装备制造技术,2012(8):31-33.
    119.杨占臣,孙亮,张宇.世界油菜产业现状及中国的发展对策.2013-06-23. http://www.cdnj.gov.cn/wto/detail.php?id=1056339832
    120.姚宝刚.现代农业与农业机械化发展[J].农业机械学报,2006,37(1):79-82.
    121.衣淑娟.钉齿式双滚筒轴流脱离与分离装置的试验研究[J].机械设计与制造,2006(5):88-89.
    122.衣淑娟,陶桂香,毛欣.两种轴流脱离分离装置脱出物分布规律对比试验研究[J].农业工程学报,2008,24(6):154-156.
    123.衣淑娟,蒋恩臣.轴流脱离与分离装置脱粒过程的高速摄像分析[J].农业机械学报,2008,39(5):52-55.
    124.衣淑娟,陶桂香,毛欣.组合式轴流脱分装置脱出物分布规律的试验研究.中国农业机械学会2008年学术年会论文集.2008:861-866
    125.张辉,张永震.颗粒力学仿真软件EDEM简要介绍[J].CAD/CAM与制造业信息化,2008(12):48-49.
    126.张敏,吴崇友,卢晏,等.油菜分段收获脱粒分离功率消耗试验研究[J].中国农业大学学报2010,15(4):120-123.
    127.张伟,衣淑娟.轴流脱离与分离装置数学模型的建立与仿真[J].农机化研究,2007(7):40-42,47.
    128.张倩,李骅,尹文庆,等.基于ADAMS的脱出物在气流场中的运动仿真[J].中国制造业信息化,2008,37(13):69-72.
    129.张会娟,王海鸥,赵治永,等.我国油菜种子加工技术[J].中国种业,2009(01): 34-35.
    130.张认成,桑正中.联合收割机轴流脱离过程的动力学仿真[J].农业机械学报,2001,32(3):58-60,47.
    131.张文斌,李耀明,徐立章,等.应用高速摄像技术研究清选筛面上物料的运动[J].农机化研究,2008(5):21-24.
    132.赵匀.试论联合收获机的脱粒滚筒的动力平衡问题[J].农业机械学报,1984(4):34-45.
    133.赵春花,韩正晟,曹致中.育种小区手扶气吸梳脱清选式种子联合收获机的研制[J].中国农机化,2010(4):64-67.
    134.郑少华,姜奉华.试验设计与数据处理.北京:中国建材工业出版社.2004
    135.周金芝.油菜联合收割机脱粒分离系统的试验及计算机模拟分析[D].镇江:江苏大学,2005.
    136.周贤龙,朱瑞祥,周贤娟,等.基于传感器技术的谷物联合收获机清选损失监测系统[J].农机化研究,2010(2):85-87.
    137.朱纪春.油菜收获机械化问题研究[J].工业技术,2010(2):62-63.
    138.宗锦耀.抓住机遇克难攻坚大力推进油菜生产机械化[N].中国农机化导报,2007,22(12).
    139. Anderson M D, Burns J L, Bush M K, et al. Remote adjustment mechanism for a combine harvester cleaning element:U.S. Patent 6,632, 136[P].2003-10-14.
    140. Behnke W, Dammann M. Method of controlling a threshing mechanism of a combine harvester:U. S. Patent 7,001,267[P].2006-2-21.
    141. Boac J M, Casada M E, Maghirang R G, et al.3-D and quasi-2-D discrete element modeling of grain commingling in a bucket elevator boot system[J]. Transactions of the AS ABE,2012,55(2):659-672.
    142. Boac J M, Casada M E, Maghirang R G, et al. Material and interaction properties of selected grains and oilseeds for modeling discrete particles[J]. Trans. ASABE,2010,53(4):1201-1216.
    143. Chung Y C, Liao H H, Hsiau S S. Convection behavior of non-spherical particles in a vibrating bed:Discrete element modeling and experimental validation[J]. Powder Technology,2013,237:53-66.
    144. Craessaerts G, de Baerdemaeker J, Missotten B, et al. Fuzzy control of the cleaning process on a combine harvester[J]. Biosystems Engineering,2010, 106(2):103-111.
    145. Dhont A G J, Bossuyt J, Duquesne F R G, et al. Grain cleaning system for a combine harvester:U. S. Patent 7,553,226[P].2009-6-30.
    146.Eggenhaus G, Jeppe E, Strickmann D, et al. Device and method for adjustment of sieve openings in a cleaning mechanism for a combine harvester: U. S. Patent 6,468,154[P].2002-10-22.
    147. Fernando S, Hanna M, Mesquita C. Soybean threshing mechanism development and testing[J]. Transactions of the ASAE,2004,47(3): 599-605.
    148.Gebrehiwot M G, De Baerdemaeker J, Baelmans M. Effect of a cross-flow opening on the performance of a centrifugal fan in a combine harvester: Computational and experimental study[J]. Biosystems Engineering,2010, 105(2):247-256.
    149.Gebrehiwot M G, De Baerdemaeker J, Baelmans M. Numerical and experimental study of a cross-flow fan for combine cleaning shoes[J]. Biosystems Engineering,2010,106(4):448-457.
    150.Gonzalez-Montellano C, Ramirez A, Gallego E, et al. Discrete Element Modeling of a 3D Scale Silo With Hopper[C].2010 ASABE Annual International Meeting, Pittsburgh,2010:1-13.
    151.Gryspeerdt J G T, Van Queckelberge E P J, Jonckheere M R M, et al. Cleaning means for a combine harvester:U. S. Patent 6,056, 639[P].2000-5-2.
    152.Gryspeerdt J G T, Van Queckelberge E P J, Jonckheere M R M, et al. Grain pan for combine harvester having horizontal pan area:U. S. Patent 6,238, 285 [P].2001-5-29.
    153.Gryspeerdt J G T. Discharge means for a threshing and separating unit in a combine harvester:U. S. Patent 6,500,063[P].2002-12-31.
    154. Haffar I, Singh K B, Birbari W. Assessment of chickpea (Cicer Arietinum) grain quality and losses in direct combine harvesting[J]. Transactions of the ASAE,1991,34(1):9-13.
    155.Hobson R N, Bruce D M. PM—Power and Machinery:Seed Loss when Cutting a Standing Crop of Oilseed Rape with Two Types of Combine Harvester Header[J]. Biosystems Engineering,2002,81(3):281-286.
    156.Jonckheere M R M, Dhont A G J, Bossuyt J. Device for adjusting the width of a sieve mesh on combine harvesters:U.S. Patent 7,029, 392[P].2006-4-18.
    157.Jonckheere M R M, Dhont A G J, Bossuyt J. Device for adjusting the width of a sieve opening on combine harvesters:U.S. Patent 6,953, 397[P].2005-10-11.
    158.Khoei A R, DorMohammadi H. A three-invariant cap plasticity with isotropic-kinematic hardening rule for powder materials:Model assessment and parameter calibration[J]. Computational Materials Science,2007,41(1): 1-12.
    159.Kumhala F, Kviz Z, Masek J, et al. The measurement of plant residues distribution quality after harvest by conventional and axial combine harvesters[J]. Plant, Soil and Environment-UZPI,2005,51.
    160.Mesquita C M, Hanna M A, Costa N P. New harvesting device for soybeans[J]. Transactions of the AS AE,2005,48(1):55-62.
    161.Mesquita C M, Hanna M A, Costa N P. Self-propelled prototype soybean harvester[J]. Transactions of the AS AE,2005,48(4):1301-1310.
    162.Mesquita C M, Hanna M A. Physical and mechanical properties of soybean crops[J]. Transactions of the ASAE,1995,38(6):1655-1658.
    163.Mesquita C M, Hanna M A. Soybean threshing mechanics:I. Frictional rubbing by flat belts[J]. Transactions of ASAE,1993,36(2).
    164.Mesquita C M, Hanna M A. Soybean threshing mechanics: II. Impact. [J]. Transactions of the ASAE;(United States),1993,36(2).
    165.Montes J M, Paul C, Melchinger A E. Quality assessment of rapeseed accessions by means of near-infrared spectroscopy on combine harvesters[J]. Plant breeding,2007,126(3):329-330.
    166. Pope G, DowC, Bruns A. Tailings re-thresher deflector.-U. S. Patent 7,654,892[P].2010-2-2.
    167. Price J S, Hobson R N, Neale M A, et al. Seed losses in commercial harvesting of oilseed rape[J]. Journal of Agricultural Engineering Research, 1996,65(3):183-191.
    168. Reitz P, Kutzbach H D. Investigations on a particular yield mapping system for combine harvesters [J]. Computers and Electronics in Agriculture,1996, 14(2):137-150.
    169. Song Wang, Fang Zhao and Derong Duan. Research of Vertical Shaft Impact Crusher Rotor Channels'Number Based on EDEM.2011 International Conference on Mechanical, Industrial, and Manufacturing Engineering, Jinan,2011:253-256.
    170. Streicher E A, Stroshine R L, Krutz G W, et al. Cleaning shoe air velocities in combine harvesting of wheat[J]. Transactions of the AS ABE,1986,29(4): 923-928.
    171.Tado C J M, Wacker P, Kutzbach H D, et al. Development of stripper harvesters:A review[J]. Journal of agricultural engineering research,1998, 71(2):103-112.
    172. Vej asit A, Salokhe V M. Machine-Crop Parameters Affecting Performance of an Axial-Flow Soya Bean Thresher[J]. Ama, Agricultural Mechanization in Asia, Africa & Latin America,2006,37(3):32.
    173.Voicu G, Casandroiu T, Stan G. Using the dimensional analysis for a mathematical model to predict the seeds losses at the cleaning system of the cereals harvesting combines, UPB Sci[J]. Bull., Series D:Mechanical Engineering,2007,69(4):29-39.
    174. Youssef F Sharobeem. Development of a special combine header for harvesting canola[C].2008 AS ABE Annual International Meeting, Providence,2008: 1-11.
    175.Behroozi-Lar M, Huang B K. Design and development of chickpea combine[J]. Agricultural Mechanization In Asia, Africa and Latin America, 2002,33(1):35-38.
    176.Blackmore S. The interpretation of trends from multiple yield maps[J]. Computers and electronics in agriculture,2000,26(1):37-51.
    177. Bruce D M, Hobson R N, Morgan C L, et al. PM—Power and Machinery: Threshability of Shatter-resistant Seed Pods in Oilseed Rape[J]. Journal of agricultural engineering research,2001,80(4):343-350.
    178.Domeika R, Jasinskas A, Steponacicius D, et al. The estimation methods of oilseed rape harvesting losses[J]. Agronomy Research,2008,6:191-198.
    179.Farley H M. Combine harvester power management control. U. S. Patent Application 12/072,312[P].2008-2-26.
    180.Huynh V.M. et al. Threshing and separating process-A mathematical model. Transaction of the ASAE.1982,25(l):65-73
    181.Trollope J.R. A mathematical model of the threshing process in a convention combine-thresher [J]. Argric Engng Res.1982(2);119-130
    182.Visagie A, Barrelmeyer T. Blower for combine harvesters having a separation
    unit. U. S. Patent 6558252[P].2003-5-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700