用户名: 密码: 验证码:
甘蓝型油菜隐性细胞核雄性不育基因ms3的精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
9012AB是甘蓝型油菜隐性细胞核不育材料中的一种,其具有败育彻底、不育性稳定、恢复源广泛及无不良胞质效应等特点。遗传分析研究表明,该不育材料的育性受两对隐性重叠不育基因(ms3ms3、ms4ms4)和一对隐性上位抑制基因(rfrf)互作控制;两对不育基因隐性纯合时可导致雄性不育,而上位抑制基因隐性纯合时则可抑制不育基因的表达,使育性恢复正常(陈凤祥等,1998)。依照此遗传模式,9012AB不育系可以实现三系配套,从而解决核不育制种时需拔除50%可育株的问题。因此,近年来该系统引起了研究者的广泛关注;目前,利用该系统的育种工作已取得突破,对其不育控制机理的初步研究也已展开。以9012AB为主要研究材料,柯丽萍(2005)已将其中一个不育基因(ms3)初步定位在0.5cM的遗传区间。以此为基础,本研究进一步开展了隐性核不育基因ms3的精细定位研究,取得的主要结果和结论如下:
     1.以9012AB近等基因系为材料,应用重组单株BSA法,结合AFLP技术,继续筛选了2048对引物组合,获得了21个与目标基因更为紧密连锁的AFLP分子标记。其中有2个标记(AH15、AH17)在所用群体中与目标基因共分离,14个标记(AH1、AH2、AH3、AH4、AH6、AH8、AH9、AH10,AH11、AH13,AH18、AH19,AH20、AH21)位于目标基因的一侧,5个标记(AH5、AH7、AH12、AH14、AH16)位于目标基因的另一侧。两侧最近分子标记在1506株的近等基因系群体中将ms3基因限定在0.14cM的遗传区间.
     2.将AFLP标记AH2、AH6、AH15、AH9、AH16和AH22、AH23(王贵春博士提供)成功转化为稳定的SCAR标记(依次命名为SW0、SW1、SW2、SW3、SW4、SW5、SW6)。分别利用6,407、4,768和8,041个单株的9012AB分离群进一步分析上述SCAR标记与ms3基因的连锁关系。结果显示SCAR标记SW2、SW5、SW6依然与目标基因共分离,两侧最近标记SW1和SW4与目标基因间的遗传距离均为0.029cM,ms3基因被界定在0.058cM的遗传区段,实现了目标基因的精细遗传定位。
     3.Blastn分析表明:标记AH2、AH6、AH9、AHl5、AH16、AH22、AH23序列及其侧翼序列与拟南芥第5染色体上的部分序列具有较高的同源性,且标记在甘蓝型油菜基因组中的排列顺序与其同源区在拟南芥基因组中的排列顺序基本一致,覆盖拟南芥同源区约576kb的物理距离。据此推断,甘蓝型油菜中ms3基因所在区段在拟南芥基因组中存在一个共线性较好的区域。
     4.根据拟南芥同源区中已定位的油菜、甘蓝和白菜的ESTs、GSSs序列及拟南芥的基因组序列,设计引物开发出了6个与ms3基因紧密连锁的ACGM标记(AR23、AR44、AR45、AR48、AR52、AR53)。群体验证及重组单株分析发现.AR23与SW4同侧且与其共分离,另外5个ACGM标记与SW1同侧且与目标位点均有唯一的交换单株;至此,目标基因被进一步缩小至0.034cM的遗传范围内。
     5.以目标基因两侧标记AH9、AH16的侧翼序列,及共分离标记AH15的SCAR标记SW2和AH17的侧翼序列为探针,筛选Tapidor BAC文库,得到86个具有强杂交信号的BAC克隆。PCR分析从中鉴定出14个阳性克隆,但它们之间并不能形成一个完整的跨叠克隆群。
     6.以上述阳性克隆中BAC克隆o的质粒酶切产物为探针,再次筛选TapidorBAC文库,得到48个阳性克隆。PCR检测表明与BAC克隆o可能存在物理重叠关系的克隆为7个,且它们与上述14个克隆可以形成覆盖ms3区段的完整克隆重叠群。
     7.对21个阳性BAC质粒的Southern杂交分析进一步证明了克隆之间的相互重叠关系。结合PCR分析的结果,发现ms3区间至少可由6个BAC克隆构成一个完整的重叠群。利用亚克隆方法构建了一个可能含有目标基因的BAC克隆的测序文库,经测序已经获得了该克隆约150kb的序列。
9012AB is one type of the recessive genic male sterility(RGMS) in Brassica napus L.It has some advantages:such as complete and stable male sterility,widely spread of restorers and no negative cytoplasmic effect on yield as CMS might do.Genetic analysis indicated that the male sterility of 9012AB is controlled by two paris of recessive duplicate sterile genes(ms3ms3 and ms4ms4) interacting with one pair of a recessive epistatic inhibitor gene(rfrf)(Chen et al.,1998).Homozygous recessive sterile gene at both loci can result in male sterility,but homozygousity at the rf locus(rfrf) inhibits the expression of the recessive male sterility trait and restores the male fertility of plants. Based on this genetic model,a three-line system for hybrid seed production can be developed in this RGMS system.The three-line system can resolve the difficulty that 50%male fertile plants must be removed from the female lines during hybrid seed production.So,many researchers have put their eyes on the system in recent years.A three-line hybrid production on this RGMS system has been well-documented and the study about molecular mechanism has been started.Previous study had mapped the ms3 gene of 9012AB to a region of 0.5cM(Ke et al.,2005).In this study,9012AB was used to further fine map the ms3 gene based on the result above.Main results of the present study are as follows:
     1.AFLP technology combined with bulked segregant analysis(BSA) of recombinants was used to identify the genetic markers more tightly linked to ms3 in the 9012AB NIL population.Additional 2048 primer combinations were screened and 21 AFLP markers were obtained.Among them,2 markers(AH15 and AH17) co-segregated with the target gene in the tested population,14 markers(AH1、AH2、AH3、AH4、AH6、AH8、AH9、AH10、AH11、AH13、AH18、AH19、AH20、AH21) located at one side of the target locus,and other 5 markers(AH5、AH7、AH12、AH14、AH16) located at the other side of the target locus.The ms3 gene was mapped to a region of 0.14cM by the nearest flanking markers in a NIL population of 1506 plants.
     2.Seven AFLP markers(AH2,AH6,AH15,AH9,AH16,AH2 and AH23) were converted into SCAR markers successfully(designated as SW0,SW1,SW2,SW3,SW4, SW5 and SW6).These SCAR markers were used to analysis in three populations derived from 9012AB NIL including 6,407;4,768 and 8,041 individuals,respectively. As a result,three SCAR markers(SW2,SW5 and SW6) still co-segregated with the target gene;the ms3 gene was mapped between the nearest SCAR markers SW1 and SW4 with the distance of 0.029 cM each.Then the ms3 gene was delimited in a region of 0.058cM.
     3.BLASTn analysis of seven markers' sequences above and their flanking squences on NCBI website can identify many homologues,most of which distribute on Arabidopsis chromosome v.And the order of their homologous loci in Arabidopsis chromosome v is the same as the marker loci in linkage map in B.napus;the homologous region spanning a physical distance of about 576kb in Arabidopsis chromosome v.The result of alignment above indicates that there is a good collinearity between the region flanking ms3 and Arabidopsis homologues.
     4.Specific PCR primers developed from the published EST and GSS of B.napus,B. rapa and B.oleracea which are comparatively located in the Arabidopsis syntenic region and Arabidopsis genomic sequences.Six ACGM markers which more tightly linked to ms3 locus were obtained(designated as AR23,AR44,AR45,AR48,AR52 and AR53). Subsequently,these ACGM markers were used to analysis in a small size population and recombinants derived from 9012AB NIL.As a result,AR23 cosegregated with the marker SW4 and owned the same recombinants;the other five ACGM markers shared only one recombinants and located at the same side with the marker SW1.The target gene was further delimited in a region of 0.034cM.
     5.Four probes(SW2 and flanking squences of AH9,AH16 and AH17) screen the Tapidor BAC library,and 86 BAC clones were obtained.14 positive BAC clones were identified by primers from probes.However,the 14 positive BAC clones can not construct a whole contigs spanning ms3 gene region.
     6.Based on the result above,the probe(o BAC clone digested with HindⅢ) was used to further screen the Tapidor BAC library,and 48 positive BAC clones were obtained.7 positive BAC clones which could be overlap with o BAC were identified by PCR analysis.Then,an overlap contigs of ms3 genomic region were constucted by the 7 positive BACs and 14 positive BACs obtained above.
     7.The BAC contigs covering the ms3 region was further confirmed by Southern hybridization of 21 BACs digested with restrction enzymes.Combining the PCR analysis with Southern analysis,the physical map of the ms3 gene region including 6 BACs at least was identified.Subsequently,a sequenced library which could be contains the target gene was constucted by subclone method.Now,about 150kb sequences were obtained from the subclone library.
引文
1.王文明,周永力,江光怀,马伯军,陈学伟,章琦,朱立煌,翟文学.水稻抗白叶枯病基因Xa-4的精细定位及其共分离分子标记.科学通报,2000,45:1067-1071
    2.王军,吴书俊,周勇,周丽慧,徐洁芬,胡静,方云霞,顾铭洪,梁国华.水稻早衰叶突变体基因psl1的遗传分析和精细定位.科学通报,2006,51(20):2387-2392
    3.王泽立,王鲁昕,戴景瑞,王斌,李新征.运用近等基因系(NIL)、AFLP、RFLP 和SCAR标记对玉米S组育性恢复基因(Rf3)的研究.遗传学报,2001,28(5):465-470
    4.王泽立,戴景瑞,王斌.植物基因的图位克隆.生物技术通报,2000,(4):21-27
    5.王贵春.甘蓝型油菜隐性细胞核雄性不育两型系9012AB雄性不育基因分子标记的开发.[D].华中农业大学,2007
    6.王彩霞,舒庆尧.水稻紫色种皮基因Pb的精细定位与候选基因分析.科学通报,2007,52(21):2517-2523
    7.尹小燕,王庆华,杨继良,金德敏,王飞,王斌,张举仁.玉米大斑病抗性基因Ht2的精细定位.科学通报,2002,47(23):1811-1814
    8.龙欢,姚家玲,涂金星.3种甘蓝型油菜雄性不育系花药发育的细胞学研究.华中农业大学学报,2005,6:570-575
    9.刘仁虎,孟金陵.Mapdraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317-321
    10.孙超才,王伟荣,李延莉,周熙荣,钱小芳.甘蓝型双低隐性核不育杂种“沪油杂2号”的选育.上海农业学报,2005,21:1-3
    11.孙超才,方光华,赵华,王伟荣,钱小芳,李延莉.甘蓝型油菜(Brassica napua L.)隐性核不育两型系22118AB的基因型分析及利用途径探讨.上海农业学报,1997,13(1):11-15
    12.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型双低隐性核不育杂交种沪油杂1号的选育.中国油料作物学报,2004a,26(1):63-65
    13.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型油菜隐性核不育系 20118A的遗传与利用探讨.中国油料作物学报,2002,24(4):1-4
    14.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.隐性核不育油菜两型系20118AB 的遗传与利用.上海农业学报,2004b,20(1):30-32
    15.李文涛,曾瑞珍,张泽民,丁效华,张桂权.水稻F1花粉不育基因座S-b的精细定位.科学通报,2006,51(4):404-408
    16.杨存义,陈忠正,庄楚雄,梅曼彤,刘耀光.水稻籼粳杂种不育基因座Sc的遗传图和物理图精细定位.科学通报,2004,49(13):1273-1277
    17.杨光圣,瞿波,傅廷栋.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学观察.华中农业大学学报,1999,18(6):520-523
    18.李景娟,张正斌,李魏强,徐萍.六倍体小麦基因克隆方法研究进展.麦类作物学报,2007,27(2):349-353
    19.李媛媛.利用功能分子标记分析甘蓝型油菜产量相关性状QTLs及其杂种优势.[D].华中农业大学,2006
    20.李德谋,侯磊,罗小英,裴炎,杨光伟.甘蓝型油菜隐性核不育两用系S45AB 中与MS2Bnap基因同源片段的克隆及序列分析.作物学报,2002,28(1):1-5
    21.宋来强.甘蓝型油菜显性细胞核雄性不育的遗传与应用模式.[D].华中农业大学,2005
    22.陆青.水稻光敏雄性核不育基因pms3的精细定位.[D].华中农业大学,2005
    23.陈大伦,张瑞茂.甘监型油菜隐性细胞核雄性不育系118A的发现与选育.贵州农业科学,2006,34(6):5-7
    24.陈凤祥,胡宝成,李成,李强生,张曼琳.甘蓝型油菜隐性细胞核雄性不育完全保持系选育成功.中国农业科学,1995,28(5):94-95
    25.陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24(4):431-438
    26.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新,李成,陈维生.甘蓝型油菜隐性上位互作核不育双低杂交种皖油14号的选育.中国油料作物学报,2003,25(1):63-65
    27.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新.甘蓝型油菜隐性上位互作核不育双低杂交种“皖油18”的选育.安徽农业科学,2002,30(4):535-537
    28.陈凤祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.见:全 国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报(A),1993,(2):20-25
    29.范方军,樊叶杨,杜景红,庄杰云.水稻色素原基因C的精细定位.中国水稻科学,2007,21(5):454-458
    30.卓宇红,彭武生,祁怀风.甘蓝型油菜核不育材料821A的遗传研究与利用.种子,1999,(4):23-26
    31.易斌.甘蓝型油菜隐性核不育基因Bnms1的精细定位和克隆.[D].武汉:华中农业大学,2007
    32.柯丽萍.甘蓝型隐性细胞核雄性不育的基因定位.[D].华中农业大学,2005
    33.侯国佐,王华,张瑞茂.甘蓝型油菜细胞核雄性不育材料117A的遗传研究.中国油料,1990,(2):7-10
    34.姜立杰,杨英军,张晓明.桃果实白肉/黄肉性状的RAPD标记向SCAR标记的转化研究.果树学报,2005,22(5):458-461
    35.洪登峰.甘蓝型油菜显性细胞核雄性不育基因Ms/Mf的定位.[D].华中农业大学,2006
    36.姚雪琴.芸薹属A、C基因组及拟南芥BnMs候选区域的共线性比较.[M].华中农业大学,2007
    37.贺华良.甘蓝型油菜细胞核雄性不育的基因表达研究.[M].武汉:华中农业大学,2003
    38.贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10
    39.钱前,李云海,曾大力,腾胜,汪政科,李学勇,董志刚,戴宁,孙磊,李家洋.水稻脆性突变体的分离及其基因定位.科学通报,2001,46(15):1273-1276
    40.高玲.水稻长水稻长护颖突变体基因的图位克隆.[M].西北农林科技大学,2005
    41.高振宇,曾大力,崔霞,周奕华,颜美仙,黄大年,李家洋,钱前.水稻稻米糊化温度控制基因ALK的图位克隆及其序列分析.中国科学(C缉),2003,33(6):481-487
    42.涂金星,郑用琏.甘蓝型油菜核不育材料育性基因的RAPD标记.华中农业大学学报,1997,16(2):112-117
    43.涂金星,傅廷栋,郑用琏.甘蓝型油菜隐性核不育材料90-2441A的遗传及其等 位性分析.华中农业大学学报,1997,16:255-258
    44.黄邦全,罗鹏,吴书惠.甘蓝型油菜雄性不育材料S90-8-7的获得及细胞学研究.湖北大学学报(自然科学版),2000,22(2):182-184
    45.黄泽素,王通强,代文东,杨晓容,李德珍.优质甘蓝型油菜不育系黔黄303AB 的育性遗传研究.贵州农业科学,2003,31(2):3-5
    46.梁国华,曹小迎,随炯明,赵翔强,严长杰,裔传灯,顾铭洪.水稻半矮秆基因sd-g的精细定位.科学通报,2004,49(8):778-783
    47.程勇.甘蓝型油菜显性核不育基因的AFLP标记及品种(系)的SSR指纹图谱研究.[M].北京:中国农业科学院,2005
    48.蒙大庆,袁代斌,李芝凡,蒲定福,胥岚.甘蓝型油菜核不育系绵9AB-1不育性的遗传规律研究及初步应用.四川农业大学学报,2002,20(4):328-329,353
    49.蔺兴武,吴建国,石春海.远缘杂交油菜核不育系的创建及其细胞学和形态学研究.遗传,2005,27(3):403-409
    50.樊云芳,胡胜武,懂彩华,郭学兰,刘胜毅.一种甘蓝型油菜双隐形细胞核雄性不育的细胞学观察.中国油料作物学报,2006,4:403-407
    51.潘涛,曾凡亚,吴书慧,赵云.甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究.中国油料,1988,(3):5-8
    52.魏新燕,杨文香,刘大群.150个小麦品种(系)抗叶锈基因Lr35分子检测.中国农业科学,2004,37(12):1951-1954
    53.Admas M D,Kelley J M,Gccayne J D.Complementary DNA sequencing:expressed sequence tags and human genome project.Science,1991,252(5013):1651-1656
    54.Thomas C M,Vos P,Zabeau M,Jones D A,Norcott K A,Chadwick B P,Jones J D.Identifiacation of amplified restriction fragment polymorphism(AFLP) markers linked to the tomato Cf-9 for resistance to Cladosporium fulvum.Plant J,1995,8(5):785-794
    55.Arondel V,Lemieux B,Hwang I,Gibson S,Goodman H M,Somerville C R.Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopis.Science,1992,258:1353-1355
    56.Ballvora A,Schornack S,Baker B J,Ganal M,Bonas U,Lahaye T.Chromosome landing at the tomato Bs4 locus.Mol Genet Genomics,2001,266:639-645
    57.Bennet M D,Leitch I J.Nuclear DNA amounts in angiosperms.Ann Bot,1995,76: 113-176
    
    58. Bennetzen J L. Structure and evolution of angiosperm nuclear genomes. Curr Opin Plant Biol, 1998,1:103-108
    
    59. Bentolila S, Alfonson A A, Hanson M R. A pentatricopeptide repeat-containing gene restorers fertility to cytoplasmic male-sterile plants. PANS, 2002, 99(16): 10887-10892
    
    60. Bentolila S, Hanson M R. Identification of a BIBAC clone that co-segregates with the petunia restorer of fertility (Rf) gene. Genetics, 2001,266(2): 223-230
    
    61. Bentolila S, Zethof J, Gerats T, Hanson M R. Locating the petunia Rf gene on a 650-kb DNA fragment. Thero Appl Genet, 1998,96: 980-988
    
    62. Bradeen J M, Simon P W. Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, co-dominant, PCR-based marker form. Theor Appl Genet, 1998, 97:960-967
    
    63. Brown G G, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J F, Cheung WY, Landry B S. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatrico peptide repeats. Plant J, 2003, 35: 262-272
    
    64. Brunei D, Froger N, Pelletier G Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome, 1999,42: 387-402
    
    65. Brunner S, Keller B, Feuillet C. Molecular mapping of the Rph7.g leaf rust resistance gene in barley(Hordeum vulgare L) Them Appl Genet, 2000,101: 783-788
    
    66. Bryan G T, Wu K S, Farrall L, Jia Y L, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistance and susceptible alleles of the rice blast resistance gene Pi-ta. Plant J, 2000, 12: 2033-2045
    
    67. Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van Daelen R, Van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695-705
    
    68. Casselman A, Vrebalov J, Conner J A, Singhal A, Giovannoni J, Nasrallah M E, Nasrallah J B. Determining the physical limits of the Brassica S locus by recombinational analysis. Plant Cell, 2000, 12: 23-33
    
    69. Cavell A C, Lydiate D C, Parkin I A P, Dean C, Trick M. Colinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome, 1998,41: 62-69
    
    70. Chen S, Wang L, Que Z, Pan R, Pan Q. Genetic and physical mapping of Pi37(t), a new gene conferring resistance to rice blast in the famous cultivar St No. 1. Them Appl Genet, 2005, 111:1563-1570
    
    71. Chu Z H, Fu B, Yang H, Li Z, Zhang Q, Wang S. Targeting the complete recessive gene, xal3, for bacterial blight resistance to a 14.8kb DNA fragment in rice. Thero Appl Genet, 2006,112: 455-461
    
    72. Churchill G A, Giovannoni J J, Tanksley S D. Pooled-sampling makes high-resolution mapping practical with DNA markers. Proc Natl Acad Sci, 1993, 90(1): 16-20
    
    73. Desloire S, Gherbi H, Wassila L, Marhadour S, Clouet LC, Falentin C, Giancola V. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide repeat protein family. EMBO J.2003, vol4: 588-596
    
    74. Dixon M S, Jones D A, Hatzixanthis K, Ganal M W, Tanksley S D, Jones J D. High-resolution mapping of the physical location of the tomato Cf-2 gene. Mol Plant Microbe Interact, 1995, 8(2): 200-206
    
    75. Dong N V, Subudhi P K, Luong P N.Quang V D,Quy V D, Zheng H G, Wang B, Nguyen H T. Molecular mapping of a rice gene conditioning thermosenstive genic male sterility using AFLP, RFLP and SSR techniques. Thero Appl Genet, 2000,100: 727-734
    
    76. Faris J D, Fellers J P, Brooks S A, Gill B S. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics, 2003,164: 311-321
    
    77. Feng Q, Zhang Y, Hao P. Sequence and analysis of rice chromosome 4. Nature, 2002, 420(6913): 316-320
    
    78. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. PNAS,2003,100(25): 15253-15258
    
    79. Formanova N, Li X Q, Ferrie A M R, Depauw M, Keller W A, Landry B, Brown G G Towards positional cloning in Brassica napus: generation and analysis of doubled haploid B. rapa possessing the B. napus pol CMS and Rfp nuclear restorer gene. Plant Molecular Biology, 2006,61: 269-281
    
    80. Furmann M, Barret P, Froger C, Baron F, Chariot R, Brunei D. From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic marker (ACGM) for construction of a gene map. Theor Appl Genet, 2002,105: 1196-1206
    
    81. Gale M D, Devos K M. Comparative genetics in the grasses. Proc Natl Acad Sci USA, 1998,95:1971-1974.
    
    82. Garcia G M, Stalker H T, Shroeder E, Kochert G A. Identification of RAPD, SCAR and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii to A. hypogaea. Genome, 1996,39: 836-845
    
    83. Giancola S, Marhadour S, Desloire S, Clouet V, Laloui W, Falentin C, Pelletire G, Renard M, Bendahmane A, Delourme R, Buder F. Characterization of a radish introgression carrying the Ogura fertility restorer gene Rfo in rapeseed, using the Arabidopsis genome sequence and radish genetic mapping. Theor Appl Genet, 2002. 105: 1196-1296
    
    84. Giraudat J, Hauge B M, Valon C, Smalle J, Parcy F, Goodman H M. Isolation of the Arabidopsis ABB gene by positional cloning. Plant Cell, 1992,4: 1251-1261
    
    85. Goffs A, Ricke D, Lan T H. Adraft sequence of the rice genome (Oryza sativa L.ssp. japonica). Science, 2002, 206(5565): 92-100
    
    86. H S, Zhu L H. Identification and fine mapping of a mutant gene for palealess spikeletin rice. Planta, 2005,221: 222-230
    
    87. He J P, Ke L P, Hong D F, Xie Y Z, Wang G C, Liu P W, Yang G S. Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP and Arabidopsis-derived PCR markers. Theor Appl Genet, 2008(on line first)
    
    88. Hodge R, Paul W, Draper J. Cold plaque screening: a simple technique for isolation of low abundance, differentially expressed transcripts from conventional cDNA libraries. Plant J, 1997, (2): 257-260
    
    89. Hong D F, Liu J, Yang G S, He Q B. Development and characterization of SCAR markers associated with a dominant genic male sterility in rapeseed. Plant Breeding, 2008, 127(1): 69-73
    
    90. Hong D F, Wan L L, Liu P W, Yang G S, He Q B. AFLP and SCAR makers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed (Brassica napus L). Euphytica, 2006, 151: 401-409
    
    91. Huang L, Brooks S A, Li W L, Fellers J P, Trick H N, Gill B S. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics, 2003, 164: 655-664
    92. Huang Z, Chen Y F, Yi B, Xiao L, Ma C Z, Tu J X, Fu T D. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet, 2007,115: 113-118
    
    93. Huaracha E, Xu M L, Korban S S. Narrowing down the region of the Vf locus for scab resistance in apple using AFLP-derived SCARs. Them Appl Genet, 2004,108: 274-279
    
    94. Imai R, Koizuka N, Fujimoto H, Hayakawa T, Sakai T, Imamura J. Delimitation of the fertility restorer locus RJkl to a 43-kb contig in Kosena radish (Raphanus sativus L). Mol Gen Genomics, 2003, 269: 388-394
    
    95. Iyer A S, McCouch S R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact, 2004,17: 1348-1354
    
    96. Jander G, Norris S R, Rounsley S D. Arabidopsis map-based cloning in the post-geneme era. Plant Physiol, 2002, 129(2): 440-450
    
    97. Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S. Identification of AFLP markers linked to one recessive male sterility gene in oilseed rape, Brassica napus. Plant Breeding, 2005,124:367-370.
    
    98. Ke L P, Sun Y Q, Liu P W, Yang G S. Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed {Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica, 2004, 138:163-168.
    
    99. Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kinura Y, KohnoMurase J, Sakai T, Kawasaki S, Imamura J. Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J, 2003, 34(4): 407-415
    
    100.Lahaye T, Shirasu K, Schulze-lefert P. Chromosome landing at the barley Rarl locus. Mol Genet Genomics, 1998, 260: 92-101
    101.Larsen R C, Hollingsworth C R, Vandemark G J. A rapid method using PCR-based SCAR markers for detection and identification of Phoma sclerotioi des: the case of brown root rot disease of alfalfa. Plant disease, 2002, 86 (9): 928-932
    102.Lei S L, Yao X Q, Yi B, Chen W, Ma C Z, Tu J X, Fu T D. Towards map-based cloing: fine mapping of the recessive genic male-sterile gene (Bnms2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet, 2007,115: 643-651
    103.Lelotto M, Afanador L, Kelly J D. Development of a SCAR marker linked to the / gene in common bean. Genome,l996,39 (6): 1216-1219
    104.Leung J, Bouvier-Durand M, Morris P C. Arabidopsis ABA response gene ABII: features of a calcium-modulated protein phosphatase. Science, 1994, 164(5164): 1448-1452
    105.Li M, Pan Y, Li A S, David K, Andris K. Fine mapping a semi-dwarf gene brachyticl in barley. Acta Genetica Sinica, 2002, 29(7): 565-570
    106.Li Y Y, Ma C Z, Fu T D. Construction of a molecular functional map of rapeseed (Brassica napus L.) using differentially expressed genes between hybrid and its parents. Euphytica, 2006,152(1): 25-39.
    107.Lin X, Kaul S, Rounsley S. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature, 1999,402: 761-768
    108.Liu X Q, Lin F, Wang L, Pan Q H. The in Silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 2007,176: 2541-2549
    109.Liu X Q, Wang L, Chen S, Lin F, Pan Q H. Genetic and physical of Pi36(t), a novel rice resistance gene located on rice chromosome 8. Mol Genet Genomics, 2005, 274: 394-401
    
    110 .Liu Z W, Fu T D, Tu J X, Chen BY. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed {Brassica napus L). TheorAppl Genet, 2005,110:303-310.
    111.Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet, 2001, 103: 491-507
    112.Lu G Y, Yang G S, Fu T D. Molecular mapping of a dominant genic male sterility gene Ms in rapeseed (Brassica napus). Plant breeding, 2004, 123: 262-265
    113.Lukowitz W, Gillmor C S, Scheible W R. Positional cloning in Arabidopsis: why it feels good to have a genome initiative working for you. Plant Physiol, 2000, 123(3): 795-805
    114.Luo Q, Zhou K D, Zhao X F, Zeng Q C, Xia H A, Zhai W X, Xu J C, Wu X J, Yang H S, Zhu L H. Identification and fine mapping of a mutant gene for palealess spikeletin rice. Planta, 2005, 221: 222-230
    115.Lysak M A, Koch M A, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res, 2005,15: 516-525
    116.Maheswaran M, Subudhi P K, Nandi S. Polymorphism, distribution, and segregation of AFLP markers in a double haploid rice population. Theor Appl Genet, 1997, 94: 39-45
    117.Martin G B, Williams J G K, Tanksley S D. Rapid identification of markers linked to a Pseudomonas resistance genes in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci,1991, 88: 2336-2340
    118.Mayer K. Sequence and analysis of chromosome 4 of the plant. Nature, 1999, 402: 769-777
    119.Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal V K, Good A G, Parkin I A P. Complexities of chromosome landing in highly duplicated genome: toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics, 2005,171: 1977-1988
    120.McCouch S R,Teytelman L, Xu Y. Envelopment and mapping of 2240 new SSR markers for rice(Oryza sativa L). DNA Res, 2002, 9(6): 199-207
    121.Michelmore R, Paran W I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991,88:9828-9832.
    122.Mienie C M S, Liebenberg M M, Pretorius Z A, Miklas P N. SCAR markers linked to the common bean rust resistance gene Ur-13. Thero Appl Genet, 2005, 118: 65-71
    123.Muehlbauer G J, Specht J E, Thomas C. Near-isogenic lines-A potential resource in the intrgration of conventional and molecular marker linkage map. Crop Sci, 1988, 28: 729-735
    124.Negi M S, Devic M, Delseny M, Lakshmikumaran M. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet, 2000,101:146-152.
    125.Noguera F J, Capel J, Alvarez J I, Lozano R. Development and mapping of a codominant SCAR marker to the andromonecious gene of melon. Theor Appl Genet, 2005,110:714-720
    126.O'Neill, Bancroft I C. Comparative physical mapping of the genome of Brassica oleracea var. alloglabra that are homologous to sequenced regions of chromosome 4 and 5 of Arabidopsis thaliana. Plant J, 2000, 23: 233-243
    127.Olson M, Hood L, Cantor C, Botstein D. Acommon language for physical mapping of the human genome. Science, 1989,245(4925): 1434-1435
    128.Paran I, Kesseli R V, Michelmore R W. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce using near-isogenic. Genome, 1991, 34: 1021-1027
    129.Paran I, Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. TheorAppl Genet, 1993, 85: 985-993
    130.Parkin I A P, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn T C , Lydiate D J, Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171:765-781.
    131.Parkin I A P, Lydiate D J, Trick M. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome, 2002,45: 356-366
    132.Pillen K, Ganal M W, Tanksley S D. Construction of a high-resolution genetic map and YAC-contigs in the tomato Tm-2a region. Them Appl Genet, 1996, 93: 1892-1990
    133.Plieske J, Struss D. STS markers linked to Phoma resistance genes of the Brassica B-genome revealed sequence homology between Brassica nigra and Brassica napus. Theor Appl Genet, 2001,102:483-488.
    134.Qi L L, Gill B S. High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic region of low recombination in wheat and is not amenable to map-based cloning. Thero Appl Genet, 2001,103: 998-1006
    135.Qiu J W, Schiirch A C, Yahiaoui N, Dong L L, Fan H J, Zhang Z J, Keller B, Ling H Q. Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Thero Appl Genet, 2007, 115: 159-168
    136.Que Z, Liu X, Lin F, Ma J, Feng S, Xu X, Huang Z, Wang L, Pan Q. Molecular cloning and characterization of resistance and avirulence genes in the rice blast pathosystem. Abstract, Plant Genomics in China VI, 2005, Kunming
    137.Rabinowicz P D, Bennetzen J L. The maize genome as a model for efficient sequence analysis of large plant genomes. Current Opinion in Plant Biology, 2006,9: 149-156
    138.Rana D T, Boogaart van den O'Neill C M, Hynes L, Bent E, Macpherson L,Park J P, Kim Y P, Bancroft I. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J, 2004,40: 725-733
    139.Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M. Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Thero Appl Genet, 2006, 114: 81-91
    140.Sambrook J, Russell D W. Molecular cloning: a laboratory manual, 3rd . 2001
    141.Schwarz G, Michalek W, Mohler V, Wenzel G, Jahoor A. Chromosome landing at the Mla locus in barley (Hordeum vulgare L.) by means of high-resolution mapping with AFLP markers. Theor Appl Genet, 1999, 98:521-530
    142.Scott R J, Spielman M, Dickinson H G Stamen structure and function. Plant cell, 2004, 16: S46-60
    143.Shan X, Blake T K, Talbert L E. Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet, 1999,98:1072-1078
    144.Siebert P D, Chenchick A, Kellogg D E, Lukyanov K A, Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucl Acids Res, 1995, 23:1087-1088
    145.Sillito D, Parkin I A, Mayerhofer R, Lydiate D J, Good A G Arabidopsis thaliana: a source of candidate disease resistance gene for Brassica napus. Genome, 2000, 43:452-460.
    146.Smith D B, Flavell R B. Characterization of the wheat genome by renaturation kinetics. Chromosome, 1975, 50: 223-242
    147.Song L Q, Fu T D, Tu J X, Ma C Z, Yang G S. Molecular validation of multiple allele inheritance for dominant genic male sterility gene in Brassica napus L. Theor Appl Genet, 2006, 113:55-62
    148.Song W Y, Wang G L, Chen L L. A receptor-kinase-like protein encoded by the rice disease resistance gene Xa21. Science, 1995,270: 1804-1806
    149.Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B. Sub-genome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat. Proc Natl Acad Sci USA, 2000, 97: 13436-13441
    150.Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. Oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37: 517-527
    151.Tanksley S D, Ganal M W, Martin G B. Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Elseveiver Science Lid, 1995, 11(2): 63-68
    152.The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000,408: 796-815
    153.Thomas C M, Vos P, Zabeau M, Jones D A, Norcott K A, Chadwick B P, Jones J D. Identifiacation of amplified restriction fragment polymorphism(AFLP) markers linked to the tomato Cf-9 for resistance to Cladosporium fulvum.Plant J,1995,8(5):785-794
    154.Twell D,Park S K,Hawkins T J,Schubert D,Schmidt R,Smertenko A,Hussey P J.MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast.Nat Cell Biol,2002,4:711-714
    155.Ujino-Ihara T,Matsumuto A,Iwata H,Yoshimura K,Tsumura Y.Single-strand conformation polymorphism of sequence-tagged site markers based on partial sequences of cDNA clones in Cryptomeria japonica.Genes Genet Syst.2002,77(4):251-257
    156.Vos P,Hogers R,Bleeker M,Reijans M,van de Lee T,Homes M,Freijters A,Pot J,Peleman J,Kuiper M,Zabeau M.AFLP:a new technique for DNA fingerprinting.Nucl Acid Res,1995,23(21):4407-4414
    157.Wang C X,Shu Q Y.Fine mapping and candidate gene analysis of purple pericarp gene Pb in rice(Oryza sativa L.).Chinese Science Bulletin,2007,52(22):3097-3104
    158.Wang G L,Zhou B,Zeng L,Qu S,Liu G,Han B,Xie Q,Leung H.Molecular mechanism of broad-spectrum resistance mediated by NBS-LRR and U-box/ARM E3 ligase proteins in rice.Abstract,Plant Genomics in China Ⅵ,2005,Kunming
    159.Wang J X,Yang G S,Fu T D,Meng J L.Development of PCR-based markers linked to the fertility restorer gene for the polima cytoplasmic male sterility in rapeseed (Brassiea napus L).Acta Genet Sin,2000,27(11):1012-1017
    160.Wang Y G,Xing Q H,Deng Q Y,Liang F S,Yuan L P,Meng M L,Wang B.Fine mapping of the rice thermo-sensitive genic male-sterile gene tres5.Thero Appl Genet,2003,107:917-921
    161.Wang Z,Yano M,Yamanouchi U,Iwamoto M,Monna L,Hayasaka H,Katayose Y,Sasaki T.The Pib gene for rice blast resisitance belongs to the nucleotide binding and leucine rice repeat class of plant disease resistance genes.Plant J,1999,19:55-64
    162.Wu K S,Tanksley S D.A bandance polymorphism and genetic mapping of microsatellite in rice.Molecular Genetics and Genomics,241:226-235
    163.Xiao L,Yi B,Chen Y F,Huang Z,Chen W,Ma C Z,Tu J X,Fu T D.Molecular markers linked to Bn;rf.a recessive epistatic inhibitor gene of recessive genie male sterility in Brassica napus L.Euphytiea,2008(on line first)
    164.Xie Y Z,Hong D F,Xu Z H,Liu P W,Yang G S.Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic male sterility in rapeseed and conversion to SCAR markers.Plant Breeding,2008,127(2),145-149
    165.Xu M L,Huaracha E,Korban S S.Development of sequence-characterized amplified regions(SCARs) from amplified fragment length polymorphism(AFLP) markers tightly linked to the Vf gene in apple.Genome,2001,44:63-70
    166.Xu M L,Korban S S.AFLP-derived SCARs facilitate construction of a sequence-ready BAC contig of a 1.1-Mb segment that spans the Vf locus in the apple genome.Plant Mol Biol,2002,50:803-818
    167.Xue W Y,Xing Y Z,Weng X Y,Zhao Y,Tang W J,Wang L,Zhou H J,Yu S B,Xu C G,Li X H,Zhang Q F.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.Nature Genetics,2008,40(6):761-767
    168.Yahiaoui N,Srichumpa P,Dudler R,Keller B.Genome analysis at different ploidy levels allows cloning of powdery mildew resistance gene Pm3b from hexaploid wheat.Plant J,2004,37:528-538
    169.Yan L L,Loukoianov A,Blechl A,Tranquilli G,Ramakrishna W,SanMiguel P,Bennetzen J L,Echenique V,Dubcovsky J.The wheat VRN2 gene is a flowering repressor down-regulated by vernalization.Science,2004,303:1640-1644
    170.Yan L L,Loukoianov A,Tranuilli G,Helguera M,Fahima T,Dubcovsky J.Positional cloning of the wheat vernalization gene Vrn1.Proc Natl Acid Sci,2003,100:6263-6268
    171.Yi B,Chen Y N,Lei S L,Tu J X,Fu T D.Fine mapping of the recessive genie male-sterile gene(Bmms1) in Brassica napus.Theor Appl Genet,2006,113(4):643-650

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700