用户名: 密码: 验证码:
羟基酪醇生物学作用的细胞与分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言:富含抗氧化物质的“地中海膳食”可降低癌症、动脉粥样硬化、心血管疾病以及炎症等疾患的发病率。橄榄油是地中海膳食的重要食物。近年来研究者关注较多的羟基酪醇(hydroxytyrosol)是从橄榄中提取的一种酚类物质,化学名为3,4,-二羟基苯基乙醇,属两性分子,既脂溶也水溶。羟基酪醇有很强的抗氧化作用,能阻止多不饱和脂肪酸的自氧化,羟基酪醇对自由基的清除能力比其他合成的和天然的抗氧化物质都高,可有效地清除内源性和外源性的自由基和氧化物,包括过氧化氢、超氧化物阴离子以及次氯酸等。
     环境介质(水、食物、空气)中食物被污染对人类健康的危害不仅广泛而且直接,因而备受关注。近年来,陆续报道了多起食物污染而引起社会对致癌危险的恐慌。例如,食品染料苏丹红I号(Sudan I)事件,不粘锅特富龙事件,和油炸薯条丙烯酰胺(Acrylamide,AA)事件。这些遗传物质的潜在致癌性受到广泛重视。
     国际癌症研究机构(International Agency for Research on Cancer, IARC)将Sudan I归类为第三类致癌物,这类物质虽缺乏足够的使人类致癌的证据,但它的遗传毒性使其具有潜在的致癌危险。IARC将AA划分为2A类的致癌物,即很可能对人类致癌的物质,因此对人类也具有潜在的致癌危险。肝脏是Sudan I和AA的代谢器官,同时也是酚类化合物的代谢场所;本研究选用人类来源的肝脏肿瘤细胞HepG2细胞系作为体外试验系统,研究羟基酪醇对Sudan I和AA所致的遗传毒性的化学预防作用及可能机制。HepG2细胞来源于人类肝胚细胞瘤,所含生物转化代谢酶与人正常肝实质细胞具有同源性。因其保留了较完整的生物转化代谢I相和II相酶,是检测外来化学物遗传毒性的理想细胞系。
     最近有研究还发现,羟基酪醇能阻止核转录因子(NF-kB)和蛋白激酶-1的活化以致降低血管细胞黏附因子-1的基因转录。天然的和合成的抗氧化剂能通过调控转录因子,包括转录因子核因子(NF-kB)、信号传导以及转录激活剂-1α(STAT- 1α)以及干扰素调控因子(IRF-1),抑制促炎因子的基因表达。转录因子的活性依赖于细胞内的氧化还原状态。因此,本研究采用人的单核细胞系THP-1细胞,以脂多糖(LPS)刺激THP-1细胞产生炎症,来探讨羟基酪醇抗炎症的作用及可能机制。
     方法:(1)以HepG2细胞系作为试验系统的试验:采用单细胞凝胶电泳(SCGE)试验和微核试验(MNT)分别检测细胞DNA损伤和染色体损伤。用噻唑蓝(MTT)法检测细胞存活率。为探讨机制,以2’,7’—二氢二氯荧光素二乙酸酯(DCFH-DA)为荧光探针检测细胞内活性氧(ROS)水平;以邻苯二甲醛荧光素(OPT)比色法测定细胞内还原型谷胱甘肽(GSH)水平;用硫代巴比妥酸反应物(TBARS)测定法检测细胞内脂质过氧化水平;以免疫组化方法检测细胞内8-羟基脱氧鸟苷(8-OHdG)的表达水平,以Western blot法检测细胞内的谷氨酰半胱氨酸合成酶(r-GCS)表达水平。
     (2)采用THP-1细胞系作为炎症模型的试验:以LPS刺激THP-1制作炎症模型。以ELISA法测定肿瘤坏死因子α(TNF-α)水平;以RT-PCR法检测诱导性一氧化氮合酶(iNOS)和环氧合酶-2(COX2)以及TNF-α的基因表达以及Western blot法检测iNOS和COX2蛋白表达。为进一步探讨羟基酪醇的抗炎症作用与细胞的氧化还原电位关系,以OPT比色法测定细胞内GSH水平以及以Western blot测定r-GCS的蛋白表达水平。结果:(1)对Sudan I和AA遗传毒性的影响。100 uM Sudan I引起HepG2细胞的DNA链断裂程度以及微核形成率较对照组明显增加;不同浓度的羟基酪醇(0、25、50、100 uM)预处理HepG2细胞30min后,再加入100 uM Sudan I后,羟基酪醇预处理组的DNA链断裂程度以及MN形成率较单独接触Sudan I组明显减轻,并且存在剂量依赖关系。进一步研究发现,100 uM Sudan I能引起HepG2细胞的ROS水平明显升高、细胞内GSH水平明显降低、细胞内TBARS形成明显增多及8-OHdG表达水平明显增强。羟基酪醇预处理后再接触Sudan I,细胞内的GSH水平较单独接触Sudan I组明显升高;而ROS水平、细胞内TBARS及8-OHdG表达水平较单独接触Sudan I组明显降低,并且高浓度的羟基酪醇(100uM)几乎完全抑制上述各项指标的升高。不同浓度的羟基酪醇预处理30 min再接触AA,能明显降低单独接触5mM和10mMAA所致的细胞毒性。不同浓度的羟基酪醇(0、25、50、100um)预处理HepG2细胞30min,然后与10mMAA温育1h,结果显示SCGE试验各项指标明显减轻,提示DNA链断裂减轻并呈剂量依赖关系。利用MNT检测羟基酪醇对AA所致微核形成率的影响,结果发现,AA致HepG2微核形成率明显增高;羟基酪醇预处理再接触AA能降低由AA所引起的HepG2细胞微核形成率的增高。在羟基酪醇的试验浓度范围内,这种抑制作用呈剂量依赖关系,即羟基酪醇浓度越大,抑制作用越强。进一步研究发现,羟基酪醇能明显降低AA所致的细胞内的ROS水平、阻止AA所致的GSH的降低,并呈现剂量依赖关系;Western blot结果显示,25uM羟基酪醇能明显增强AA所致的r-GCS蛋白表达的降低。
     (2)对LPS诱导THP-1细胞炎症的影响。羟基酪醇能明显降低LPS诱导THP-1细胞分泌的TNF-α增多,抑制iNOS以及COX-2基因表达和蛋白表达水平增高。本研究还发现,LPS刺激的THP-1细胞内GSH水平和r-GCS蛋白表达水平较对照组明显降低;羟基酪醇预处理再用LPS刺激THP-1细胞后,细胞内GSH水平和r-GCS蛋白表达水平明显增加,并且存在剂量依赖关系。
     结论:本文首次利用HepG2细胞研究羟基酪醇对Sudan I和AA遗传毒性的影响,结果显示,羟基酪醇能够降低由Sudan I和AA所致的遗传毒性;羟基酪醇降低细胞内的ROS水平和升高GSH水平,从而调控氧化应激状态,预防氧化性DNA损伤,可能是其防护Sudan I和AA的遗传毒性的机制。羟基酪醇能明显抑制LPS刺激的炎症反应,可能机制是通过增强细胞r-GCS蛋白表达而增加细胞内GSH水平,从而降低了炎症相关因子的基因表达致使炎症减轻。
Aim:Numerous epidemiological data have demonstrated an association between a diet rich in antioxidants, such as the“Mediterranean diet,”and a lower incidence of several diseases, such as cancers, atherosclerosis and coronary heart disease. Olive oil is the most important food of“Mediterranean diet,”and can modulate the diseases from studies in vivo and in vitro. Although the protective effect of such a diet is likely to be multifactorial, there is consistent evidence for an antioxidant activity of some selected polyphenolic compounds from extra virgin olive oil. Hydroxytyrosol (HT), an olive phenolic, chemiclally named (3, 4-dihydroxyphenyl) ethanol, is hydrosoluble and liposoluble moelcule. HT is an efficient scavenger of free radicals, which prevents the autooxidation of polyunsaturated fatty acid. The free radical scavenging activity of HT is higher than synthetic and natural antioxidant and such as vitamin E, vitamin C and butylated hydroxytoluenez (BHT).
     Environmental pollution includes water pollution, food contamination and air pollution, in which effects of pollutants in food on the health are not only extensive but also direct and cause widespread concern. In recent years, there are so many food contaminations that caused social panic about risk of cancer, such as Sudan I, Teflon, and acrylamide (AA) and so on. These potential carcinogenicity substances have been paid to attentions.
     The International Agency for Research on Cancer (IARC) assessed Sudan I as a Group 3 carcinogen. AA is neurotoxic in humans and laboratory animals, and was classified as“probably carcinogenic to humans”(Group 2A carcinogen) by a working group of the IARC. This might represent a potential threat to public health. The liver is not only the target site of Sudan I and AA metabolism but also the site of phenolic compound metabolism. HepG2 cells were used as the experimental system in vitro to investigate the chemoprotective effect of HT on the genotoxicity induced by Sduan I and AA in our study. The HepG2 cell line retained many of the functions of normal liver cells and expresses the activities of several phases I and II xenobiotic metabolizing enzymes that play key roles in the activation and/or detoxification of DNA-reactive carcinogens. It has been shown to be a suitable system for genotoxicity testing.
     A recent report also indicates that HT could reduce vascular cell adhesion molecule-1 mRNA expression by blocking the activation of transcription factors nuclear factor-kappaB (NF-κB) and activator protein-1. It has been demonstrated that natural and synthetic antioxidants inhibit pro-infla- mmatory gene expression regulated by transcription factors, including NF-κB, signal transducer and activator of transcription-1α(STAT-1α) and interferon regulatory factor-1(IRF-1). These transcription factors are dependent on the intracellular redox state. We selected THP-1 cells stimulated by LPS to study the anti-inflammatory effect of HT and the possible mechanisms.
     Methods: (1) Methods of HepG2 cells line as test system were as follows. The single cell gel electrophoresis assay (SCGE) in addition to the micronucleus test (MNT) to study the genotoxic effects was performed. The cell viability was examined using the methyl thiazol tetrazolium bromide (MTT) assay. In order to clarify the underlying mechanisms we measured the intracellular ROS formation using 2, 7-dichlorofluorescein diacetate (DCFH-DA) as a fluorescent probe and intracellular glutathione(GSH) level by fluorometric methods. The levels of oxidative DNA damage and lipid peroxidation were estimated by immunocytochemistry analysis of 8-hydroxydeoxyguanosine (8-OHdG) and by measuring levels of thiobarbituric acid-reactive substances (TBARS), respectively. The rate-limiting enzyme in GSH synthesis is gamma-glutamylcysteine synthetase (γ-GCS), and western blot forγ-GCS was applied in present study.
     (2) The THP-1 cell was stimulated by LPS as the inflammtory model. ELISA was used to detect the level of tumor necrosis factor-α(TNF-α). The gene expression of TNF-α, inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX-2) was measured by RT-PCR and the protein expression of iNOS and COX-2 was estimated by Western blot. To futher study the the relation between the anti-inflammtory effect of HT and intracellular redox state, intracellular GSH andγ-GCS were measured.
     Results: (1) The chemoprotective effects of HT on the genotoxicity induced by Sudan I and AA were as follows. We found that HepG2 cells treated with 100 uM Sudan I resulted in serious DNA strand breaks. In contrast, the DNA damage was significantly reduced in cells pretreatment with 25-100 uM HT in a concentration-dependent manner. The results of MNT showed that HepG2 cells treated with 100 uM Sduan I could induce the decrease of GSH and the increase of ROS, intracellular TBARS level and the increase of 8-OHdG expression. Pretreatment with HT could increase the level of GSH and decrease the level of ROS, TBARS and 8-OHdG in a concentration-dependent manner. Moreover, high dose of HT (100μM) could completely inhibit the increase the levels of ROS, TBARS and 8-OHdG. Pretreatment with HT could inhibit the cytotoxicity induced by 5mM and 10mM AA. The SCGE results showed that HepG2 cells treated with 10mM resulted in serious DNA damage. Pretreatment with doses of HT for 30 min then exposed to 10mM inhibited AA-induced DNA damage in a concentration-dependent manner. Frequencies of micronuclei significantly increased in HepG2 cells after treatment with 2.5 mM AA for 24 h. Pretreatment with doses of HT for 30 min decrease the frequencies of MN in a concentration-independent manner. Furthermore, HT was able to reduce intracellular ROS formation and attenuate GSH depletion caused by AA in a concentration-dependent manner. The futher study showed that 25μM HT enhanced the expression ofγ-GCS in HepG2 cells treated with 10 mM AA using immmnoblotting.
     (2) The effects of HT on the inflammation stimulated by LPS were as follows. HT could significantly decrease the increase of TNF-αlevel stimulated by LPS and inhibit the increases of iNOS and COX-2 gene expression stimulated by LPS. HT also could significantly decrease the levels of increase of iNOS and COX-2 protein expression stimulated by LPS. The level of GSH in THP-1 cells stimulated by LPS was significantly decreased and the level ofγ-GCS was significantly increased as compared to cells without LPS, and pretreatment with HT could increase the level of GSH and enhanced the level ofγ-GCS expression in a concentration-dependent manner.
     Conclusions: In the study, we are first to investigate the chemoprotective of HT on genotoxicity induced by Sudan I and AA in HepG2 cells. We found HT could decrease the genotoxicity induced by Sudan I and AA in HepG2 cells. Moreover, we found that HT could modulate the redox state and prevent the oxidative damage by decreasing the level of ROS and increasing the level of GSH to attenuate the the genotoxicity in HepG2 cells induced by Sudan I and AA. In addition, HT could inhibit the inflammtory response in THP-1 cells stimulated by LPS. It suggested that HT could inhibit inflammtion in THP-1 cells stimulated by LPS through decreasing the gene expression of the inflammtion-relative cytokines, which was related to increase of GSH and the enhancement ofγ-GCS expression.
引文
1. Aeschbach R, Loliger J, Scott B.C,Murcia A,Butler J, Halliwekk B and Aruoma O.I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone, and hydroxytyrosol. Food Chem. Toxic, 1994, 32:31-36.
    2. Visioli, F. Bellomo and Galli, C. Free radical-scavenging properties of olive oil polyphenols. Biochem. Biophys Res.Commun, 1998: 247, 60-64.
    3. Tsinidou M, Papadopoulos G and Boskou D. Phenolic compounds and stability of virgin olive oil. Food Chem. 1992, 45: 141-144.
    4. Owen RW, Giacosa A, Hull WE, Haubner R, Würtele G, Spiegelhalder B, Bartsch H. Olive-oil consumption and health: the possible role of antioxidants. Lancet Oncol. 2000, 1:107-12. Review.
    5. Visioli F, Poli A, Gall C.Antioxidant and other biological activities of phenols from olives and olive oil.Med Res Rev. 2002, 22 (1): 65-75. Review
    6. Nousis L, Thomas doulias P, Aligiannis N,et al.DNA protecting and genotoxic effects of olive oil related components in cells exposed to hydrogen peroxide. Free radical Res 2005, 39: 787-795.
    7. Goya L, Mateos R, Bravo L.Effect of the olive oil phenol hydroxytyrosol on human hepatoma HepG2 cells. Protection against oxidative stress induced by tert-butylhydroperoxide. Eur J Nutr. 2007 Mar; 46(2):70-8.
    8. Martinea-Dominguez E, de la Puerta R, Ruiz-Gutierrez V. Protective effects upon experimental inflammation models of a polyphenol-supplemented virgin olive diet. Inflamm Res 2001; 50:102-106.
    9. Carluccio MA, Siculella L, Ancora MA, Massaro M, Scoditti E, Storelli C, Visioli F, Distante A, De Caterina R. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation.Arterioscler Thromb Vasc Biol 2003; 23:622-629.
    10. Hecker M, preiβC, Klemm P, Busse R. Inhibition by antioxidants of nitric oxide synthase expression in murine macrophages:role of nuclear factor kB and interferon regulatory factor 1. Br J Pharmacol 1996; 118: 2178-2184。
    11. Epinat JC, Gilmore TD. Diverse agents act at multiple levels to inhibit the Rel/NF-kB signal transduction pathway. Oncogene 1999; 18:6896-6909.
    12. Faure V, Hecquet C, Courtois Y, Goureau O. Role of interferon regulatory factor-1 and mitogen-activated protein kinase pathways in the induction of nitric oxide synthase-2 in retinal pigmented epithelial cells. J Biol Chem 1999; 274:4794-4800.
    13. Kim HY, Park EJ,Joe E-H, Jou I. Curcumin auppresses Janus Kinase-STAT inflammation signalling through activation of Src Homology 2 domain- containing tyrosine phosphatase 2 in brain microglia. J Immunol 2003; 171: 6072 -6079.
    14. Lee WL, henning B, Toborek M. Redox-regulate mechanisms of IL-4 induced MCP-1 expression in human vascular endothelial cells. Am J Physiol Heart Circ Physiol 2003; 284: H185-H192.
    15. Pahl HL. Activators and target genes of Rel/NF-kB transcription fxtors. Oncogene 1999; 18:6853-6866.
    16. Ramana CV, Chatterjee-Kishore M, Nguyen H, Stark GR. Complex role of Stat 1 in regulating gene expression. Oncogene 2000; 19:2619-2627.
    17. Kr?ger A, K?ster M, Schroeder k, Hansj?rg H, Mueller PP. Axtivities of IRF-1. J Interferon Cytokine Res 2002; 22:5-14.
    18. D’Acquisto F, Ialenti A, Ianaro A, Di Vaio R, Carnuccio R. Local asministration of transcription factor decoy oligonulleotides to nuclear faxtor-kB prevents carrageenin-induced inflammation in rat hind paw. Gene Ther 2000;. 7:1731 -1737.
    1.高萍,程琳,贾文英,史弘道.丙烯酰胺单体的细胞毒性研究.实用美容整形外科杂志.2002年6月第13卷第3期.
    2. Food standards angency study of acrylamide in food.In: Backgroud information and research findings.Press Briefing 2002, 5:17.
    3. Stadler R.H., Blank I.,Varga N., Robert F., Hau J., Guy P.A., Robert M.C.,Riediker S. Acrylamide from Maillard reaction products, Nature 2002, 419: 449-450.
    4. Rice J.M. The carcinogenicity fo acrylamide, Mutat. Res.2005, 580:3-20.
    5. IARC, Acrylamide, IARC Monographs on the Evaluation of Carcinogen Risk to Human:some Industrial Chemicals,vol. 60, International Agency for Research on Cancer, Lyon, 1994,389-433.
    6. IARC Sudan I, IARC Monographs1975, 8: 225-231.
    7. Aeschbach R, Loliger J, Scott B.C,Murcia A,Butler J, Halliwekk B and Aruoma O.I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone, and hydroxytyrosol. Food Chem. Toxic, 1994, 32:31-36.
    8. Visioli, F. Bellomo and Galli, C. Free radical-scavenging properties of olive oil polyphenols. Biochem. Biophys Res.Commun, 1998: 247, 60-64.
    9. Tsinidou M, Papadopoulos G and Boskou D. Phenolic compounds and stability of virgin olive oil. Food Chem. 1992, 45: 141-144.
    10. Owen RW, Giacosa A, Hull WE, Haubner R, Würtele G, Spiegelhalder B, Bartsch H. Olive-oil consumption and health: the possible role of antioxidants.Lancet Oncol. 2000, 1:107-12. Review.
    11. Visioli F, Poli A, Gall C.Antioxidant and other biological activities of phenols from olives and olive oil.Med Res Rev. 2002, 22 (1): 65-75. Review
    12. Nousis L, Thomas doulias P, Aligiannis N,et al.DNA protecting and genotoxic effects of olive oil related components in cells exposed to hydrogen peroxide. Free radical Res 2005, 39: 787-795.
    13. Goya L, Mateos R, Bravo L.Effect of the olive oil phenol hydroxytyrosol on human hepatoma HepG2 cells. Protection against oxidative stress induced by tert-butylhydroperoxide. Eur J Nutr. 2007 Mar; 46(2):70-8.
    14. An Y, Liping J, Jun C, ChengYan G, Laifu Zh. Sudan I induces genotoxic effects and oxidative DNA damage in HepG2 cells. Mutat Res 2007, 627:1 64- 70.
    15. Liping J, Jun C, Yu A, Chengyan G, Shuxian Q, Lijie J and Laifu Zh. Geno- toxicity of acrylamide in human hepatoma G2 (HepG2) cells Toxicology in Vitro.
    16. Singh NP,Stephens RE。Microgel electrophoresis:sensitivity, methanisms, and DNA electrostretching。Mutat Res, 1997, 383: 167-175.
    17. Natarajan AT, Darroudi F. Use of human hepatoma cells for in vitro metabolic activation of chemical mutagens/carcinogens. Mutagenesis, 1991, 5: 399-403.
    18. J. H. Sohn, K. L. Han, S. H. Lee, J. K. Hwang, Protective effects of panduratin A against oxidative damage of tert-butylhydroperoxide in human HepG2 cells, Biol. Pharm. Bull 2005, 28: 1083-1086.
    19. Panaretakis T, Shabalina IG, Grander D, Shoshan MC, Depierre JW.Reactive oxygen species and mitochondria mediate the induction of apoptosis in human hepatma HepG2 cells by the rodent peroxisome proliferator and hepato- carcinogen, perfluorooctanoic acid. Toxicol Appl Pharmacol, 2001, 173: 56-64.
    20. Lebel CP, Ischiropoulos H, Bondy SC.Evaluation of the probe 2’,7’- ichloro- fluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxico.1992, 5:227-231.
    21. Miyajima A, Nakashima J,Yoshioka K, Tachibana M, Tazaki H, Murai M. Role of reactive oxygen species in cia-dichlorodiammineplatinum-induced cyto- toxicity on bladder cancer cells. British Journal of cancer.1997,76 (2):206-210.
    22. Knaapen AM, Seiler F, Schilderman PA, et al. Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free Radic Biol Med, 1999, 27(1-2): 234-240.
    23. P.J. Hissin, R.A. Hilf, Fluorimetric method for determination of oxidized and reduced glutathione in tissues, Anal Biochem 1976, 74: 214-226.
    24. Leal L.K.A.M., Nobre. Junior H.V.,. Cunhaa G.M.A. Moraes, M.O, Pessoa C., Oliveira R.A., Silveira E.R., Canuto K.M., Viana G.S.B., Amburoside A, a glucoside from Amburana cearensis, protects mesencephalic cells against 6-hydroxydopamine-induced neurotoxicity, Neurosci. Lett. 2005, 388: 86-90.
    25. Riceter C.Oxidative damage to mitochondrial DNA and its relationship to ageing.Int.J.Biochem.Cell Biol.1995, 7:647-653.
    26. Hayakava M., Hattori K.,Sugiyama S.,and Ozawa T.Age-associated oxyen damage and mutations in mitochonadrial DNA in human heart.Biochem. Biophys.Res.Commun.1992, 89:979-985.
    27. Tiborova M, Martinek V, Rydlova H, Hodek P, Frei E. Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication byhuman recombinant cytochrome P450 1A1 and liver microsomes. Cancer Res 2002, 62:5678-5684
    28. An Y, Liping J, Jun C, ChengYan G, Laifu Zh. Sudan I induces genotoxic effects and oxidative DNA damage in HepG2 cells. Mutat Res 2007, 627: 164- 70.
    29. Mфller P, Wallin H. Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene. Mutat Res 2000, 462:13-30.
    30. Grasso S, Siracusa L, Spatafora C, Renis M. Hydroxytyrosol lipophilic analogues: enzymatic synthesis radical scavenging activity and DNA oxidative damage protection. Bioorg Chem 2007, 35:137-52.
    31. Quiles JL, Farquharson AJ, Simpson DK, Grant I, Wahle KW. Olive oil phenolics: effects on DNA oxidation and redox enzyme mRNA in prostate cells. Br J Nutr 2002, 88:225-3.
    32. Stupans I, Kirlich AL, Tuck KJ, Hayball P. Comparison of radical scavenging effect, inhibition of microsomal oxygen free radical generation, and serum lipoprotein oxidation of several natural antioxidants. J Agric Food Chem 2002, 50:2462-2469.
    33. Nowles BB, Howe CC, Aden DP. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 1980, 209:497-499.
    34. Fairbairn DW, Olive PL, O’Meill KL. The comt assay: a comprehensive rewiew. Mutat Res 1995, 339:37-59.
    35. Kirsch VM, Elhajouji A, Cundari E, Van HP. The in vitro micronucleus test: a multi-endpoint assay to detect simultaneously mitotic delay, apoptosis, chromosome breakage, chromosome loss and non-disjunction. Mutat Res 1997, 392:19-30.
    36. Sies H (ed.). Oxidative stress, oxidants, and antioxidants. London and New York: Academic Press 1991.
    37. Mates JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 2000, 153:83-104.
    38. Haraguchi H, Ishikawa H, Sanchez Y, Oqura T, Kubo Y, Kubo I. Antioxidative constituents in Heterotheca inuloides. Bioorg Med Chem 1998, 6:339-347.
    39. Manna C, Galletti P, Cucciolla V, Montedoro G, Zappia V. Olive oil hydroxy- tyrosol protects human erythrocytes against oxidative damages. J Nutr Biochem 1996, 10:159-165.
    40. Caterina M, Fulvio DR, Valeria C, Adriana B, Stefania D’A, Patrizia G, Vincenzo Z. Biological effects of hydroxytyrosol, a polyphenol from olive oil endowed with antioxidant activity. In: Zappoa V, ed. Anvances in Nutrition and Cancer. New York: Kluwer Academic/Plenum Publishers, 1999.
    41. Alia M, Ramos S, Mateos R, Bravo L, Goya L. Response of the antioxidant defense system to t-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). J Biochem Mol Toxicol 2005, 19:119-128.
    42. Scharf G, Prustomersky S, Knasmuller S, Schulte HR, Huber WW. Enhancement of glutathione and g-glutamylcysteine synthetase, the rate limiting enzyme of glutathione synthesis, by chemoprotective plant-derived food and beverage components in the human hepatoma cell line HepG2. Nutr Cancer 2003, 45:74-83.
    43. Sai K, Umemura T, Takagi A, Hasegawa R, Kurokawa Y. The protective role of glutathione, cysteine and Vitamin C against oxidative DNA damage induced in rat kidney by potaassium bromate. Jpn J Cancer Res 1992, 1:45-51.
    44. Kasai H, Nishimura S. Hydroxylation of deoxyguanosine at the C8 position by ascorbic acid and other reducing agents. Nucleic Acids Res 1984, 12: 2137– 2145.
    45. Reliene R, Schiestl RH. Glutathione depletion by buthionine sulfoximine induces DNA deletions in mice. Carcinogenesis 2006, 27:240-244.
    46. Mosmann, T. Rapid colrimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J.Immunol.Methods 1983, 65:55-63
    47. Margaretha Jagerstad, Kerstion Skog. Genotoxicity of heat-processed foods. Mutation Research 2005, 574:156-172.
    48. Dearfield K.L.,Douglas G.R., Ehling U.H.,Moore M.M.,Sega G.A., Brusick D.J.,Acrylamide:a review of its genotoxicity and an assenssment of heritable genetic risk, Mutat.Res.1995, 330:71-99.
    49. S.C. Sumner, T.R. Fennell, T.A. Moore, B. Chanas, F. Gonzalez and B.I. Ghanayem, Role of cytochrome P450 2E1 in the metabolism of acrylamide and acrylonitrile in mice, Chem Res Toxicol 1999, 12:1110–1116
    50. P. Nicole, T. Zeina, F. Florian and M. Doris, DNA strand breaking capacity of acrylamide and glycidamide in mammalian cells, Mutat Res 2005, 580: 71-80.
    51. H. Kurebayashi, Y. Ohno, Metabolism of acrylamide to glycidamide and theircytotoxicity in isolated rat hepatocytes: protective effects of GSH precursors, Arch Toxicol2006, 80: 820-828.
    52. M. Jan, C. Harald, C.W.M. Mari and B. Rune, Polyphenols and glutathione synthesis regulation, Am J Clin Nutr 2005, 81: 277-283 .
    1. Keys A, Menotti A ,Karvonene MJ, Aravanis C, Blackburn H, Buzina R, Djordjevic BS, Dontas AS, Fidanza F, Keys MH, Kromhout D, Nedeljkovic S, Punsar S, Seccareccia F, Toshima H. The diet and 15-year death rate in the seven countries study. Am J Epidemiol 1986; 124:903-915.
    2. De Lorgeri M, Salen P, Martin JL, Monjaud I, Delaye J, Manelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications afer myocardial in farction:final report of the Lyon Diet Heart Study, Circulation 1999:779-785.
    3. Stark AH, Madar Z. Olive oil as a functional food: epidemiology and nutritional approaches. Nutr Rev. 2002 ;60:170-176.
    4. Bartoli R, Fernandez-Banares F, Navarro E, et al. Effect of olive oil on early and late events of colon carcinogenesis in rats: modulation of arachidonic acid metabolism and local prostaglandin E2 synthesis. Gut.2000; 46: 191-199.
    5. Della Ragione F, Cucciolla V, Borriello A, et al. Hrdroxytyrosol, a natural molecule occurring in olive oil, induces cytochrome c dependent apoptosis. Biochem Biophys Res Comm. 2000; 278: 733-739.
    6. Llor X, Pons E, Roca A, et al. The effects of fish oil, olive oil,oleic acid and linoleic acid on colorectal neoplastic processes.Clin Nutr.2003; 22:71-79.
    7. Owen RW, Giacosa A, Hull WE, et al. The antioxidant/anticancer potential of phenolic compounda isolated from olive oil. Eur J Cancer.2000; 36:1235-1247.
    8. Owen RW, Giacosa, Hull WE, et al. Olive oil consumption and health:the possible role of antioxidants. Lancet Oncol.2001; 107-112.
    9. Owen RW, Giacosa A, Hull WE, Haubner R, Wurtele G, Spiegelhalder B, Bartsch H. Olive-oil consumption and health:the possible role and antiosidants. Lancet 2000; 1:107-112.
    10. Owen RW, Mier W, Giaxosa, Hull WE, Spiegelhalder B, Bartsch H Identification of lignans as major components in the pehnolic fraction of olive oil, Clin Chem. 2000;46:976-988.
    11. Tuck Kl, Hayball PJ. Major phenolic compounds in olive oil:metabolism and health effects.J Nutr Biochem 2002;
    12. Martinea-Dominguez E, de la Puerta R, Ruiz-Gutierrez V. Protective effects upon experimental inflammation models of a polyphenol-supplemented virgin olive diet.Inflamm Res 2001; 50:102-106.
    13. Olive oil composition.In: Boskou D (ed) Olive oil chemisty and technology. AOCS, Champaign, 52-83
    14. Ontedoro GF, Servili M, Baldioli M. Simple and hydrolyzable compounds in virgin olive oil. Spectroscopic characterization of the secoiridoids derivatives. J Agric Food Chem 1993; 41:2228-2234.
    15. Visioli F, Bellomo G and Galli C. Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun 1998; 247:60-64.
    16. Apadopoulos G and Boskou D. Antioxidative effect of natural phenols on olive oil. J Am Oil Chem Soc 1991; 68:669-671.
    17. Visioli F, Bellomo G and Galli C. Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun 1998;247:60-64.
    18. Kohyama N, Nagata T, Fujimoto S, et al. Inhibition of arachidomate lipoxy- genase activities by hydroxytyrosol, a phenoic compounds from olives. Bio.Sci.Biotech Biochen.1997;61: 347-150.
    19. E la Puerta R, Gutierrez VR, Hoult JRS. Inhibition of leucocyte 5-lipxogenase by phenolic from virgin olive oil, Biochem Pharmacol.1999; 445-449.
    20. Petroni A, Blasevich M, Salami M, Papini N, Montedoro G, Galli G. Inhibition of platelet aggregation and eicosanoid production by phenolic component of olive oil. Thromb Res 1995; 78:151-160.
    21. Carluccio MA, Siculella L, Ancora MA, Massaro M, Scoditti E, Storelli C, Visioli F, Distante A, De Caterina R. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation.Arterioscler Thromb Vasc Biol 2003; 23:622-629.
    22. Hecker M preiβC,Klemm P Busse R Inhibition by antioxidants of nitric oxide synthase expression in murine macrophages : role of nuclear factor kB and interferon regulatory factor 1。Br J Pharmacol 1996; 118: 2178-2184。
    23. Epinat JC, Gilmore TD. Diverse agents act at multiple levels to inhibit the Rel/NF-kB signal transduction pathway. Oncogene 1999; 18:6896-6909.
    24. Faure V, Hecquet C, Courtois Y, Goureau O. Role of interferon regulatory factor-1 and mitogen-activated protein kinase pathways in the induction of nitric oxide synthase-2 in retinal pigmented epithelial cells.J Biol Chem 1999; 274:4794-4800.
    25. Kim HY, Park EJ,Joe E-H, Jou I. Curcumin auppresses Janus Kinase-STAT inflammation signalling through activation of Src Homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol 2003; 171:6072-6079.
    26. Lee WL, henning B, Toborek M. Redox-regulate mechanisms of IL-4 induced MCP-1 expression in human vascular endothelial cells. Am J Physiol Heart Circ Physiol 2003; 284: H185-H192.
    27. Pahl HL. Activators and target genes of Rel/NF-kB transcription fxtors. Oncogene 1999; 18:6853-6866.
    28. Ramana CV, Chatterjee-Kishore M, Nguyen H, Stark GR. Complex role of Stat in regulating gene expression. Oncogene 2000; 19:2619-2627.
    29. Kr?ger A, K?ster M, Schroeder k, Hansj?rg H, Mueller PP. Axtivities of IRF-1. J Interferon Cytokine Res 2002; 22:5-14.
    30. D’Acquisto F, Ialenti A, Ianaro A, Di Vaio R, Carnuccio R. Local asministration of transcription factor decoy oligonulleotides to nuclear faxtor-kB prevents carrageenin-induced inflammation in rat hind paw. Gene Ther 2000;.7:1731- 1737.
    31. Mosmann, T. Rapid colrimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983; 65:55-63
    32. Okamoto Y, Tanaka S, Haga Y.Enhanced GLUT2 gene expression in an oleic acid-induced in vitro fatty liver model.Hepatol Res.2002, Jun; 23(2):138-144.
    33. Szczepanik A.M., Funes S., Petko W., Ringhein GE.,J. Neuroimmunol., 2001;113, 49-62
    34. Hart PH, Brand C, Carson CF, Riley TV, Prager RH., Finlay-Jones J.J, Inflamm. Res, 2000; 49, 619-626
    35. Juergens UR, Engelen J, Racke K, Stober M, Gillissen A, Vetter H, Pulm. Pharmacol.Ther., 2004; 17, 281—287.
    36. Perkins DJ, Kniss DA, J. Leukoc.Biol, 1999; 65, 792-799.
    37. Skidgel RA,Gao XP, Brovkovych V, Rahman , Jho D, PredescuS, Standiford T. J, Malik AB, J. Immonol., 2002; 169, 2093-2101
    38. Smith WL, Dewitt DL, Garavito R M, Ann. Rev. Biochem., 2000; 69, 145-182
    39. Ahmad N, Chen LC, Gordon MA, Laskin JD, Laskin DL, J. Leukoc. Biol., 2002; 71, 1005-1011
    40. Surh YJ, Chun KS, Cha HH, Han S.S., Keum YS., Park KK., Lee SS., Mutat. Res., 2001;.480–481, 243-268
    41. Fukuda K., Hibiya Y., Mutoh M., Ohno Y., Yamashita K., Akao S., Fujiwara H., Biochem. Pharmacol., 2000; 60, 595-600.
    42. Maria CM, Daniela DS, Paola DM,, Carlo I, Maria S, Raffaele S, Maria PC and Rosa C. Hydroxytyrosol, a phenolic compound from virgin olive oil, preventsmacrophage activtion. Naunyn-Schmiedeberg’s Arch Pharmacol 2005; 371: 457-465.
    43. Stringer B, Kobzik L. Environmental particulatemediated cytokine production in lung epithelial cells (A549): role of pre-existing inflammation and oxidant stress. J Toxicol Environ Health 1998; 55: 31±44.
    44. Omara FO, Fournier M, Vincent R, Blakley BR. Suppression of rat and mouse lymphocyte function by urban air particulates (Ottawa dust) is reversed by Nacetylcysteine. J Toxicol Environ Health 2000; 59: 67-85.
    45. Langley-Evans SC, Phillips GJ, Jackson AA. Sulphur dioxide: a potent glutathione depleting agent. CompBiochem Physiol C Pharmacol Toxicol Endocrinol 1996; 114: 89-98.
    46. Leung KH, Post GB, Menzel DB. Glutathione Ssulfonate, a sulfur dioxide metabolite, as a competitive inhibitor of glutathione S-transferase, and its reduction by glutathione reductase. Toxicol Appl Pharmacol 1985; 77: 388-394.
    47. Keller DA, Menzel DB. Effects of sulfite on glutathione S-sulfonate and the glutathione status on lung cells. Chem Biol Interact 1989; 70: 145-156.
    48. Gumuslu S, Akbas H, Aliciguzel Y, Agar A, Kucukatay V, Yargicoglu P. Effects of sulfur dioxide inhalation on antioxidant enzyme activities in rat erythrocytes. Ind Health 1998; 36: 70-73.
    49. Goya L, Mateos R, Bravo L.Effect of the olive oil phenol hydroxytyrosol on human hepatoma HepG2 cells. Protection against oxidative stress induced by tert-butylhydroperoxide. Eur J Nutr. 2007 Mar; 46(2):70-8.
    1.许长同,余德生,赖澄清.橄榄栽培[M ].北京:中国农业出版社, 1999. 12 - 27, 36 - 37.
    2.林河通.橄榄不同品种果实形态结构的比较观察及其与耐贮性关系[ J ].福建农业大学学报, 1997, 26 (2) : 241 - 246.
    3.周玲.青果的药膳食疗[ J ].药膳食疗, 2005, 2: 43.
    4.夏文水.橄榄浑浊汁饮料加工工艺[ J ].食品工业, 2005, 2: 5.
    5.段文军,孔庚星.青果微量元素的测定及其含量与功效的关系[ J ].
    6. Keys A. Mediterranean diet and public health: personal reflections. Am J Clin Nutr 1995; 61:1321S–1323S.
    7. Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina, Fidanza F, et al. Flavonoid intake and longterm risk of coronary heart disease and cancer in the Seven Countries Study [published erratum appears in Arch Intern Med 1995 155(11):1184]. Arch Intern Med 1995; 155:381–386.
    8. Mancini M, Rubba P. The Mediterranean diet in Italy. In: Simopoulos A, Visioli F, editors. Mediterranean diets. Basel: Karger Press, Wld Rev Nutr Diet Vol. 87, 2000. p 114–126.
    9. EEC Council regulations. 356/92:1992.
    10. FAOSTAT Database. 2000.
    11. Boskou D. Olive oil. In: Simopoulos A, Visioli F, editors. Mediterranean diets. Basel: Karger Press, Wld Rev Nutr Diet Vol. 87, 2000. p 56–77.
    12. Dougherty RM, Galli C, Ferro-Luzzi A, Iacono JM. Lipid and phospholipid fatty acid composition of plasma red blood cells and platelets and how they are affected by dietary lipids: a study of normal subjects from Italy, Finland, and the USA. Am J Clin Nutr 1987;45:443–455.
    13. Katan MB, Zock PL, Mensink RP. Dietary oils, serum lipoproteins, and coronary heart disease. Am J Clin Nutr 1995; 61: 1368S–13 73S.72
    14. Oskou, D.(ed.) Olive oil.Chemistry and Technology, AOCS Pres, Champain, Illinois.
    15. Montedoro,G. and Servili.M. Olive oil quality parameters in relationship to agronomic and technological aspects. La rivista italiana delle sostanze grasse.1992; LXIX, 563-573.
    16. Giovacchino L, Solinas M, Miccoli M. Effect of extraction systems on the qualityof virgin olive oil. J Am Oil Chem Soc 1994; 71: 1189–1194.
    17. Visioli F, Romani A, Mulinacci N, Zarini S, Conte D, Vincieri FF, Galli C. Antioxidant and other biological activities of olive mill waste waters. J Agric Food Chem 1999; 47:3397–3401.
    18. Visioli F, Vinceri FF, Galli C.‘Waste waters’from olive oil production are rich in natural antioxidants. Experientia 1995; 51:32–34.
    19. Montedoro G, Servili M, Baldioli M, Miniati E. Simple and hydrolyzable phenolic compounds in virgin olive oil.Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J Agric Food Chem 1992; 40:1571–1576.
    20. Mosca L, De Marco C, Visioli F, Cannella C. Enzymatic assay for the determination of olive oil polyphenol contant: assay conditions and validation of the method. J Agric Food Chem 2000; 48: 297–301.
    21. Caruso D, Colombo R, Patelli R, Giavarini F, Galli G. Rapid evaluation of phenolic component profile and analysis of oleuropein aglycon in olive oil by atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). J Agric Food Chem 2000; 48:1182–1185.
    22. Bourquelot E, Vintilesco J. Sur l’oleuropein, noveau principle de nature glucosidique retire de l’olivier (Olea Europea L.). CR Acad Sci 1908; 147: 533– 535.
    23. Panizzi LM, Scarpati JM, Oriente EG. Costituzione dell’oleuropeina, glucoside amaro ed ad azioneipotensiva dell’olivo.Gazzetta Chimica Italiana 1960; 90: 1449–1485.
    24. Amiot MJ, Fleuriet A, Macheix JJ. Importance and evolution of phenolic compounds in olive during growth and maturation. J Agric Food Chem 1986; 34:823–826.
    25. Tsimidou M. Polyphenols and quality of virgin olive oil in retrospect. Ital J Food Sci 1998; 10:99–116.
    26. Cimato A, Modi G, Alessandri S, Mattei A. Caratteristiche e peculiarita’dell’olio extra vergine di oliva prodotto in Toscana. L’informatore Agrario 1992; 18:55–75.
    27. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witzum JL. Beyond cholesterol. Modifications of lowdensity lipoprotein that increases its atherogenicity. New Engl J Med 1989; 320:915–924.
    28. Visioli F, Bellomo G, Montedoro G, Galli C. Low density lipoprotein oxidation is inhibited in vitro by olive oil constituents. Atherosclerosis 1995; 117:25–32.
    29. Visioli F, Galli C. Oleuropein protects low density lipoprotein from oxidation. Life Sci 1994; 55:1965–1971.
    30. Owen RW, Giacosa A, Hull WE, Haubner R, Würtele G, Spiegelhalder B, Bartsch H.Olive-oil consumption and health: the possible role of antioxidants.Lancet Oncol. 2000 Oct; 1:107-12. Review.
    31. Visioli F, Poli A, Gall C.Antioxidant and other biological activities of phenols from olives and olive oil.Med Res Rev. 2002 Jan; 22 (1):65-75. Review
    32. Sies, H(ed) Oxidative stress, oxidants, and antioxidants, London and New york: Academic Press. 1991.
    33. Lund E.Olive oil phemolics: effects on DNA-oxidation and redox enzyme mRNA in prostate cells.Brit J Nutr.2002; 88:223-224.
    34. Manna C, Galletti P, Cucciolla V, et al.The protective effect of the olive oil polyphenols (3,4-dihydroxyphenyl-ethanol) counteracts reactive oxygen metabolite-induced cytotoxicity in Caco-2 cells, Jnutr.1997;127:286-292.
    35. Nousis L, Thomas doulias P, Aligiannis N,et al.DNA protecting and genotoxic effects of olive oil related components in cells exposed to hydrogen peroxide.Free Radical Research.2005;39(7);787-795.
    36. Goya L, Mateos R, Bravo L. Effect of the olive oil phenol hydroxytyrosol on human hepatoma HepG2 cells. Protection against oxidative stress induced by tert-butylhydroperoxide.Eur J Nutr. 2007 Mar; 46(2):70-8.
    37. Frei, B.(ed.) Natural antioxidant in human health and disease, Academic Preess. 1994.
    38. Montero, H.P.and Stren, A Redox modulation of tyrosine phosphorylation -dependent signal transduction pathways. Free Rad.Biol. Med., 1996; 3,323-333.
    39. Palmer, HJ and Pauling, KP.Reactive oxygen species and antioxidants in signal transduction and gene expression. Nutr. Rev. 1997; 55,353-361.
    40. Irani,K.,Xia,Y.,Zweier,J.L.,Sollot,S.J.,Der,C.J.,Fearo,E.R.,Sundaresan,M., Fink- el,T.,andGold-schmidt-Clemont, P.J. Mitogenic signaling mediated by oxidants in ras-transformed fibroblasts. Science, 1997; 275, 296-299.
    41. Cimmino, F., Esposito, F., Ammendola, R.,and Russo, T. Gene regulation by reactive oxygen species, Current topics in cellular regulation, 1997;35, 123-147.
    42. Artin-Moreno, J. Mwillett, W.C, Gorgojo, L, Banegas, J.R, Rodriguez-Artalejo. F, Fernandez-Rodriguez, J.C, Maisonneuve, P, and Boyle, P. Dietary fat, olive oil intake, and breast cancer risk. Int.J.Canc, 1994; 58,774-780.
    43. Trichopoulou, A, Katsouyanni, K, Stuver, S, Tzala, L, Gnardellis, C.Rimm, E,and Trichopoulos,D. Consumption of olive oil and specific food groups in relation to breast cancer risl in Greece. J.Natl.Canc.Inst. 1995; 87,110-116.
    44. Willett, W.CSpecific fatty acids and risks of breasts and prostate cancer:dietary intake.Am.J.Clin.Invest, 1997; 66,1557s-1576s.
    45. Kohyama N,Nagata T,Fujimoto S,et al. Inhibition of arachidomate lipoxygenase activities by hydroxytyrosol,a phenoic compounds from olives.BioSci biotech Biochen.1997;61:347-150.
    46. De la Puerta R,Gutierrez VR,Hoult JRS.Inhibition of leucocyte 5-lipxogenase by phenolic from virgin olive oil,Biochem Phar- macol.1999;445-449.
    47. Manna C, Della Ragione F, Cucciolla,V,et al. Biological effects of hydroxytyrosol, a polyphenol from olive oil endowed with anti- oxidant activity.In:Zappia V,ed. Anvances in Nutrition and can- cer.New york:Kluwer Academic?Plenum Publisher;1999.
    48. Della Ragione F, Cucciolla V, Borriello,A, et al.v Hydroxytyrosol, a Natural Molecule Occurring in Olive oil, Induces Cytochrome c-Dependent Apoptosis. Biochemical and Biophysical Communicatins. 278, 733-739.
    49. Fbiani R, De Bartolomeo A, Rosignoli P,et al.Cancer chemopreven- tion by hydroxytyrosol isolated from virgin olive oil through G1 cell cyble arrest and apoptosis.Eur J Cancer Prev. 2002;11:351-358.
    50. Corona G, Deiana M, Incani A, Vauzour D, DessìMA, Spencer JP. Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects. Biochem Biophys Res Commun. 2007; Oct 26; 362(3):606-11.
    51. Martinea-Dominguez E, de la Puerta R, Ruiz-Gutierrez V. protective effects upon experimental inflammation models of a polyphenol-supplemented virgin olive diet. Inflamm Res 2001 ; 50:102-106.
    52. Carluccio MA, Siculella L, Ancora MA, Massaro M, Scoditti E, Storelli C, Visioli F, Distante A, De Caterina R. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation.Arter- ioscler Thromb Vasc Biol 2003; 23:622-629.
    53. Visioli F, Bellosta S, Galli C. Oleuropein, the bitter principle of olives, enhances nitric oxide production by mouse macrophages. Life Sci 1998; 62:541–546.
    54. Lowenstein CJ, Hill SH, Walker AL, Wu J, Allen G, Landavere M, et al. Nitric oxide inhibits viral replication in murine myocarditis. J Clin Invest 1996; 97:1837–1843.
    55. Jessup W, Mohr D, Gieseg SP, Dean RT, Stocker R. The partici- pation of nitric oxide in cell free- and its restriction of macro- phage-mediated oxidation of low-density lipoprotein. Bio- chem Biophys Acta1999; 1180:73–82.
    56. Maiuri MC, De Stefano D, Di Meglio P, Irace C, Savarese M, Sacchi R, Cinelli MP, Carnuccio R. Hydroxytyrosol, a phenolic compound from virgin olive oil, prevents macrophage activation.Naunyn Sch- miedebergs Arch Pharmacol. 2005 Jun;371(6):457-65.
    57. Bitler CM, Viale TM, Damaj B, Crea R.Hydrolyzed olive vegetation water in mice has anti-inflammatory activity.J Nutr.2005 Jun; 135 (6):1475-9
    58. Related Articles, Bisignano G, Tomaino A, Lo Cascio R, Crisafi G, Uccella N, Saija A.On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol.J Pharm Pharmacol.1999 Aug; 51(8):971-4.
    59. Tuck KL, Hayball PJ.Major phenolic compounds in olive oil: meta- bolism and health effects. J Nutr Biochem.2002 Nov; 13(11): 636-644。
    60. Furneri PM, Piperno A, Sajia A, Bisignano G .Antimycop lasmal activity of hydroxytyrosol Antimicrob Agents Chemother.2004; 48(12):4892-4.
    61. Scaccini C, Nardini M, D’Aquino M, Gentili V, Di Felice M, Tomassi G. Effect of dietary oils on lipid proxidation and on antioxidant parameters of rat plasma and lipoprotein fractions. J Lipid Res 1992; 33:627–633.
    62. Wiseman SA, Mathot JN, de Fouw NJ, Tijburg LB. Dietary non-tocopherol antioxidants present in extra virgin olive oil increase the resistance of low density lipoproteins to oxidation in rabbits. Atherosclerosis 1996; 120:15–23.
    63. Visioli F, Galli C, Bornet F, Mattei A, Patelli R, Galli G, et al. Olive oil phenolics are dose-dependently absorbed in humans. FEBS Lett 2000; 468: 159–160.
    64. Bonanome A, Pagnan A, Caruso D, Toia A, Xamin AF, et al. Evidence of post-prandial absorption of olive oil phenols in humans. Nutr Metab Cardiovasc Res 2000;
    65. Bourne LC, Rice-Evans CA.Urinary detection of hydroxycinnamates and flavonoids in humans after high dietary intake of fruit. Free Rad Res 1998; 28: 429–438.
    66. Visioli F, Caruso D, Plasmati E, Patelli R, Mulinacci N, Romani A, et al. Hydroxytyrosol, as a component of olive mill waste water, is dose-dependently absorbed and increases the ntioxidant capacity of rat plasma. Free Rad Res 2000;
    67. Visioli F, Galli C, Plasmati E, Viappiani S, Hernandez A, Colombo C, Sala A. Olive phenol hydroxytyrosol prevents passive smoking -induced oxidative stress. Circulation 2000; 102:2169–2171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700