用户名: 密码: 验证码:
黄孢原毛平革菌及其关键功能酶对木质纤维素降解转化特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维素是自然界中最丰富的可再生有机资源。天然的木质纤维素是由木质素、纤维素、半纤维素构成;其中木质素是高度不规则且不可溶的聚合物,它通过共价键与半纤维素相连接形成木质素-碳水化合物复合物,此后又与纤维素相包裹形成结构更为复杂的植物细胞壁,即天然的木质纤维素。如此复杂的化学结构既妨碍了木质纤维素的转化,同时也导致自然界中木质纤维素的降解过程非常缓慢。由于木质素对木质纤维素的保护作用及其自身的难降解特性使得木质素降解成为木质纤维素降解的关键因素和限速步骤。堆肥化处理技术是实现有机固体废物无害化、减量化、资源化的重要手段。但是传统的堆肥方法存在历时长,肥效低,有机质传化不完全等问题。特别是富含木质纤维素废物的堆肥基质,其影响更加明显。白腐菌是目前所发现的一类唯一能彻底降解木质素的微生物,它可以分泌木质素过氧化物酶、锰过氧化物酶、漆酶等胞外酶降解木质素。黄孢原毛平革菌是白腐菌的典型代表,因此,本研究选择了黄孢原毛平革菌作为研究对象,系统地考察了该菌体及其关键功能酶在简单固态条件下(固态和复杂固态条件下(堆肥体系)中对天然木质素降解能力及降解机理。
     在固态发酵条件下,黄孢原毛平革菌接种浓度过高而会影响木质纤维素的降解效率,过低则会导致其降解效果较差。在本实验范围内,最佳的接种浓度为4m L/35g干样。在此接种浓度下,木质素的降解率可以达到39.1%。此外由于木质素的屏障作用被打破,黄孢原毛平革菌对半纤维的降解能力也有了显著的提高。电镜扫描结果与紫外光谱分析结果也表明,在此接种浓度下黄孢原毛平革菌对木质纤维素结构破坏的程度最为严重。
     将黄孢原毛平革菌接种于堆肥体系,结果表明它可以显著提高木质素和半纤维素的降解率,但对纤维素的降解影响不是很明显。此外本实验还考察了该菌对堆肥过程中物质转化的影响。因此,在堆肥过程中监测了腐殖质、胡敏酸、富里酸以及腐殖化指标的动态变化。结果表明,接种黄孢原毛平革菌对富里酸形成的影响不明显,但它可以显著增加胡敏酸的含量。腐殖化指标结果表明黄孢原毛平革菌可以有效地促进堆肥腐熟速度,缩短堆肥周期,提高堆肥腐殖质的稳定性以及腐殖化度。腐殖质的光学特性以及其分级分析结果表明接种黄孢原毛平革菌可以促进堆料中脂肪类、多糖类等物质的降解,同时还可以有效提高芳环族类化合物的含量。实验结果还表明,随着堆肥时间的推进,处理样中胡敏酸芳构化的进程被加速;最后,聚类结果表明,接种黄孢原毛平革菌可以有效缩短堆肥周期,促进堆体提前腐熟和稳定。
     黄孢原毛平革菌主要依靠其所分泌的胞外酶降解木质素。本实验通过正交实验法考察了愈创木酚与复合碳源共降解对黄孢原毛平革菌产酶的影响;同时探讨不同分子结构对酶催化机制的影响。实验结果表明:同时添加愈创木酚及不同结构的碳源对该菌产酶有显著影响,高浓度的愈创木酚对产酶有明显的促进作用;在培养基中添加愈创木酚2mmol/L、葡萄糖2.5g/L和糊精5g/L,可以显著提高黄孢原毛平革菌的综合产酶能力;黄孢原毛平革菌可以分泌纤维素酶和木聚糖酶,而且二者之间有较好的线性正相关关系。
     将以上优化条件得到的高活性粗酶液添加至富含木质纤维素的堆肥体系中,考察其对堆肥基质降解和转化的影响。结果表明:添加酶液主要是有利于打破术质素所形成的屏障作用,同时使半纤维素得以暴露,因此半纤维素的降解率也可以被有效提高,此结果与直接接种黄孢原毛平革菌菌体的效果相类似。腐殖质变化结果表明,酶液对胡敏酸形成的影响主要作用于堆肥后期(30d以后),但此阶段以促进微生物对腐殖质分子结构的转换为主,而对于有机物降解能力的影响不明显。堆肥过程的酶活性变化表明,堆肥过程中LiP和MnP的活性高峰是交替出现,且添加酶液对LiP的影响主要体现在堆肥后期。FTIR光谱分析结果表明,添加酶液有利于木质素结构中甲基、亚甲基以及羟基基团的降解,同时GC/MS结果分析表明,添加酶液可以促进木质素结构中苯环氧化开环,C-C键的断裂以及双键氧化等。这些作用均有利于堆肥过程中其它微生物群落的营养供给以及物质进一步的降解与转化。
     为了进一步从机理上了解添加关键功能酶对堆肥过程的影响,本章节以Biolog方法为主要监测手段,结合聚类分析以及PCA分析方法,考察添加酶液对富含木质纤维素堆体中微生物群落代谢能力的影响。结果表明,添加酶液可以显著提高微生物对有机碳的降解能力;AWCD的变化表明,当堆肥进入第6d后,添加酶液后,微生物对胺类碳源的代谢能力显著增强,同时在堆肥进入第15d后,微生物对羧酸类碳源和聚合物类碳源的能力也有较为明显的提高。微生物群落代谢聚类分析结果表明,添加酶液可以改善堆肥微生物对中间代谢产物类碳源的代谢能力。通过主成分分析(PCA)发现,添加酶液提高了堆体中微生物对双亲化合物、聚合物、氨基酸和氨基化合物等碳源的代谢能力,由此可导致堆肥基质被更高效降解。此外,堆肥各时期群落代谢聚类结果表明,酶液对堆肥进程的影响主要表现在一次发酵的第6d和二次发酵的第30d,从而有效地加速了堆肥进程。
Lignocellulose is a macromolecular complex consisted of lignin, cellulose and hemicellulose. Lignin is a highly irregular and insoluble polymer, chemically bonded by covalent linkages of hemicellulose. Therefore, the lignin-carbohydrate complexes enwrap cellulose in plant cell wall. This complex structure inhibits lignocellulose transformation, and consequently slows down the lignocellulosic waste degradation process in nature. Therefore, it is generally accepted that lignin decomposition is the rate-limiting step during composting. White-rot fungi are currently being used not only in the biodegradation of lignin, as they secrete the low specificity and strong oxidative ligninolytic enzymes (such as Lignin Peroxidase, Mn-dependent Peroxidase, lacases et al) which could oxidatively degrade lignin and mineralize them into CO2and water. Phanerochaete chrysosporium (P. chrysosporium) is a typical representative of the white rot fungus; therefore, this study selected P. chrysosporium as research subjects to study the lignin degradation characteristic and mechanism of P. chrysosporium and its key functional enzymes in solid-state fermentationand and composting system.
     In solid state fermentation conditions, the high inoculum concentration of P. chrysosporium would affect the degradation of lignocellulose degradation efficiency. However, the low concentration of it would lead to less degradation. In the experimental range, the best inoculum concentration was4mL/35g dry sample. In this inoculums concentration, the lignin degradation rates of up to39.1%. Furthermore, since the lignin barrier is broken, the degradation of hemicellulose has also been significantly improved by inoculum of P. chrysosporium. Scanning electron microscope and UV spectrum analysis results also show that, in this concentration, the damage of lignocellulose is most severe.
     The results show that P. chrysosporium can significantly improve the degradation of lignin and hemicellulose rate, but the degradation of cellulose is not very obvious. In addition, the effect of P. chrysosporium on lignocellulose transformation was also investigated in this experiment. Therefore, in the composting process, the humus, humic acid, fulvic acid and the humification index of dynamic changes were monitored. The results show that the formation of FA was not obviously influenced by the inoculum of P. chrysosporium, while the HA was significantly enhanced by the inoculum. Humification index also revealed that the composting became mature and steady earlier with P. chrysosporium. And the humification degree of compost was also enhanced. UV and FTIR analysis of humic substances indicated that P. chrysosporium could increase the aromatic content and decrease the polysaccharide and aliphatic contents of composting. With the composting progresses, the compost with P. chrysosporium of humic acid aromatization process was accelerated. This means that P. chrysosporium would improve the degree humification and stable the composting process. Finally, the clustering results indicated that inoculation of P. chrysosporium can effectively shorten the composting time, and promote the early maturity and stability of the composting.
     The influence of guaiacol and compounded carbons sources co-degradation on enzymes of white-rot fungi was studied through the orthogonal experiment. The results show that carbons with different structures and guaiacol have remarkable effect on enzymes secreting by P. chrysosporium. High concentration of guaiacol can enhance enzymes production. After optimumization of various factors, addition of guaiacol2mmol/L, glucose2.5g/L, dextrine5g/L in culture medium can significantly promote enzymes production. CMCase and xylanase produced by P. chrysosporium are little affected by exterior environment. According to the correlativity between the CMCase and the xylanase analyzed using linear regression, a postive correlation the CMCase and the xylanas is found.
     The above high activity of crude enzyme solution added to the lignocellulose-rich compost system. And the effects of the enzymes on lignocellulose degradation and transformation were studied. The results show that adding enzyme is mainly beneficial to break the barrier formed by the lignin, which resulted in the hemicellulose can be exposed. Therefore, the degradation of hemicellulose was also enhanced. These results were samiler to the inoculation of P. chrysosporium. Humuic results indicate that the effect of enzymes in the formation of humic acid was mainly observed after30day. And at this stage the enzymes resulted in the chang of humic molecular structure, however, the significant effect on organic matter degradation was not obvious. During composting, the peak activity of LiP and MnP are alternating, and the effect of enzymes on LiP is mainly after30day. FTIR spectroscopy results indicat that the addition of enzyme was beneficial to the demethylation and then promoted side chain oxidation of lignin. The degradation of aliphatic compounds was accelerated and aromatization was enhanced simultaneously. While GC/MS results showed that addition of enzymes could promote depolymerization of dipolymer and double bond oxidation to accelerate the subsequent lignin degradation. These effects were beneficial to material supply of nutrients for microbial community and further degradation and transformation of lignocellulose during composting.
     The objective of this study was to assess the response of carbon utilization profiles to addition of ligninolytic enzymes during composting. Carbon utilization (measured by Biolog EocPlateTM) revealed that, in the treatment, average well-color development (AWCD) of amino acids was significantly enhanced after day6(P<0.05), while AWCD of carboxylic acids and polymers were increased after day15. The microbial community metabolic of cluster analysis showed that when the enzymes were added into the compost, the carbon metablic capability of intermediate metabolite was improved. Principal component analysis (PCA) confirmed the differentiation of the treatment and the control. The results indicated that, when the enzymes were added, microbial communities enhanced the metabolic capability of miscellaneous, polymers, amino acids and amides carbon substrates, which results in the efficient degradation of organic carbon. In addition, cluster analysis of each composting phase showed that the effects of the enzymes on microbial community metabolism were mainly observed on6d and30d, which promoted the composting process.
引文
[1]Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annual Review of Plant Biology,2003,54(1):519-546
    [2]Zhong R, Ye Z H. Transcriptional regulation of lignin biosynthesis. Plant Signal and Behavior,2009,4(11):1028-1034
    [3]Huang D L, Zeng G M, Feng C L, et al. Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environment Science and Technology,2008,42(13):4946-4951
    [4]边炳鑫,赵由才.农业固体废物的处理与综合利用.北京:化学工业出版社2005,18-21
    [5]Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:a review. Bioresource Technology,2000,72(2):169-183
    [6]赵由才.生活垃圾资源化原理与技术.北京:化学工业出版社,2002,140-144
    [7]Zeng G M, Huang H L, Huang D L, et al. Effect of inoculating white-rot fungus during different phases on the compost maturity of agricultural wastes. Process Biochemistry,2009,44(4):396-400
    [8]席北斗,刘鸿亮,白庆中,等.堆肥中纤维素和木质素的生物降解研究现状.环境朽染治理技术与设备,2002,3:19-23
    [9]Paredes C, Bernal M P, Cegarra J, et al. Bio-degradation of olive mill wastewater sludge by its co-composting with agricultural wastes. Bioresource Technology,2002,85(1):1-8
    [10]Huang D L, Zeng G M, Jiang X Y, et al. Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw. Journal of Hazardous Materials,2006,134(1-3):268-276
    [11]Huang D L, Zeng G M, Feng C L, et al. Degradation of lead-contaminated lignocellulosic waste by phanerochaete chrysosporium and the reduction of lead toxicity. Environment Science and Technology,2008,42:4946-4951
    [12]Vargas-Garcia M D C, Suarez-Estrella F F, Lopez M J, et al. Influence of microbial inoculation and co-composting material on the evolution of humic-like substances during composting of horticultural wastes. Process Biochemistry,2006,41(6):1438-1443
    [13]Vargas-Garcia M D C, Suarez-Estrella F F, Lopez M J, et al. Effect of inoculation in composting processes:modifications in lignocellulosic fraction. Waste Managment,2007,27(9):1099-1107
    [14]Xi B D, Meng W, Liu H, et al. The variation of inoculation complex microbial community in three stages MSW composting process controlled by temperature. Huan Jing Ke Xue,2003,24(2):152-155
    [15]李承强,魏源送.堆肥腐熟度的研究进度.环境科学进展,1999,7(6):1-12
    [16]杨树新,王书聪,刘红星.酵素菌农作物桔秆堆肥.农业科技开发,2002,8:34-35
    [17]黄得扬,陆文静,王洪涛.有机固体废物堆肥化处理的微生物学机理研究.环境污染治理技术与设备,2004,5(1):12-18
    [18]陈耀宁,曾光明,郁红燕,等.植物生物质生物降解组合菌株的筛选研究.生物技术通报,2006,15:500-503
    [19]席北斗,刘鸿亮,孟伟,等.高效复合微生物菌群在垃圾堆肥中的应用.环境科学,2001,22(5):122-125
    [20]Martinez D, Larrondo L F, Putnam N, et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnology,2004,22(6):695-700
    [21]Ryu K, Hwang S, Kim K, et al. Functionality improvement of fungal lignin peroxidase by DNA shuffling for 2,4-dichlorophenol degradability and H2O2 stability. Journal of Biotechnology,2008,133(1):110-115
    [22]郭梅,路福平,刘敏尧,等.基因工程菌漆酶对葸醌染料的脱色研究.环境科学与技术,2009,32(4):133-136
    [23]陆鹏,洪源范,洪青,等.遗传稳定型六六六、甲基对硫磷降解基因工程菌的构建及特性研究.环境科学,2008,29(7):1973-1976
    [24]Haruta S, Kondo M, Nakamura K, et al. Succession of a microbial community during stable operation of a semi-continuous garbage-decomposing system. Journal of Bioscience and Bioengineering,2004,98(1):20-27
    [25]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制.北京:科学出版社,2006,103-104
    [26]Hassen A, Belguith K, Jedidi N, et al. Microbial characterization during composting of municipal solid waste. Bioresource Technology,2001,80(3): 217-225
    [27]吴正松,彭绪亚,蔡华帅,等.微生物在堆肥化中的应用研究.重庆建筑大学学报,2005,27(1):92-96
    [28]陈世和,张所明.城市生活垃圾堆肥处理的微生物特性研究.上海环境科学, 1989,8(8):17-21
    [29]Ishii K, Fukui M, Takii S. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. Journal of Applied Microbiology,2000,89(5):768-777
    [30]Peters S, Koschinsky S, Schwieger F, et al. Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Applied and environmental microbiology,2000,66(3):930-936
    [31]Huang H L, Zeng G M, Tang L, et al. Effect of biodelignification of rice straw on humification and humus quality by Phanerochaete chrysosporium and Streptomyces badius. International Biodeterioration and Biodegradation,2008, 61(4):331-336
    [32]Zimmerman W, Umezawa T, Broda P, et al. Degradation of a non-phenolic arylglycerol [beta]-aryl ether by Streptomyces cyaneus. FEBS Letters,1988, 239(1):5-7
    [33]Berrocal M M, Rodriguez J, Ball A S, et al. Solubilisation and mineralisation of lignocellulose from wheat straw by CECT 3335 during growth in solid-state fermentation. Applied Microbiology and Biotechnology,1997,48(3):379-384
    [34]陈芙蓉,曾光明,郁红艳,等.堆肥化中木质素的生物降解.微生物学杂志,2008,28(1):88-93
    [35]Bumpus J A, Aust S D. Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium:involvement of the lignin degrading system. BioEssays,1987,6(4):166-170
    [36]Hatakka A. Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiology Reviews, 1994,13(2-3):125-135
    [37]黄丹莲,曾光明,黄国和,等.白腐菌的研究现状及其在堆肥中的应用展望,微生物学通报,2004,31(2):112-116
    [38]Tien M, Kirk T. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science,1983,221(4611):661-663
    [39]Moilanen A, Lundell T, Vares T, et al. Manganese and malonate are individual regulators for the production of lignin and manganese peroxidase isozymes and in the degradation of lignin by Phlebia radiata. Applied Microbiology and Biotechnology,1996,45(6):792-799
    [40]Ruiz-Duenas F J, Martinez M J, Martinez A T. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Molecular Microbiology,1999,31(1):223-235
    [41]Datta A, Bettermann A, Kirk T K. Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Applied and Environmental Microbiology, 1991,57(5):1453-1460
    [42]Pease E A, Tien M. Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. Journal of bacteriology,1992,174(11): 3532-3540
    [43]马登波,刘紫鹃,高培基,等.木索生物降解的研究进展.纤维素科学与技术,1996,4(1):1-12
    [44]Gold M H, Alic M. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiology and Molecular Biology Reviews, 1993,57(3):605-622
    [45]杨金水,袁红莉,陈文新.锰过氧化物酶(MnP)的研究进展.生物技术,2003,13(2):45-47
    [46]Sundaramoorthy M, Kishi K, Gold M H, et al. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. Journal of Biological Chemistry,1994,269(52):32759-32767
    [47]赵士豪,赵学库,杨丽宁,等.锰依赖过氧化物酶研究进展.安徽农业科学,2007,35(4):957-959
    [48]Trigo C, Ball A S. Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances? Microbiology,1994,140(11):3145-3152
    [49]卢雪梅,刘紫鹃,高培基.木质素生物降解的化学反应机制.林产化学与工业,1996,16(2):75-82
    [50]池玉杰,伊洪伟.木材白腐菌分解木质素的酶系统-锰过氧化物酶,漆酶和木质素过氧化物酶催化分解木质素的机制.菌物学报,2007,26(1):153-160
    [51]Mester T, Tien M. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. International Biodeterioration and Biodegradation,2000,46(1):51-59
    [52]万云洋,杜予民.漆酶结构与催化机理.化学通报,2007,70(9):662-670
    [53]Quintanar L, Yoon J, Aznar C P, et al. Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase: nature of its coordination unsaturation. Journal of the American Chemical Society,2005,127(40):13832-13845
    [54]Hakulinen N, Kruus K, Koivula A, et al. A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Biochemical and Biophysical Research Communications, 2006,350(4):929-934
    [55]Bento I, Martins L O, Lopes G G, et al. Dioxygen reduction by multi-copper oxidases; a structural perspective. Dalton Transactions,2005, (21):3507-3513
    [56]Stewart P, Kersten P, Vanden Wymelenberg A, et al. Lignin peroxidase gene family of Phanerochaete chrysosporium:complex regulation by carbon and nitrogen limitation and identification of a second dimorphic chromosome. Journal of bacteriology,1992,174(15):5036-5042
    [57]Coll P M, Fernandez Abalos J M, Villanueva J R, et al. Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971). Applied and Environmental Microbiology, 1993,59(8):2607-2613
    [58]李华钟,章燕芳,华兆哲,等.黄孢原毛平革菌选择性合成木质素过氧化物酶和锰过氧化物酶.过程工程学报,2002,2(2):137-141
    [59]Zadrazil F, Puniya A K. Influence of carbon dioxide on lignin degradation and digestibility of lignocellulosics treated with Pleurotus sajor-caju. International Biodeterioration and Biodegradation,1994,33(3):237-244
    [60]Fang J, Liu W, Gao P. Cellobiose dehydrogenase inhibition of polymerization of phenolic compounds and enhancing lignin degradation by lignina. Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica,1999, 31(4):415-419
    [61]Ardon O, Kerem Z, Hadar Y. Enhancement of lignin degradation and laccase activity in Pleurotus ostreatus by cotton stalk extract. Canadian Journal of Microbiology,1998,44:676-680
    [62]Kerem Z, Hadar Y. Effect of manganese on lignin degradation by Pleurotus ostreatus during solid-state fermentation. Applied and Environmental Microbiology,1993,59(12):4115-4120
    [63]Singhal V, Rathore V. Effects of Zn2+ and Cu2+ on growth, lignin degradation and ligninolytic enzymes in Phanerochaete chrysosporium. World Journal of Microbiology and Biotechnology,2001,17(3):235-240
    [64]管筱武,张甲耀,罗宇煊.木质素降解酶及其调控机理研究的进展.上海环境科学,1998,17(11):46-49
    [65]Wolfaardt F, Taljaard J, Jacobs A, et al. Assessment of wood-inhabiting basidiomycetes for biokraft pulping of softwood chips. Bioresource Technology, 2004,95(1):25-30
    [66]Setliff E, Marton R, Granzow S, et al. Biomechanical pulping with white-rot fungi. Tappi journal,1990,73(8):141-147
    [67]吴涓,肖亚中,王怡平.挂膜生长的白腐真菌处理草浆造纸黑液废水.应用与环境生物学报,2004,10(3):370-374
    [68]陈谊,杭怡琼.白腐真菌降解稻草转化饲料的研究.上海交通大学学报:农业科学版,2001,19(2):151-153
    [69]杭怡琼,薛惠琴,陈谊,等.利用白腐真菌对稻草秸秆的降解研究.上海交通大学学报:农业科学版,2002,13:11-14
    [70]Lamar R T, Dietrich D M. In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Applied and Environmental Microbiology,1990,56(10):3093-3100
    [71]马瑛,张甲耀.原毛平革菌堆肥处理有害废弃物的可行性.环境科学,1999,20(6):67-70
    [72]Son H J, Park G T, Cha M S, et al. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology,2006,97(2):204-210
    [73]Kumar V, Ahlawat I. Effect of biofertilizer and nitrogen on wheat (Triticum aestivum) and their after effects on succeeding maize (Zea mays) in wheat-maize cropping system. Indian Journal of Agricultural Science,2006, 76(8):465-468
    [74]彭靖.对我国农业废弃物资源化利用的思考.生态环境学报,2009,18(2):794-798
    [75]Arora D S, Chander M, Gill P K. Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. International Biodeterioration and Biodegradation,2002,50(2):115-120
    [76]Belinky P A, Flikshtein N, Lechenko S, et al. Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. Applied and Environmental Microbiology,2003,69(11):6500-6506
    [77]Preston C M, Trofymow J, Sayer B G, et al. Super (13) C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Canadian Journal of Botany,1997,75(9):1601-1613
    [78]Miyata S, Tokimatsu T, Umezawa T, et al. The degradation of beta-o-4 type lignin carbohydrate complex (LCC) model compounds by lignin peroxidase. Wood research,1997,84(1):22-24
    [79]Tien M, Kirk T K. Lignin peroxidase of Phanerochaete chrysosporium. Methods in Enzymology,1988,161:238-249
    [80]Hofrichter M, Fritsche W. Depolymerization of low-rank coal by extracellular fungal enzyme systems. Ⅱ:The ligninolytic enzymes of the coal-humic-acid-depolymerizing fungus Nematoloma frowardii b19. Applied Microbiology and Biotechnology,1997,47(4):419-424
    [81]Milagres A M F, Sales R M. Evaluating the basidiomycetes Poria medula-panis and Wolfiporia cocos for xylanase production. Enzyme and Microbial Technology,2001,28(6):522-526
    [82]Machuca A, Ferraz A. Hydrolytic and oxidative enzymes produced by white-and brown-rot fungi during Eucalyptus grandis decay in solid medium, Enzyme and Microbial Technology,2001,29(6-7):386-391
    [83]Yu H Y, Zeng G M, Huang H L, et al. Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegrada-tion,2007,18(6):793-802
    [84]李国学,张福锁.固体废物堆肥化与有机复混肥生产.第一版.化学工业出版社,2000,94-95
    [85]杜甫佑,张晓昱,王宏勋,等.白腐菌降解木质纤维素顺序规律的研究.纤维素科学与技术,2005,13(1):17-25
    [86]高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展.自然科学进展,2003,13(1)
    [87]杨玉华,刘德海.纤维酶在食醋酿造中的应用.河南农业大学学报,1999,33(4):398-399
    [88]郁红艳,曾光明,胡天觉,等.真菌降解木质素研究进展及在好氧堆肥中的研究展望.中国生物工程杂志,2003,23(10):57-61
    [89]Alvarenga P, Palma P, Goncalves A, et al. Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land. Environment International,2007,33(4):505-513
    [90]Maia C M B F, Piccolo A, Mangrich A S. Molecular size distribution of compost-derived humates as a function of concentration and different counterions. Chemosphere,2008,73(8):1162-1166
    [91]Smidt E, Meissl K, Schmutzer M, et al. Co-composting of lignin to build up humic substances-Strategies in waste management to improve compost quality. Industrial Crops and Products,2008,27(2):196-201
    [92]Lopez M J, Vargas-Garcia M C, Suarez-Estrella F, et al. Biodelignification and humification of horticultural plant residues by fungi. International Biodeterioration and Biodegradation,2006,57(1):24-30
    [93]Lopez M J, Elorrieta M A, Vargas-Garcia M C. et al. The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi. Bioresource Technology,2002,81(2):123-129
    [94]Hofrichter M. Review:lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology,2002,30(4):454-466
    [95]Baldrian P. Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiology Ecology,2004,50(3):245-253
    [96]Grinhut T, Hadar Y, Chen Y. Degradation and transformation of humic substances by saprotrophic fungi:processes and mechanisms. Fungal Biology Reviews,2007,21(4):179-189
    [97]Wei Z M, Xi B D, Zhao Y, et al. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. Chemosphere,2007, 68(2):368-374
    [98]Rivero C, Chirenje T, Ma L, et al. Influence of compost on soil organic matter quality under tropical conditions. Geoderma,2004,123(3-4):355-361
    [99]Huang H L, Zeng G M, Tang L, et al. Effect of biodelignification of rice straw on humification and humus quality by Phanerochaete chrysosporium and Streptomyces badius. International Biodeterioration and Biodegradation,2008, 61(4):331-336
    [100]Droussi Z, Dorazio V, Provenzano M R, et al. Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. Journal of Hazardous Materials,2009,164(2-3):1281-1285
    [101]Jouraiphy A, Amir S, Gharous M, et al. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. International Biodeterioration and Biodegradation,2005,56(2): 101-108
    [102]Baeta-Hall L, Lourdes B M, Anselmo A M, et al. Bio-degradation of olive oil husks in composting aerated piles. Bioresource Technology,2005,96(1):69-78
    [103]Paredes C, Bernal M, Cegarra J, et al. Bio-degradation of olive mill wastewater sludge by its co-composting with agricultural wastes. Bioresource Technology, 2002,85(1):1-8
    [104]赵由才,柴晓利.生活垃圾资源化原理与技术.北京:化学工业出版社,2002,34-45
    [105]Viikari L. Xylanase enzymes promote pulp bleaching. Paperi ja puu,1991,73(5): 384-389
    [106]张夫道,Foki AD.作物秸秆碳在土壤中分解和转化规律的研究.植物营养与肥料学报,1994,1:27-28
    [107]杭怡琼,薛惠琴.白腐真菌对稻草秸秆的降解及其有关酶活性的变化.菌物系统,2001,20(3):403-407
    [108]Singh K, Rai S, Flegel T, et al. Solid substrate fermentation of ground and un-ground wheat straw with Pleurotus ostreatus. Indian Journal of Animal Sciences,1990,60(10):1230-1234
    [109]牛俊玲,高军侠,李彦明,等.堆肥过程中的微生物研究进展.中国生态农业学报,2007,15(6):185-189
    [110]Fustec E, Chauvet E, Gas G. Lignin degradation and humus formation in alluvial soils and sediments. Applied and Environmental Microbiology,1989,55(4): 922-926
    [111]Varadachari C, Chattopadhyay T, Ghosh K. Complexation of humic substances with oxides of iron and aluminum. Soil Science,1997,162(1):28-34
    [112]Hsu J H, Lo S L. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environmental Pollution, 1999,104(2):189-196.
    [113]Sellami F, Hachicha S, Chtourou M, et al. Maturity assessment of composted olive mill wastes using UV spectra and humification parameters. Bioresource Technology,2008,99(15):6900-6907
    [114]Sanchez-Monedero M, Roig A, Cegarra J, et al. Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresource Technology,1999, 70(2):193-201
    [115]Roletto E, Barberis R, Consiglio M, et al. Chemical parameters for evaluating compost maturity. BioCycle,1985,26(2):46-47
    [116]Chen Y S, Schnitzer N. Information Provided on Humic Substances by E4/E6 Ratiosl. Soil Science Society of America Journal,1976,41(2):352-358
    [117]Amir S, Benlboukht F, Cancian N, et al. Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting. Journal of Hazardous Materials,2008,160(2-3):448-455
    [118]Huang G, Wu Q, Wong J, et al. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresource Technology,2006, 97(15):1834-1842
    [119]Ciavatta C, Govi M, Pasotti L, et al. Changes in organic matter during stabilization of compost from municipal solid wastes. Bioresource Technology, 1993,43(2):141-145
    [120]Prudent P, Domeizel M, Massiani C,et al. Gel chromatography separation and UV spectroscopic characterization of humic-like substances in urban composts. Science of theTotal Environment,1995,172(2-3):229-235
    [121]Vallet C, Lemaire G, Monties B, et al. Cell wall fractionation of alfalfa stem in relation to internode development:biochemistry aspect. Journal of Agricultural and Food Chemistry,1998,46(9):3458-3467
    [122]Tatarko M, Bumpus J A. Further studies on the inactivation by sodium azide of lignin peroxidase from phanerochaete chrysosporium. Archives of Biochemistry and Biophysics,1997,339(1):200-209
    [123]Macarena S, Fernando L L, Rafael V, et al. Incomplete processing of peroxidase transcripts in the lignin degrading fungus Phanerochaete chrysosporium. FEMS Microbiology Letters,2005,242(1):37-44
    [124]Martinez A T. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme and Microbial Technology,2002,30(4):425-444
    [125]李越中,高培基,王祖农.黄孢原毛平革菌合成木素过氧化物酶的营养调控.微生物学报,1994,34(1):29-36
    [126]赵明刚,郝爱友.环糊精在有机合成中的立体控制性能.化学通报,2006,69:1-8
    [127]Schlatter A. Asymmetric transfer hydrogenation to aromatic and aliphatic ketones catalyzed by ruthenium complexes linked to both faces of [beta]-cyclodextrin:[dissertation]. PhD:University of Basel,2007,45-48
    [128]Bahri H, Rasse D, Rumpel C, et al. Lignin degradation during a laboratory incubation followed by 13C isotope analysis. Soil Biology and Biochemistry, 2008,40(7):1916-1922
    [129]Kuhar S, Nair L M, Kuhad R C. Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Canadian Journal of Microbiology,2008,54(4):305-313
    [130]Fava F, Gioia D D, Marchetti L. Characterization of a pigment produced by Pseudomonas fluorescens during 3-chlorobenzoate co-metabolism. Chemosphere,1993,27(5):825-835
    [131]Young R A, Akhtar M. Environmentally friendly technologies for the pulp and paper industry. Wiley,1998,21-24
    [132]Jensen Jr K A, Bao W, Kawai S, et al. Manganese-dependent cleavage of nonphenolic lignin structures by Ceriporiopsis subvermispora in the absence of lignin peroxidase. Applied and Environmental Microbiology,1996,62(10): 3679-3686
    [133]Hofrichter M, Scheibner K, Schneegass I, et al. Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Applied and Environmental Microbiology,1998,64(2):399-404
    [134]王彩华,王惠生,付时雨.贝壳状革耳菌和黄孢平革菌固体培养酶系比较.微生物学报,1999,39(2):127-131
    [135]Sun J, Xu F, Sun X, et al. Physico-chemical and thermal characterization of cellulose from barley straw. Polymer Degradation and Stability,2005,88(3): 521-531
    [136]Kokol V, Doliska A, Baldrian P, et al. Decolorization of textile dyes by whole cultures of ischnoderma resinosum and by purified laccase and Mn-peroxidase. Enzyme and Microbial Technology,2007,40(7):1673-1677
    [137]Baldrian P, Snajdr J. Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes. Enzyme and Microbial Technology,2006,39(5):1023-1029
    [138]Cohen S, Belinky P A, Hadar Y, et al. Characterization of catechol derivative removal by lignin peroxidase in aqueous mixture. Bioresource Technology, 2009,100(7):2247-2253
    [139]毕鑫,路福平,杜连祥.白腐菌木素过氧化物酶发酵条件及其酶液对稻草降解的研究.纤维素科学与技术,2002,10(4):41-48
    [140]Miki K, Renganathan V, Gold M H. Novel aryl ether rearrangement catalyzed by lignin peroxidase of Phanerochaete chrysosporium. FEBS Letters,1986,203(2): 235-238
    [141]Umezawa T, Higuchi T. Cleavages of aromatic ring and [beta]-O-4 bond of synthetic lignin (DHP) by lignin peroxidase. FEBS Letters,1989,242(2): 325-329
    [142]冯冲凌,曾光明,黄丹莲,等.愈创木酚与复合碳源共降解对黄孢原毛平革菌产酶的影响.中南大学学报:自然科学版,2010,41(4):1628-1632
    [143]Raj A, Krishna Reddy M, Chandra R. Identification of low molecular weight aromatic compounds by gas chromatography-mass spectrometry (GC-MS) from kraft lignin degradation by three Bacillus sp. International Biodeterioration and Biodegradation,2007,59(4):292-296
    [144]Tang J C, Shibata A, Zhou Q, et al. Effect of temperature on reaction rate and microbial community in composting of cattle manure with rice straw. Journal of Bioscience and Bioengineering,2007,104(4):321-328
    [145]Lopez M J, Vargas-Garcia M C, Suarez-Estrella F, et al. Biodelignification and humification of horticultural plant residues by fungi. International Biodeterioration and Gradation,2006,57(1):24-30
    [146]Liang C, Das K, Mcclendon R. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresource Technology,2003,86(2):131-1377
    [147]Zeng G M, Yu M, Chen Y N, et al. Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresource Technology,2010,101(1):222-227
    [148]Enoki A, Tanaka H, Fuse G. Degradation of lignin-related compounds, pure cellulose, and wood components by white-rot and brown-rot fungi. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood,1988,42(2):85-93
    [149]Pandey K, Pitman A. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration and Biodegradation,2003,52(3):151-160
    [150]Kim Y S, Newman R H. Solid state 13C NMR study of wood degraded by the brown rot fungus Gloeophyllum trabeum. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood,1995,49(2): 109-114
    [151]蒋挺大.木质素.第一版.北京:化学工业出版社,2001,45-48
    [152]Shui Yang J, Ren Ni J, Li Yuan H, et al. Biodegradation of three different wood chips by Pseudomonas sp. PKE117. International Biodeterioration and Biodegradation,2007,60(2):90-95
    [153]Trindade W G, Hoareau W, Razera I A T, et al. Phenolic thermoset matrix reinforced with sugar cane bagasse fibers:attempt to develop a new fiber surface chemical modification involving formation of quinones followed by reaction with furfuryl alcohol. Macromolecular Materials and Engineering, 2004,289(8):728-736
    [154]Vane C H. The molecular composition of lignin in spruce decayed by white-rot fungi (Phanerochaete chrysosporium and Trametes versicolor) using pyrolysis-GC-MS and thermochemolysis with tetramethylammonium hydroxide. International Biodeterioration and Biodegradation,2003,51(1):67-75
    [155]Vane C H, Abbott G D, Head I M. The effect of fungal decay (Agaricus bisporus) on wheat straw lignin using pyrolysis-GC-MS in the presence of tetramethylammonium hydroxide (TMAH). Journal of Analytical and Applied Pyrolysis,2001,60(1):69-78
    [156]Amir S, Hafidi M, Lemee L, et al. Structural characterization of humic acids, extracted from sewage sludge during composting, by thermochemolysis-gas chromatography-mass spectrometry. Process Biochemistry,2006,41(2):410-422
    [157]Jiang X Y, Zeng G M, Huang D L, et al. Remediation of pentachlorophenol-contaminated soil by composting with immobilized Phanerochaete chrysosporium. World Journal of Microbiology and Biotechnology,2006,22(9):909-913
    [158]戴芳,曾光明,袁兴中,等.生物表面活性剂在农业废物好氧堆肥中的应用.环境科学,2005,26(4):181-185
    [159]Dignac M F, Houot S, Francou C, et al. Pyrolytic study of compost and waste organic matter. Organic Geochemistry,2005,36(7):1054-1071
    [160]Zeng G M, Huang D L, Feng C L, et al. Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresource Technology,2007,98(2): 320-326
    [161]Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology,1991, 57(8):2351-2359
    [162]Glimm E, Heuer H, Engelen B, et al. Statistical comparisons of community catabolic profiles. Journal of Microbiological Methods,1997,30(1):71-80
    [163]Graham M, Haynes R. Catabolic diversity of soil microbial communities under sugarcane and other land uses estimated by Biolog and substrate-induced respiration methods. Applied Soil Ecology,2005,29(2):155-164
    [164]Howard P. Analysis of data from Biolog plates:Comments on the method of Garland and Mills. Soil Biology and Biochemistry (United Kingdom),1997
    [165]Calbrix R, Laval K, Barray S. Analysis of the potential functional diversity of the bacterial community in soil:A reproducible procedure using sole-carbon-source utilization profiles. European Journal of Soil Biology,2005,41(1-2): 11-20
    [166]Borsodi A K, Cech G, Gedeon G, et al. Bacterial activities in the sediment of Lake Velencei, Hungary. Hydrobiologia,2003,506(1):721-728
    [167]席劲瑛,胡洪营,姜健,等.生物过滤塔中微生物群落的代谢特性.环境科学,2005,26(7):165-170
    [168]冯宏,张新明,李华兴,等.接种菌剂对堆肥微生物利用碳源能力的影响.华南农业大学学报,2005,26(4):19-22
    [169][Weber K P, Grove J A, Gehder M, et al. Data transformations in the analysis of community-level substrate utilization data from microplates. Journal of Microbiological Methods,2007,69(3):461-469
    [170]Gomez E, Ferreras L, Toresani S. Soil bacterial functional diversity as influenced by organic amendment application. Bioresource Technology,2006, 97(13):1484-1489
    [171]Harch B D, Correll R L, Meech W, et al. Using the Gini coefficient with Biolog substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. Journal of Microbiological Methods, 1997,30(1):91-101
    [172]郁红艳,曾光明,习兴梅,等.蔬菜-秸秆废物堆肥化中细菌群落变化研究.微生物学报,2007,47(1):98-102
    [173]张海涵,唐明,陈辉,等.不同生态条件下油松(Pinus tabulaeformis)菌根根际土壤微生物群落.生态学报,2007,27(12):5463-5470
    [174]Kurek B, Martinez-Inigo M, Artaud I, et al. Structural features of lignin determining its biodegradation by oxidative enzymes and related systems. Polymer Degradation and Stability,1998,59(1-3):359-364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700