用户名: 密码: 验证码:
环境激素壬基酚对小鼠神经毒性作用及其分子生物学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壬基酚(nonylphenol, NP)是一种非常典型的烷基酚类化合物,被广泛应用于工农业和一些日用品的生产中,并被排放到自然界,造成环境污染。作为一种环境激素,壬基酚暴露对动物的生殖系统、免疫系统都有一定的干扰作用。然而,目前对于壬基酚的神经毒性作用的研究还很少。本论文首次通过体内实验从ROS介导的细胞凋亡以及炎症反应信号通路角度,探讨了NP的神经毒性作用及其相应的分子机制,为后续的深入研究以及防治烷基酚类环境激素神经毒性作用提供理论基础,并为制定相关环境污染标准提供理论依据。
     本实验采用灌胃法建立NP暴露的亚慢性毒性实验模型。将雄性小鼠随机分为4组,每组9只。处理组分别灌喂50, 100, 200 mg/kg/d的壬基酚(nonylphenol, NP)(玉米油溶解),对照组灌喂玉米油。连续处理90天之后,开始进行各种检测。
     利用生化实验方法,对实验小鼠中枢神经系统中的抗氧化系统进行检测,发现NP可以显著抑制抗氧化酶过氧化物歧化酶和过氧化氢酶的活性,激活单胺氧化酶的活性,而抑制小鼠脑组织的总抗氧化能力和抑制羟自由基能力,引起自由基在脑组织中的积累,引起氧化应激,造成脂质过氧化。
     利用基因克隆以及体外转录的方法合成探针进行原位杂交,并结合RT-PCR、免疫组化和Western Blot等分子生物学方法,对细胞凋亡信号通路上关键基因表达进行检测,最后应用TUNEL法检测细胞凋亡水平。实验发现,NP能够显著抑制脑组织中皮质和海马区域抗凋亡基因bcl-2的转录,活化Caspase-3蛋白,诱导脑组织中神经细胞凋亡。但是NP对于细胞凋亡内在通路中的促凋亡蛋白bax mRNA以及外在通路中的关键蛋白Fas和Fas-L的表达都没有影响。这提示NP诱导的中枢神经系统细胞凋亡是通过抑制bcl-2的转录并激活Caspase-3蛋白实现的。
     利用Western Blot和免疫组化的方法,分别对炎症反应中的关键蛋白的表达进行定量和定位检测。结果发现NP可以促进转录因子NF-κB的活化,诱导其下游炎症反应酶iNOS和COX-2在海马和皮质中的表达。同时,通过生化实验还发现总NOS活性和NO水平在NP处理组也有显著提高,提示NP具有潜在的诱导脑组织慢性炎症反应以及神经毒性的作用。
     通过开场行为学实验、避暗试验以及Morris水迷宫实验,检测NP对小鼠学习记忆能力以及对新异环境的兴奋性、适应性、探究和紧张程度等行为的影响,发现高剂量的NP对小鼠的空间学习记忆能力有明显的削弱作用,并使其在新异环境中适应性减弱,更容易紧张以及探究行为减少。从整体行为学角度进一步说明了NP对小鼠的中枢神经系统有一定的损伤作用。
     通过以上一系列的研究发现,NP对于雄性小鼠中枢神经系统有一定的毒害作用,大剂量长期接触NP对中枢神经系统会造成一定的损伤。NP诱导的神经毒性很有可能是通过促进神经细胞内ROS生成,激活线粒体依赖的细胞凋亡途径以及NF-κB介导的炎症信号通路,从而影响细胞凋亡因子以及炎症因子的表达,引起神经细胞的炎症反应促进细胞凋亡,从而对中枢神经系统起到毒性作用。
Nonylphenol (NP) is an organic compound of the broad family of alkylphenols. It is widely used in industrial and agricultural production and the production of consumer goods, and was released into the natural world, causing environmental pollution. As an endocrine disruptor, the exposure of NP could disturb the function of reproductive systems and immune system. However, few in vivo studies have assessed whether chronically administering of NP produces neurotoxic effects. The present study was performed to investigate the molecular mechanism of the neurotoxicity of NP on the view of ROS related apoptosis and inflammatory pathway for the first time, which laid the theoretical foundation for the following in-depth study and control of the alkylphenols neurotoxicity. And these results provide a theoretical basis for the development of relevant environmental standards.
     The NP exposed sub-chronic toxicological experimental model was established by oral gavages. Young male mice were randomly divided into four groups, and nine mice per group. After acclimatization to the laboratory conditions for one week, the treated groups were given NP (dissolved in corn oil) daily by oral gavages at 50, 100, 200 mg/kg per day, respectively. Mice in the control group were given the vehicle (corn oil) alone. After treating for 90 days, the mice were sacrificed for analysis. To detect the antioxidant defense system in central nervous system (CNS) by biochemical studies, we found that NP could induce lipid peroxidation and oxidative stress by refraining Superoxide Dismutase (SOD) activity, catalase (CAT) activity, total antioxidative capacity, and the scavenging activity on hydroxyl free radical.
     The expressions of the key genes on the apoptosis pathway were detected by in situ hybridization, RT-PCR, immunohistochemistry and immunoblotting assays, and the apoptosis in the brain was examine by TUNEL assay. The probes for in situ hybridization were generated by gene clone and in vitro transcription. In our present study, NP could significantly down-regulate the transcription of the anti-apoptosis gene bcl-2 and up-regulation of active caspase-3 in hippocampus and cortex, which is in accord with the results of terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) (p<0.05). However the expression of pro-apoptosis gene, bax mRNA, in the intrinsic apoptotic pathway and the expression of the key protein, Fas and Fas-L, in the extrinsic pathway were not affected in NP treated mice. These results indicated that NP induced apoptosis in the mice brain via suppression the transcription of the anti-apoptosis gene bcl-2 and up-regulation of active caspase-3.
     Western Blot and immunohistochemistry assays were used to detect the quantity and distribution of the key protein on the inflammatory signaling pathways. NP could up-regulate the nuclear transcription factor-κB (NF-κB) activation, and induce the expression of its downstream inflammatory mediators iNOS and COX-2 in hippocampus and cortex. The results of biochemical studies also suggested that nitric oxide synthase (NOS) activity and nitric oxide (NO) level were significantly higher in NP treated mice brain. These findings demonstrated that NP may have the potential to induce the chronic inflammatory and cause neurotoxicity in the mouse brain.
     Open-field test, step-through test and Morris-maze test were used to detect the effect of NP on the behaviors (learning and memory, excitability, adaptability, exploration and tensity) in the new environment. High dose of NP could significantly impair spatial learning and memory. NP could also make the mice easier to tension, weaken the adaptability, and reduce the exploration in the new environment. These results give more evidences that NP could induce neurotoxicity in CNS on the view of learning and memory behavior.
     All of these findings indicated that chronic exposure to NP could induce neurotoxicity and damage in the CNS of male mice. The neurotoxicity of NP was probably via activation of mitochondrial apoptosis pathway and NF-κB mediated inflammatory signaling pathway, which influence the expression of apoptosis genes and inflammatory mediators.
引文
[1] IPCS. The International Programme on Chemical Safety (IPCS): Global assessment of the state-of-the-science of endocrine disruptors[R]. Geneva: WHO/PCS/EDC, 2002.
    [2] Merlet J., Racine C., Moreau E., Moreno S.G., Habert R. Male fetal germ cells are targets for androgens that physiologically inhibit their proliferation[J]. PNAS, 2007 (9): 3615-3620.
    [3] Anway M.D., Cupp A.S., Uzumcu M., Skinner M.K. Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility[J]. Science, 2005 (5727): 1466-1469.
    [4] Mendes J.J.A. The endocrine disrupters: a major medical challenge[J]. Food and Chemical Toxicology, 2002 (6): 781-788.
    [5] Witorsch R.J. Endocrine Disruptors: Can Biological Effects and Environmental Risks Be Predicted[J]. Regulatory Toxicology and Pharmacology, 2002 (1): 118-130.
    [6] Sonnenschein C., Soto A.M. An updated review of environmental estrogen and androgen mimics and antagonists[J]. J.Steroid Biochem.Mol.Biol., 1998 (1-6): 143-150.
    [7] Aou S., Inoue T., Fujimoto T., Mizuno M., Oomura Y., Kubo K., Arai O. Chemical impacts onhigher brain functions[J]. International Congress Series, 2004 (1269): 101-104.
    [8] Arukwe A., Thibaut R., Ingebrigtsen K., Celius T., Goksoyr A., Cravedi J. In vivo and in vitrometabolism and organ distribution of nonylphenol in Atlantic salmon (Salmo salar)[J]. Aquat Toxicol, 2000 (4): 289-304.
    [9] Smith M.D., Hill E.M. Uptake and metabolism of technical nonylphenol and its brominated analogues in the roach (Rutilus rutilus)[J]. Aquat Toxicol, 2004 (4): 359-369.
    [10] Adachi T., Mori C., Yoshinaga M., Aokin N., Tsujimoto G., Tsud K., Yasuda K. Promoting insulin secretion in pancreatic islets by means of bisphenol A and nonylphenol via intracellular estrogen receptors[J]. Food and Chemical Toxicology, 2005 (5): 713-719.
    [11] Kudo C., Wada K., Masuda T., Yonemura T., Shibuya A., Fujimoto Y., Nakajima A., Niwa H., Kamisaki Y. Nonylphenol induces the death of neural stem cells due to activation of the caspase cascade and regulation of the cell cycle[J]. J.Neurochem., 2004 (6): 1416-1423.
    [12] Ohkimoto K., Sugahara T., Sakakibara Y., Suiko M., Liu M.Y., Carter G., Liu M.C. Sulfonation of environmental estrogens by zebrafish cytosolic sulfotransferases[J]. Biochem.Biophys.Res.Commun., 2003 (1): 7-11.
    [13] Khan S.Z., Kirk C.J., Michelangeli F. Alkylphenol endocrine disrupters inhibit IP3-sensitive Ca2+ channels[J]. Biochemical and Biophysical Research Communications, 2003 (2):261-266.
    [14] Thibaut R., Debrauwer L., Perdu E., Goksoyr A., Cravedi J.P., Arukwe A. Regio-specific hydroxylation of nonylphenol and the involvement of CYP2K- and CYP2M-like iso-enzymes in Atlantic salmon (Salmo salar)[J]. Aquat.Toxicol., 2002 (3): 177-190.
    [15] Han X.D., Tu Z.G., Gong Y., Shen S.N., Wang X.Y., Kang L.N., Hou Y.Y., Chen J.X. The toxic effects of nonylphenol on the reproductive system of male rats[J]. Reprod.Toxicol., 2004 (2): 215-221.
    [16] Green T., Swain C., Miller J.P., Joiner R.L. Absorption, bioavailability, and metabolism of para-nonylphenol in the rat[J]. Regulatory Toxicology and Pharmacology 38, 43-51. 2007.
    [17] Nagao T., Wada K., Marumo H., Yoshimura S., Ono H. Reproductive effects of nonylphenolin rats after gavage administration: a two‐ generation study[J]. Reprod.Toxicol., 2001 (1): 293 ‐ 315.
    [18] Chitra K.C., Latchoumycandane C., Mathur P.P. Effect of nonylphenol on the antioxidant system in epididymal sperm of rats[J]. Arch.Toxicol., 2002 (9): 545-551.
    [19] Yao G., Hou Y. Nonylphenol induces thymocyte apoptosis through Fas/FasL pathway by mimicking estrogen in vivo[J]. Environ. Toxicol. Pharmacol., 2004 (1) : 19-27.
    [20] Yao G., Hu Y., Liang J., Hou Y. Nonylphenol-induced thymocyte apoptosis is related to Fas/FasL pathway[J]. Life Sci., 2005 (26): 3306-3320.
    [21] Yao G., Yang L., Hu Y., Liang J., Hou Y. Nonylphenol-induced thymocyte apoptosis involved caspase-3 activation and mitochondrial depolarization[J]. Mol. Immunol., 2006 (7): 915-926.
    [22] Sakai A. p-Nonylphenol acts as a promoter in the BALB/3T3 cell transformation[J]. Mutation Research, 2001 (1-2): 161-166.
    [23] Zumbado M., Boada L.D., Torres S., Monterde J., Diaz-Chico B.N., Afonso J.L., Cabrera J.J., Blanco A. Evaluation of acute hepatotoxic effects exerted by environmental estrogens nonylphenol and 4-octylphenol in immature male rats[J]. Toxicology, 2002 (1-3): 49-62.
    [24] Dessi-Fulgheri F., Porrini S., Farabollini F. Effects of perinatal exposure to bisphenol A on play behavior of female and male juvenile rats[J]. Environ. Health Perspect, 2002 (Suppl 3): 403-407.
    [25] Obata T., Kubota S. Formation of hydroxy radicals by environmental estrogen-like chemicals in rat striatum[J]. Neuroscience Letters, 2000 (1): 41-44.
    [26] Negishi T., Ishii Y., Kyuwa S., Kuroda Y., Yoshikawa Y. Inhibition of staurosporine-induced neuronal cell death by bisphenol A and nonylphenol in primary cultured rat hippocampal and cortical neurons[J]. Neuroscience Letters, 2003 (2): 99-102.
    [27] Aoki M., Kurasaki M., Saito T., Seki S., Hosokawa T., Takahashi Y., Fujita H., Iwakum T. Nonylphenol enhances apoptosis induced by serum deprivation in PC12 cells[J]. Life Sci., 2004 (18): 2301-2312.
    [28] Kudo C., Wada K., Masuda T., Yonemura T., Shibuya A., Fujimoto Y., Nakajima A., Niwa H., Kamisaki Y. Nonylphenol induces the death of neural stem cells due to activation of the caspase cascade and regulation of the cell cycle[J]. J. Neurochem., 2004 (6): 1416-1423.
    [29] Funabashi T., Nakamura T.J., Kimura F., p-Nonylphenol, 4-tert-Octylphenol and Bisphenol A Increase the Expression of Progesterone Receptor mRNA in the Frontal Cortex of Adult Ovariectomized Rats[J]. J.Neuroendocrinol., 2004 (2): 1-6.
    [30] Furuta M., Funabashi T., Kawaguchi M., Nakamura T.J., Mitsushima D., Kimura F., Effects of p-Nonylphenol and 4-tert -Octylphenol on the Anterior Pituitary Functions in Adult Ovariectomized Rats[J]. Neuroendocrinology, 2004 (1): 14-20.
    [31] Gong Y., Han X.D. Nonylphenol-induced oxidative stress and cytotoxicity in testicular Sertoli cells[J]. Reprod. Toxicol., 2006 (4): 623-630.
    [32] Zhang J.H., Zhang Y., Herman B. Caspases, apoptosis and aging[J]. Ageing Res. Rev., 2003 (4): 357-366.
    [33] Yao G., Ling L., Luan J., Ye D., Zhu P. Nonylphenol induces apoptosis of Jurkat cells by a caspase-8 dependent mechanism[J]. International Immunopharmacology, 2007 (4): 444-453.
    [34] Kim S., Kim B., Shim J., Gil J., Yoon Y., Kim J. Nonylphenol and Octylphenol-Induced Apoptosis in Human Embryonic Stem Cells Is Related to Fas-Fas Ligand Pathway[J]. Toxicological Science, 2006 (2): 310-321.
    [35] Dimayuga F.O., Wang C., Clark J.M., Dimayuga E.R., Dimayuga V.M., Bruce-Keller A.J. SOD1 overexpression alters ROS production and reduces neurotoxic inflammatory signaling in microglial cells[J]. Journal of Neuroimmunology, 2007 (1-2): 89-99.
    [36] Heneka M.T., O'Banion M.K. Inflammatory processes in Alzheimer's disease[J]. Journal of Neuroimmunology, 2007 (1-2): 69-91.
    [37] Tansey M.G., McCoy M.K., Frank-Cannon T.C. Neuroinflammatory mechanisms in Parkinson's disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention[J]. Experimental Neurology, 2007 (1): 1-25
    [38] Sebban H, Courtois G. NF-kappaB and inflammation in genetic disease[J]. Biochem Pharmacol., 2006 (9): 1153-1160.
    [39] Serrano J, Encinas JM, Fernández AP, Rodrigo J, Martínez A. Effects of acute hypobaric hypoxia on the nitric oxide system of the rat cerebral cortex: Protective role of nitric oxide inhibitors[J]. Neuroscience, 2006 (3): 799-808.
    [40] Andreasson K.I., Savonenko A., Vidensky S., Goellner J.J., Zhang Y., Shaffer A., Kaufmann W.E., Worley P.F., Isakson P., Markowska A.L. Age-Dependent Cognitive Deficits and Neuronal Apoptosis in Cyclooxygenase-2 Transgenic Mice[J]. The Journal of Neuroscience, 2001 (20): 8198-8209.
    [41] Kim J.Y., Choi C.Y., Lee K.J., Shin D.W., Jung K.S., Chung Y.C., Lee S.S., Shin J.G., Jeong H.G. Induction of inducible nitric oxide synthase and proinflammatory cytokines expression by o,p-DDT in macrophages[J]. Toxicol. Lett., 2004 (3): 269-261.
    [42] You H.J., Choi C.Y., Jeon Y.J., Chung Y.C., Kang S.K., Hahm K., Jeong H.G. Suppression of inducible nitric oxide synthase and tumor necrosis factor-a expression by 4-nonylphenol in macrophages[J]. Biochemical and Biophysical Research Communications, 2002 (4): 753-759.
    [43] Panzica G.C., Viglietti-Panzica C., Mura E., Quinn M.J., Lavoie E., Palanza P., Ottinger M.A. Effects of xenoestrogens on the differentiation of behaviorally-relevant neural circuits[J]. Front Neuroendocrinol, 2007 (4): 179-200.
    [44] Schantz S.L., Widholm J.J. Cognitive Effects of Endocrine-Disrupting Chemicals in Animals[J]. Environmental Health Perspectives, 2001 (12): 1197-1206.
    [45] Weiss B. Can endocrine disruptors influence neuroplasticity in the aging brain[J]? NeuroToxicology, 2007 (5): 938-950.
    [46] Flynn K.M., Newbold R.R., Ferguson S.A. Multigenerational exposure to dietary nonylphenol has no severe effects on spatial learning in female rats[J]. Neurotoxicology, 2002 (1): 87-94.
    [47] Curtin J.F., Donovan M., Cotter T.G. Regulation and measurement of oxidative stress in apoptosis[J]. Journal of Immunological Methods, 2002 (1-2): 49-72.
    [48] Trushina E., McMurray C.T. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases[J]. Neuroscience 2007 (4): 1233-1248.
    [49] Pope S., Land J.M., Heales S.J. Oxidative stress and mitochondrial dysfunction in neurodegeneration; cardiolipin a critical target[J]? Biochim Biophys Acta, 2008, in press.
    [50] Kamboj SS, Kumar V, Kamboj A, Sandhir R. Mitochondrial Oxidative Stress and Dysfunction in Rat Brain Induced by Carbofuran Exposure[J]. Cell Mol Neurobiol, 2008, in press
    [51] Drechsel DA, Patel M. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson's disease[J]. Free Radic Biol Med, 2008 (11): 1873-1886.
    [52] Chong Z.Z., Li F., Maiese K. Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease[J]. Progress in Neurobiology, 2005 (3): 207-246.
    [53] Okai Y., Sato E.F., Higashi-Okai K., Inoue M. Enhancing Effect of the Endocrine Disruptorpara-Nonylphenol on the Generation of Reactive Oxygen Species in Human Blood Neutrophils[J]. Environ Health Perspect, 2004 (5): 553-556.
    [54] Gong Y., Han X.D. Nonylphenol-induced oxidative stress and cytotoxicity in testicular Sertoli cells[J]. Reproductive Toxicology, 2006 (4): 623-630.
    [55] Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease[J]. The International Journal of Biochemistry & Cell Biology, 2007 (1): 44-84.
    [56] Kannan K., Jain S.K. Oxidative stress and apoptosis. Pathophysiology, 2000 (3): 153-163.
    [57] Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants[J]. Cellular Signalling, 2007 (9): 1807-1819.
    [58] Liochev S.I., Fridovich I. The effects of superoxide dismutase on H2O2 formation[J]. Free Radical Biology & Medicine, 2007 (10): 1465-1469.
    [59] Zelko I.N., Mariani T.J., Folz R.J. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression[J]. Free Radical Biology & Medicine, 2002 (3): 337-349.
    [60] Keller G.A., Warner T. G., Steimer K. S., Hallewell R. A. Cu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells[J]. Proc. Natl. Acad. Sci. USA, 1991 (16): 7381-7385.
    [61] Crapo J. D., Oury T., Rabouille C., Slot J. W., Chang L.Y. Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells[J]. Proc. Natl. Acad. Sci. USA, 1992 (21): 10405-10409.
    [62] St. Clair D. K., Oberley T. D., Muse K. E., St Clair W. H. Expression of manganese superoxide dismutase promotes cellular differentiation[J]. Free Radic. Biol. Med., 1994 (2): 275-282.
    [63] Marklund S. L., Bjelle A., Elmqvist L. G. Superoxide dismutase isoenzymes of the synovial fluid in rheumatoid arthritis and in reactive arthritides[J]. Ann. Rheum. Dis., 1986 (10): 847-851.
    [64] Henry N. Kirkman H.N., Gaetani G.F. Mammalian catalase: a venerable enzyme with new mysteries[J]. Trends in Biochemical Sciences, 2007 (1): 44-50
    [65] Toninello A., Pietrangeli P., De Marchi U., Salvi M., Mondovì B. Amine oxidases in apoptosis and cancer[J]. Biochimica et Biophysica Acta, 2006 (1): 1-13.
    [66] Marnett L.J. Lipid peroxidation-DNA damage by malondialdehyde[J]. Mutation Research, 1999 (1-2): 83-95
    [67] Rio D.D., Stewart A.J., Pellegrini N. A review of recent studies on malondialdehyde as toxicmolecule and biological marker of oxidative stress[J]. Nutrition, Metabolism & Cardiovascular Diseases, 2005 (4): 316-328.
    [68] Marnett L.J. Oxy radicals, lipid peroxidation and DNA damage[J]. Toxicology, 2002 (181-182): 219-222.
    [69] Ji C., Rouzer C.A., Marnett L.J., Pietenpol J.A. Induction of cell cycle arrest by the endogenous product of lipid peroxidation, malondialdehyde[J]. Carcinogenesis, 1998 (7): 1275-1283.
    [70] Yuan J., Yankner B.A. Apoptosis in the nervous system[J]. Nature 2000 (6805): 802-809.
    [71]Robertson J.D., Orrenius S. Role of mitochondria in toxic cell death[J]. Toxicology 2002 (181-182): 491-496.
    [72] Roth K.A. Caspases, apoptosis and Alzheimer’s disease: causation, correlation and confusion[J]. J. Neuropathol. Exp. Neurol., 2001 (60): 829-838.
    [73] Akhtar R.S., Ness J.M., Roth K.A. Bcl-2 family regulation of neuronal development and neurodegeneration[J]. Biochimica et Biophysica Acta, 2004 (2-3): 189-203.
    [74] Peter M.E., Krammer P.H. The CD95 (APO-1/Fas) DISC and beyond[J]. Cell Death Differ., 2003 (1): 26-35.
    [75] Harris C.A., Johnson E.M. BH3-only Bcl-2 Family Members Are Coordinately Regulated by the JNK Pathway and Require Bax to Induce Apoptosis in Neurons[J]. The Journal of Biological Chemistry, 2001 (41): 37754-37760.
    [76] Reed J.C. Bcl-2 family proteins[J]. Oncogene, 1998 (25): 3225-3236.
    [77] Gross A., McDonnell J.M., Korsmeyer S.J. BCL-2 family members and the mitochondria in apoptosis[J]. Genes & Dev., 1999 (15): 1899-1911.
    [78] Krajewski S., Tanaka S., Takayama S., Schibler M.J., Fenton W., Reed J.C. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and other mitochondrial membranes[J]. Cancer Res., 1993 (19): 4701-4714.
    [79] Swanton E., Savory P., Cosulich S., Clarke P. , Woodman P. Bcl-2 regulates a caspase-3/caspase-2 apoptotic cascade in cytosolic extracts[J]. Oncogene, 1999 (10): 1781-1787.
    [80] Okuno S., Shimizu S., Ito T., Nomura M., Hamada E., Tsujimoto Y., Matsuda H. Bcl-2 Prevents Caspase-independent Cell Death[J]. The Journal of Biological Chemistry, 1998 (51): 34272-34277.
    [81] Yang J., Liu X., Bhalla K., Kim C.N., Ibrado A.M., Cai J., Peng T.I., Jones D.P., Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked[J].Science 1997 (5303): 1129-1132.
    [82] Kim H.E., Yoon S.Y., Lee J.E., Choi W.S., Jin B.K., Oh T.H., Markelonis G.J., Chun S.Y., Oh Y.J. MPP(+) downregulates mitochondrially encoded gene transcripts and their activities in dopaminergic neuronal cells: protective role of Bcl-2[J]. Biochemical and Biophysical Research Communications, 2001 (3): 659-665.
    [83] Howard S., Bottino C., Brooke S., Cheng E., Giffard R.G., Sapolsky R. Neuroprotective effects of bcl-2 overexpression in hippocampal cultures: interactions with pathways of oxidative damage[J]. Journal of Neurochemistry 2002 (4): 914-923.
    [84] Chen D.F., Schneider G.E., Martinou J.C., Tonegawa S. Bcl-2 promotes regeneration of severed axons in mammalian CNS[J]. Nature 1997 (6615): 434-439.
    [85] Bogdanov M.B., Ferrante R.J., Mueller G., Ramos L.E., Martinou J.C., Beal M.F. Oxidative stress is attenuated in mice overexpressing Bcl-2[J]. Neurosci Lett, 1999 (1): 33-36.
    [86] Hildeman D.A., Mitchell T., Aronow B., Wojciechowski S., Kappler J., Marrack P. Control of Bcl-2 expression by reactive oxygen species[J]. PNAS 2003 (25): 15035-15040.
    [87] Guo Z., Lee J., Lane M. and Mattson M. Iodoacetate protects hippocampal neurons against excitotoxic and oxidative injury: involvement of heat-shock proteins and Bcl-2[J]. J. Neurochem., 2001 (2): 361-370.
    [88] Pugazhenthi S., Nesterova A., Jambal P., Audesirk G.,Kern M., Cabell L., Eves E., Rosner M.R., Boxer L.M., Reusch J.E.B. Oxidative stress-mediated down-regulation of bcl-2 promoter in hippocampal neurons[J]. Journal of Neurochemistry, 2003 (5): 982-996.
    [89] Dubal D.B., Shughrue P.J., Wilson M.E., Merchenthaler I., Phyllis M. Wise P.M. Estradiol Modulates bcl-2 in Cerebral Ischemia: A Potential Role for Estrogen Receptors[J]. The Journal of Neuroscience, 1999 (15): 6385-6393.
    [90] Nutt L.K., Chandra J., Pataer A., Fang B., Roth J.A., Swisher S.G., Neil R.G.O, McConkey D.J. Bax-mediated Ca2+ Mobilization Promotes Cytochrome c Release during Apoptosis[J]. The Journal of Biological Chemistry, 2002 (23): 20301-20308.
    [91] Putcha G.V., Deshmukh M., Johnson Jr E.M. BAX Translocation Is a Critical Event in Neuronal Apoptosis: Regulation by Neuroprotectants, BCL-2, and Caspases[J]. The Journal of Neuroscience, 1999 (17): 7476-7485.
    [92] Finucane D.M., Bossy-Wetzel E., Waterhouse N.J., Cotteri T.G., Green D.R. Bax-induced Caspase Activation and Apoptosis via Cytochrome c Release from Mitochondria Is Inhibitable by Bcl-xL[J]. The Journal of Biological Chemistry, 1999 (4): 2225-2233.
    [93] Siegel R. M., Chan F. K., Chun H. J., Lenardo M. J. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity[J]. Nat. Immunol., 2000 (6): 469-474.
    [94] Scaffidi C., Kirchhoff S., Krammer P. H., Peter M. E. Apoptosis signaling in lymphocytes[J]. Curr. Opin. Immunol., 1999 (3): 277-285.
    [95] Mueller C. M., Scott D. W. Distinct molecular mechanisms of Fas resistance in murine B lymphoma cells[J]. J. Immunol., 2000 (4): 1854-1862.
    [96] Marti A., Graber H., Lazar H., Ritter P.M., Baltzer A., Srinivasan A., Jaggi R. Caspases: Decoders of Apoptotic Signals During Mammary Involution[J]. Adv Exp Med Biol., 2000 (480): 195-201.
    [97] Cryns V., Yuan J., Proteases to die for[J]. Genes Dev., 1998 (11): 1551-1570.
    [98] Wang Z.B., Liu Y.Q., Cui Y.F. Pathways to caspase activation[J]. Cell Biology International., 2005 (7): 489-496.
    [99] Kirsch D.G., Doseff A., Chau B.N., Lim Dae-sik, de Souza-Pinto N.C., Hansford R., Kastan M.B., Lazebnik Y.A., Hardwick J.M. Bcl-2 regulates amplification of caspase activation by cytochrome c[J]. The Journal of Biological Chemistry, 1999 (3): 21155-21161.
    [100] Aggarwal B.B., Shishodia S., Sandur S.K., andey M.K., Sethi G. Inflammation and cancer: How hot is the link[J]? Biochemical Pharmacology, 2006 (11): 1605-1621.
    [101] Kim Y.J., Kim H.J., No J.K., Chung H.Y., Fernandes G. Anti-inflammatory action of dietary fish oil and calorie restriction[J]. Life Sciences, 2006 (21): 2523-2532.
    [102] Makarov S.S. NF-kB as a therapeutic target in chronic inflammation: recent advances[J]. Mol Med Today, 2000 (11): 441-448.
    [103] Pando M.P.,Verma I.M. Signal-dependent and -independent degradation of free and NF-κB-bound IκB[J]. J. Biol. Chem., 2000 (28): 21278-21286.
    [104] Israf D.A., Khaizurin T.A., Syahida A., Lajis N.H., Khozirah S. Cardamonin inhibits COX and iNOS expression via inhibition of p65NF-κB nuclear translocation and IkB phosphorylation in RAW 264.7 macrophage cells[J]. Molecular Immunology, 2007 (5): 673–679.
    [105] Papa S., Zazzeroni F., Pham C.G., Bubici C., Franzoso G. Linking JNK signaling to NF-κB: a key to survival[J]. Journal of Cell Science, 2004(22): 5197-5208.
    [106] Zipp F., Aktas O. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases[J]. TRENDS in Neurosciences, 2006 (9): 518-527.
    [107] Terai K., Matsuo A., McGeer P.L. Enhancement of immunoreactivity for NF-κB in the hippocampal formation and cerebral cortex of Alzheimer's disease[J]. Brain Research, 1996 (1): 159-168.
    [108] Droge W. Free radicals in the physiological control of cell function[J]. Physiol. Rev., 2002(1): 47-95.
    [109] Kim H.K., Park H.R., Lee J.S., Chung T.S., Chung H.Y., Chung J. Down-regulation of iNOS and TNF-a expression by kaempferol via NF-κB inactivation in aged rat gingival tissues[J]. Biogerontology, 2007 (4):399-408.
    [110] Gloire G., Legrand-Poels S., Piette J. NF-κB activation by reactive oxygen species: Fifteen years later[J]. Biochemical Pharmacology, 2006 (11): 1493-1550.
    [111] Jang J.H., Surh Y.J. Protective effects of resveratrol on hydrogen peroxide-induced apoptosis in rat pheochromocytoma (PC12) cells[J]. Mutation Research, 2001 (1-2): 181-190.
    [112] Minghetti L. Cyclooxygenase-2 (COX-2) in Inflammatory and Degenerative Brain Diseases[J]. Journal of Neuropathology and Experimental Neurology, 2004 (9): 901-910.
    [113] Esposito G., De Filippis D., Maiuri M.C., De Stefano D., Carnuccio R., Iuvone T. Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in β-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-κB involvement[J]. Neuroscience Letters, 2006 (1-2): 91-95.
    [114] Serrano J., Encinas J.M., Fernandez A.P., Rodrigo J., Martinez A. Effects of Acute Hypobaric Hypoxia on the Nitric Oxide System of the Rat Cerebral Cortex: Protective Role of Nitric Oxide Inhibitors[J]. Neuroscience, 2006 (3): 799-808.
    [115] Huang W.C., ChenJ.J., Inoue H., Chen C.C. Tyrosine Phosphorylation of I-κB Kinase α/β by Protein Kinase C-Dependent c-Src Activation Is Involved in TNF- α -Induced Cyclooxygenase-2 Expression[J]. J Immunol., 2003 (9):4767-4775.
    [116] Lim H., Paria B.C., Das S.K., Dinchuk J.E., Langenbach R., Trzaskos J.M., Dey S.K. Multiple female reproductive failures in cyclooxygenase 2-deficient mice[J]. Cell, 1997 (2), 197-208.
    [117] Oka A., Takashima S. Induction of cyclooxygenase 2 in brains of patients with Down’s syndrome and dementia of Alzheimer type: specific localization in affected neurones and axons[J]. NeuroReport, 1997 (5), 1161-1164.
    [118] Yokotaa O., Teradaa S., Ishizua H., Ishiharaa T., Ujikea H., Nakashimaa H., Nakashimac Y., Kugoa A., Checlerd F., Kuroda S. Cyclooxygenase-2 in the hippocampus is up-regulated in Alzheimer's disease but not in variant Alzheimer's disease with cotton wool plaques in humans [J]. Neuroscience Letters, 2003 (3): 175-179.
    [119] Lala P.E., Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression[J]. Lancet Oncol, 2001 (3): 149-156.
    [120] Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazura M. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chemico-Biological Interactions, 2006 (1):1-40.
    [121] Noguchi S., Nakatsuka M., Asagiri K., Habara T., Takata M., Konishi H., Kudo T. Bisphenol A stimulates NO synthesis through a non-genomic estrogen receptor-mediated mechanism in mouse endothelial cells[J]. Toxicology Letters, 2002 (1-2): 95-101.
    [122] Chung H.T., Pae H.O., Choi B.M., Billiar T.R., Kim Y.M. Nitric Oxide as a Bioregulator of Apoptosis[J]. Biochemical and Biophysical Research Communications, 2001 (5): 1075-1079.
    [123] 李龙,陈家堃主编. 现代毒理学实验技术原理与方法[M]. 北京:化学工业出版社,2006: 207-292.
    [124] 胡镜清,温泽淮,赖世隆. Morris 水迷宫检测的记忆属性与方法学初探[J]. 广州中医药大学学报, 2000, 17(2): 117-119.
    [125] 郭德玉,王钜,李林,李斌. 药理研究中常用学习记忆障碍动物模型的行为学分析[J]. 实验动物科学,2007,24(1):1-5.
    [126] Eilam D. Open-field behavior withstands drastic changes in arena size[J]. Behavioural Brain Research, 2003 (1-2): 53-62.
    [127] Shahidi S., Motamedi F., Naghdi N. Effect of reversible inactivation of the supramammillary nucleus on spatial learning and memory in rats[J]. Brain Research 2004, (2): 267-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700