用户名: 密码: 验证码:
基于脉动消元原理的磷酸盐分光光度检测系统研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中磷酸盐检测在环境监测中有重要意义。分光光度法作为应用最广泛的磷酸盐实验室检测方法难以满足现场快速、批量、准确检测需求,自动分析技术的引入,使得经典分光光度法在自动批量检测技术上有了很大改进。但是在水体中磷酸盐长期在线或原位监测中,分光光度系统的光源和传感器漂移、透光窗口的雾气及有色络合物附着污染等干扰都将导致测量误差。虽然已经有学者针对上述问题提出了一些解决方案,但是这些方案并未涉及抗干扰检测原理的创新,因此也就无法从根本上改变仪器的抗干扰能力。因此随着环境监测等相关领域对长期在线或原位监测需求越来越大,传统经典分光光度法不能满足这些新的需求。
     针对这种情况,论文根据传统经典分光光度检测方法,创新性的提出了脉动消元分光光度检测原理,并根据该原理自主设计了脉动消元检测装置,结合自动化分析技术,提出一种适用于水体中磷酸盐长期在线或原位监测,在保证检测精度和稳定性的基础上能消除干扰的检测系统。本论文的主要工作内容和创新点为:
     1、首次提出了脉动消元分光光度检测原理。在全面分析影响传统经典分光光度检测方法在水体中磷酸盐长期在线或原位监测应用中的干扰因素的基础上,深入研究差分技术原理,通过建立磷酸盐分光光度检测的干扰模型和数学分析,得出了能从本质上解决上述干扰的脉动消元原理。
     2、根据脉动消元原理设计了脉动消元检测装置。脉动消元检测装置的设计实现了模块化、小型化、在线化的特点。机械设计采用恒压变光程技术,该恒压变光程结构配合步进电机、机械丝杆、检测容腔、传感器等部件,配合软硬件控制,实现检测过程中自动实时调节检测容腔内样品溶液的光程。实验结果表明,该装置的吸光度最大变化值为2%,达到了光源的最佳稳定性。而在同一光程不同检测过程和同一检测过程不同光程这两种情况下,吸光度最大变化值为0.01,为光源和检测器本身的精度。
     3、研制了基于脉动消元检测装置的磷酸盐检测系统,并针对实际样品进行了实验验证。与传统经典分光光度测量方法的对比实验结果表明两者的吸光度检测精度同为0.01,而长期监测对比实验结果表明脉动消元检测系统的稳定性比传统检测提高了10倍。
     因此本文研制的基于脉动消元原理的磷酸盐监测系统与传统仪器相比,不仅实现了长期原位在线自动监测,而且在保证检测精度和稳定性的基础上,大大提升了系统在实际应用中的抗干扰能力,具有很高的实用价值和很好的应用前景。该检测系统同时能满足水体中其他基于分光光度法的营养盐等相关长期检测需要,因既能应用于海洋领域,又能推广到相关的环境监测、工业过程检测等领域,从而对光学分析仪器科学技术的发展做出较大的贡献。
The detection of phosphate in water is an important section in environmental monitoring. Though most widely used in laboratory, the spectrophotometry is difficult to meet the requirements of on site, on speed, batch and accuracy. The introduction of automatic analysis technology enables great improvement of traditional spectrophotometry in automated batch detection. Further, during the long-term online or in situ monitoring of phosphate in water, measurement errors are caused by various interferences, including drift of spectrophotometric light sources and sensors, mist on the light window or staining by colored complex. As the existing solutions to address the problem have not overcome the interference essentially, the practical application of spectrophotometry, especially in the long-term online or in situ monitoring of phosphate in water, still cannot meet the research or practical demands.
     According to such a status, based on the classic spectrophotometric detection, this paper proposes an innovative pulsating variable optical path length spectrophotometric detection method, and designs a pulsating variation of optical path length spectrophotometric detection device accordingly. Combined with automated analysis technology, it is a measurement system that can be used in the long-term online or in situ monitoring of phosphate in water to eliminate interference while ensuring measuring accuracy and stability. The content and innovations of this paper mainly include:
     1. A pulsating variable optical pathlength spectrophotometric detection method is proposed. Based on a comprehensive analysis of the interfering factors existing in the long-term online or in situ monitoring of phosphate in the water using traditional spectrophotometric detetion and an in-depth study of differential technology, we construct an interference model and conduct a mathematical analysis to put forward the pulse variable optical path length spectrophotometric detection method that is able to eliminate all the above-mentioned interferences.
     2. A pulsating variable optical path length spectrophotometric detection device is designed. This modular and miniaturized device can provide on-site and online measurement. Using constant-pressure variable optical path method, the main structure, together with stepper motor, machine screw, detection chamber, sensors and other components, can automatically adjust the optical path of the solution to be tested in the detection chamber through software control during the measuring process.The experimental results show that the biggest change of the absorbance is2%which achieves the best stability of the light source.
     3. A phosphate detection system is developed based on the pulsating variable optical path length spectrophotometric device and experimental verification is carried out using actual samples. Comparison of experimental results with the classical spectrophotometic method show that both the absorbance accuracy is the same ad0.01, while the long-term monitoring results show that the stability of the pulsating variable optical path length sepctrophotometric device is10times higher than traditional ones.
     Compared with traditional devices, this phosphate monitoring system based on pulse variable optical path length spectrophotometric detection method not only realizes the long-term on-line or in situ automatic monitoring, but also greatly enhances the anti-interference ability while guaranteeing the detection accuracy and stability. In sum, it is a system that can be widely used. Due to its ability to measure any nutrients that can be detected using spectrophotometry, it can be used in marine field as well as relevant environmental monitoring or industrial process detection, thereby making a great contribution to the development of optical analysis technologies and instruments.
引文
[1]J·P赖利化学海洋学2[M].北京:海洋出版社,1982,267-268
    [2]Karl, D. M. Aquatic ecology Phosphorus, thestaff of life [J].Nature,2000,406(6):31-33
    [3]Cambridge, M. L. Hocking, P. J. Annual primary production and nutrient dynamics of theseagrasses Posidonia sinuosa and Posidonia australis in south-western Australia [J]. AquaticBotany,1997 59(3-4):277-295
    [7]Gerhard C Cadee,Jan Hegeman, Phytoplankton in the Marsdiep at the end of the 20th century; 30years monitoring biomass, primary production, and Phaeocystis blooms [J]. Journal of Sea Research,2002,48(2):97-110
    [5]T. Frede Thingstad, et al. Phosphorus cycling and algal-bacterialcompetition in Sandsfjord, Western Norway [J]. Marine Ecology Progress Series,1993,99(9):239-259.
    [6]D.M. Karl, et al. Phosphorus cycle in seawater:Dissolved and particulate poolinventories and selected phosphorus fluxes [J]. Method in Microbiology,2001,30(11):239-270.
    [7]Y. Zhang, et al. The biogeochemical cycling of phosphorus in the upperocean of the East China Sea [J]. Estuarine, Coastal and Shelf Science,2004,60(3):369-379
    [8]史家樑等环境微生物学[M].上海:华东师范大学出版社,1993。
    [9]K.B. Follmi. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits [J].Earth-Science Reviews,1996,40(1-2):55-124
    [10]齐文启等.水中的总磷及其自动在线监测仪的研制[J].现代科学仪器,2005,5:23-31
    [11]郭振仁.滇池治理的核心任务与策略思考[J].云南环境科学,2003,22(2):6
    [12]中华人民共和国国家环保总局中华人民共和国国家质量监督检验检疫总局GB3838-2002地表水环境质量标准[S]北京:中国环境科学出版社,2003
    [13]中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会GB5084-2005农田灌溉水质标准[S]北京:中国标准出版社,2006
    [14]中华人民共和国国家环境保护局中华人民共和国国家技术监督局GB8978-1996污水综合排放标准[S]北京:中国环境科学出版社,1997
    [15]中华人民共和国国家环保总局中华人民共和国国家质量监督检验检疫总局GB15580-2011磷肥工业水污染物排放标准[S]北京:中国环境科学出版社,2012
    [16]中华人民共和国国家环保总局中华人民共和国国家质量监督检验检疫总局GB16889-2008生活垃圾填埋场污染控制标准[S]北京:中国环境科学出版社,2009
    [17]中华人民共和国国家环保总局中华人民共和国国家质量监督检验检疫总局GB18596-2001畜禽养殖业污染物排放标准[S]北京:中国环境科学出版社,2002
    [18]中华人民共和国国家环保总局中华人民共和国国家质量监督检验检疫总局GB18918-2002城镇污水处理厂污染物排放标准[S]北京:中国环境科学出版社,2003
    [19]中华人民共和国国家质量监督检验检疫总局GB/T18921-2002城市污水再生利用景观环境用水水质[S]北京:中国标准出版社,2003
    [20]中华人民共和国国家环境保护部中华人民共和国国家质量监督检验检疫总局GB21523-2008杂环类农药工业水污染物排放标准[S]北京:中国环境科学出版社,2008
    [21]中华人民共和国国家环境保护部中华人民共和国国家质量监督检验检疫总局GB21900-2008电镀污染物排放标准[S]北京:中国环境科学出版社,2008
    [22]中华人民共和国国家环境保护部GB21901-2008羽绒工业水污染物排放标准[S]北京:中国环境科学出版社,2008
    [23]中华人民共和国国家环境保护部中华人民共和国国家质量监督检验检疫总局GB21902-2008合成革与人造革工业污染物排放标准[S]北京:中国环境科学出版社,2008
    [24]中华人民共和国国家环境保护部中华人民共和国国家质量监督检验检疫总局GB21903-2008合成革与人造革工业污染物排放标准[S]北京:中国环境科学出版社,2008
    [25]中华人民共和国国家环境保护部中华人民共和国国家质量监督检验检疫总局GB21903-2008化学合成类制药工业水污染物排放标准[S]北京:中国环境科学出版社,2008
    [26]中华人民共和国国家环境保护部中华人民共和国国家质量监督检验检疫总局GB21903-2008提取类制药工业水污染物排放标准[S]北京:中国环境科学出版社,2008
    [27]中华人民共和国国家环境保护部中华人民共和国国家质量监督检验检疫总局GB21903-2008中药类制药工业水污染物排放标准[S]北京:中国环境科学出版社, 2008
    [28]中华人民共和国国家环境保护部中华人民共和国国家质量监督检验检疫总局GB21903-2008生物工程类制药工业水污染物排放标准[S]北京:中国环境科学出版社,2008
    [29]中华人民共和国国家环境保护部中华人民共和国国家质量监督检验检疫总局GB21903-2008混装制剂类制药工业水污染物排放标准[S]北京:中国环境科学出版社,2008
    [30]中华人民共和国国家环境保护部中华人民共和国国家质量监督检验检疫总局GB21903-2008制糖工业水污染物排放标准[S]北京:中国环境科学出版社,2008
    [31]中华人民共和国国家环境保护部中华人民共和国国家质量监督检验检疫总局GB3544-2008纸浆造纸工业水污染物排放标准[S]北京:中国环境科学出版社,2008
    [32]邓海升.磷钼酸喹啉容量法测定磷肥废水中磷酸盐[J].贵州环保科技,2001,3:23-24
    [33]周利敏.容量法测定洗衣粉中的磷酸盐含量[J].宁夏石油化工,2002,1:24-25
    [34]Leon Barron, et al. Rapid on-line preconcentration and suppressed micro-bore ion chromatography of part per trillion levels of perchlorate in rainwater samples [J]. Analytica Chimica Acta,2006,567(1):127-134
    [35]Kang Tian, et al.Determination of Trace Perchlorate in High-Salinity Water Samples by Ion Chromatography with On-Line Preconcentration and Preelution [J]. Analytical Chemistry,2003,75(3):701-706
    [36]Kang Tian, et al.. Preconcentration/preelution ion chromatography for the determination of perchlorate in complex samples [J]. Talanta,2005,65(3):750-755
    [37]Herbert P Wagner, etal.. Challenges encountered in extending the sensitivity of US Environmental Protection Agency Method 314.0 for perchlorate in drinking water [J]. Journal of Chromatography A,2004,1039(1-2):97-104
    [38]林玉娜等.离子色谱法测定饮用天然矿泉水中磷酸盐[J].中国卫生检验,2004,14(1):55-56
    [39]武开业.离子色谱法测定地表水中的磷酸盐[J].化学工程与设备,2010,04:136-137
    [40]Yusheng Su, et al. AP-GOD Biosensor Based on a Modified Poly(PHENOL) Film Electrode and Its Application in the Determination of Low Levels of Phosphate [J]. Analytical Letters,1995,28(8):1359
    [41]Elena Diacu, et al. Determination of inorganic phosphate by flow injection with fluorescence quenching [J]. Analyst,1996,120(10):2613-2616
    [42]施丽芳等.铽-钛铁试剂络合物荧光猝灭法测定磷酸盐[J].分析化学,2004,32(3):335-337
    [43]兰州大学化学系等有机微量定量分析[M].北京:科学出版社,1978,214-217
    [44]徐静安复混肥料和功能性肥料分析测试方法[M].北京:化学工业出版社,2000,451-453
    [45]臧维玲养鱼水质分析[M].北京:农业出版社,1991,92
    [46]俞林水质检测分析方法标准实务手册[M].北京:中国环境科学出版社,2002,1015-1019
    [47]南京农业大学土壤农化分析(第二版)[M].北京:农业出版社,1990,66-82
    [48]李继和磷锑钼蓝光度法测定铜及铜合金中磷量[J].理化检验:化学分册,1999,35(7):317-318
    [49]张元清等分光光度法测定钼精矿中磷[J].云南化工,2004,31(1):36-37
    [50]梁运江等磷钼蓝比色法合适工作波长及线性范围的探讨[J].中国环境监测,2007,23(1):35-37
    [51]国家海洋环境监测中心GB17378.4-1998海洋监测规范第4部:海水分析[S].北京:中国标准出版社,1998,159-162
    [52]J Mruphy, J P Riley. A modified single solution method for the determination of phosphatein natural waters [J]. Analytica Chimica Acta,1962,27(1):31-36
    [53]Franklin Isaac Ormaza-gonzalez.Peter John Statham. A comparison of methods for the determination ofdissolved and particulate phosphorus in natural waters [J]. Water Research,1996,30(11):217,9-2147
    [54]Kevin Robards, et al. Determination ofcarbon, phosphorus, nitrogen and silicon species in waters [J]. Analytica Chimica Acta,1994,287(3):147-190
    [55]梁英.海水中超痕量活性磷的检测方法研究[D].厦门:厦门大学,2006
    [56]H.P. Jarvie, et al. Review of robust measurement of phosphorus inriver water:sampling, storage, fractionation and sensitivity [J]. Hydrology and Earth System Sciences, 2002,6(1):113-131
    [57]W. Maher, L. Woo. Procedures for the storage and digestion of natural waters for thedetermination of filterable reactive phosphorus, total filterable phosphorus and totalphosphorus [J]. Analytica Chimica Acta,1998,375:5-47
    [58]Harry Levine, et al. Molybdenum blue reaction and determination ofphosphorus in waters containing arsenic, silicon, and germanium [J]. Analytical Chemistry,1955.27(2):258-262
    [59]Achim Muller, Claire Serain. Soluble Molybdenum Blues-"des Pudels Kern" [J]. Accounts of chemical research,2000,33(1):2-10
    [60]Drummond, L., Mather, W. Determination of phosphorus in aqueous solution via formationof the phosphoantimonybdenum blue complex re-examination of optimum conditions for theanalysis of phosphate [J]. Anal. Chim. Acta.1995,302:69-74.
    [61]Sjosten, A., Blomqvist S. Influence of phosphate concentration and reaction temperaturewhen using the molybdenum blue method for determination of phosphate in water [J].Wat.Res.1997,31:1818-1823.
    [62]Pai Su-Cheng, et al. Effects of acidity and molybdate concentration on thekinetics of the formation of the phosphoantimonylmolybdenum blue complex [J]. Anal. Chim.Acta.1990, 229:115-120.
    [63]Blomqvist S., Westin S. Interference from chromate, germanate, tungstate and vanadatewhen determining phosphate in aqueous solution by the phosphoantimonylmolybdenum bluemethod [J]. Anal. Chim.Acta.,1998,358:245-254.
    [64]C Neal, et al. Phosphate measurement in natural waters:two examples ofanalytical problems associated with silica interference using phosphomolybdic acidmethodologies [J]. Sci. Total Environ,2000,251/252:511-522.
    [65]Zhang J.Z., et al. Optimization of performance and minimization ofsilicate interference in continuous flow phosphate analysis [J]. Talanta,1999,49(2):293-304
    [66]S.格德曼杜连耀译频率分析、调制和噪声[M].北京:科学出版社,1962
    [67]陈福深集成电光调制理论与技术[M].北京:国防工业出版社,1995
    [68]方肇伦流动注射分析法[M].北京:科学出版社,1999,4-5
    [69]Skeggs, L.T. An automatic method for colorimetric analysis [J]. Amer. J. Cin. Pathol. 1957,28:311-322
    [70]J.R.E Thabano, et al. Determination of orthophosphates using a maero segmented flow analyzer (MSFA) based on colorimetric detection[J]. Talanta.2004,64(2):60-68
    [71]Ruzicka J.; Hansen E. H. Flow Injection Analysis Part I:A new concept of fast continuousflow analysis [J]. Anal. Chim.Acta.1975,78(1):145-147
    [72]Joseph Wang, Ziad Taha. Batch injection analysis [J]. Anal. Chem.1991,63(10):1053-1056.
    [73]Rocha F. R., et al.Multicommutation in flow analysis:concepts, applications and trends [J].Anal.Chim.Acta.2002,468(1):119-131
    [74]Thomas Guebeli, et al. Fundamentals of sinusoidal flow sequential injectionspectrophotometry [J]. Anal. Chem.1991,63(21):2407-2413
    [75]Carmen Pons, et al. Multi-pumping flow system for the determination of dissolved orthophosphate and dissolved organic phosphorus in wastewater samples [J]. Analytica Chimica Acta,2006,572(1):148-154.
    [76]Janya Buanuam, Manuel Miro, et al. On-line dynamic fractionation and automatic determination of inorganic phosphorus in environmental solid substrates exploiting sequential injection microcolumn extraction and flow injection analysis[J]. Analytica Chimica Acta,2006,570(2):224-231.
    [77]Amornthammarong N, Anujaravat P, Sereenonchai K, et al. Method development based on all injection analysis for the determination of phosphorus in soil and sediment extracts[J]. Talanta,2005,68(2):480-487.
    [78]Shoji Motomizu, Zhen Haili. Trace and ultratance analysis methods for the determination of phosphorus by flow-injection techniques[J]. Talanta,2005,66(2):332-340.
    [79]Almeid Mines G Sa, Segundo Marcela A, JoseLim LFC. Multi-syringe flow injection system with in-line microwave digestion for the determination of phosphorus [J]. Talanta, 2004,64(5):1283-1289.
    [80]Leach Andrew-M, Burden Daniel L, Hieftje Gary M. Radioluminescence detector for the flow injection determination of phosphorus ad vanadomolybdophosphoric acid [J]. Analytica Chimica Acta,1999,402(1-2):267-274.
    [81]Claudio Celestino Oliveira, Elias Ayres Guidetti Zagatto, Alberto N Araudjo, et al. Sample preparation in sequential injection analysis:Spectrophotometric determination of total phosphorus in food samples [J]. Analytica Chimica Acta,1998,371(1):57-62.
    [82]Richard L Benson, Ian D McKelvie, Barry T Hart, et al. Determination of total phosphorus in waters and wasterwaters by on-line UV thermal induced digestion and flow injection analysis [J]. Analytica Chimica Acta,1996,326(1-3):29-39.
    [83]Takashi Korenaga, Fusheng Sun. High sensitivity flow-based analysis system using a semiconductor laser and thin long flow-through cell for the determination of total phosphorus in water [J]. Talanta,1996,43(9):1471-1479.
    [84]马剑.海水中超痕量活性磷的检测方法及其船载式仪器研究及应用[D].厦门:厦门大学,2008
    [85]美国FIAlab公司主页[Z].http://www.flowinj ection.com/
    [86]美国O.I.分析仪器公司主页[Z].http://www.oico.com/
    [87]荷兰Skalar公司主页[Z]http://www.skalar.com/
    [88]英国Seal分析仪器有限公司主页[Z].http://www.seal-analytical.com/
    [89]上海新拓微波溶样测试技术有限公司主页[Z]http://sh-xintuo.com/
    [90]美国Enviroteeh仪器公司主页[Z]. http://www.envirotechinstruments.com/
    [91]美国Subchem公司主页[Z].http://www.subchem.com/
    [92]意大利Systea公司主页[Z].http://www.systea. it/
    [93]德国ME Grisard公司主页[Z].http://www.me-grisard.de/
    [94]Christina M. McGraw, Shannon E. Stitzel, Dermot Diamond et, al. Autonomous microfluidic system for phosphate detection[J]. Talanta,2007,71(3):1180-1185
    [95]Michaela Bowden, et al. A prototype industrial sensing system for phosphorus based on micro system technology [J], Analyst,2002,127:1-4
    [96]M. Bowden, D. Diamond. The determination of phosphorus in a microfluidic manifold demonstrating long-term reagent lifetime and chemical stability utilising a colorimetric method [J]. SensActuators B:Chem,200390(1-3):170-174
    [97]U. Platt. Differential optical absorption spectroscopy (DOAS) [J]. Chem. Anal. Series, 1994,127:27-83
    [98]张学典.差分吸收光谱技术在环境监测中的理论和应用研究[D].天津:天津大学,2005
    [99]黄量等紫外光谱在有机化学中的应用[M].北京:科学出版社,1988
    [100]E.J.麦卡特尼大气光学-分子和粒子散射[M].北京:科学出版社,1988
    [101]BodhaineBA., et al.On Rayleigh Optical Depth Calculations [J]. Journal of Atmospheric andOceanic Technology,1999,16(11):1854-1861
    [102]Selamet Ahmet, Arpaci, VS. Rayleigh limit-Penndorf extension [J]. International Journal of Heat and Mass Transfer,1989,32(10):1809-1820.
    [103]A.T. Young. On the Rayleigh-Scattering Optical Depth of the Atmosphere [J]. Journal of Applied Meteorology,1981 20(3):328-330
    [104]GLOVER F.A., GOULDEN J.D.S. Relationship between Refractive Index and Concentration of Solutions [J]. Nature,1963,200:1165-6
    [105]Xie Y, Zhang T. A method to calculate the refractive index of binary liquid mixtures [J]. Opt. Technol.2006,32:suppl
    [106]Zhang Z and Yin W Study on relational expression of solution concentration and its refractive index Journal of north university of china(natural science edition) 2009 30:281-285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700