用户名: 密码: 验证码:
乙酸及NaCl和Na_2CO_3胁迫对莱茵衣藻的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,水体酸化已成为当今世界广为关注的环境问题之一,除无机酸外,有机酸也是引起环境酸化的重要原因,其中乙酸是有机酸的主要成分,广泛存在于自然界中,其含量可高达毫摩尔水平,对藻类植物的生长具有巨大的潜在威胁。除酸化外,干旱和半干旱地区的水体由于过度蒸发而存在不同程度的盐碱化,所以藻类植物还面临着盐碱化的影响。因此,鉴于酸化和盐碱化正日趋严重,日益影响着水域生态系统平衡与环境安全,本文以单细胞模式植物莱茵衣藻为实验材料,研究了乙酸、NaCl和Na_2CO_3胁迫对其生长的影响、与光呼吸代谢的相互关系,同时对乙酸诱导莱茵衣藻发生PCD进行了深入研究,并测定了此过程中释放的VOCs,探讨了其信号作用,此外还就NaCl和Na_2CO_3胁迫诱导VOCs释放以及NaCl胁迫诱导光呼吸途径产生ROS进行了研究。结果如下:
     1. pH5.0乙酸、300mM NaCl以及25mM、50mM和150mM Na_2CO_3胁迫均会引起莱茵衣藻光合色素降解,并且此种降解作用与光照条件无关。除叶绿素降解外,乙酸、NaCl和Na_2CO_3胁迫还使莱茵衣藻的光合特性发生改变,Fv/Fm、Y(II)和ETR均发生了不同程度的降低;低强度胁迫使qP增强,而高强度胁迫则降低了qP;在一定时间内,所有胁迫处理均使NPQ增强。
     2.乙酸、NaCl和Na_2CO_3胁迫均能诱导莱茵衣藻迅速产生大量的O_2ˉ.和H_2O_2,当乙酸胁迫10min时,两种ROS含量均达到最大值;当NaCl和Na_2CO_3胁迫30min时,ROS含量达到最大值。在ROS含量升高的同时,细胞内SOD、POD和CAT活性也发生相应变化,其中低强度胁迫使这些酶的活性得到了不同程度的提高。
     3.莱茵衣藻在乙酸、NaCl和Na_2CO_3胁迫处理后,对照株系CW-Arg及SGAT敲减株系T和A的SGAT酶活性均显著增强,Ser和Gly含量升高,并且随NaCl胁迫强度增强,酶活性进一步增强、两种氨基酸含量进一步升高。虽然在正常以及乙酸、NaCl和Na_2CO_3胁迫条件下,T和A株系的生长状况均弱于CW-Arg,但是在胁迫条件下,T和A株系受到的影响明显大于对照株系。这表明藻类植物的光呼吸途径与其抗逆性密切相关,逆境胁迫促进藻类植物的光呼吸途径运转,而光呼吸途径受阻后,藻类植物抵抗逆境胁迫的能力明显降低。
     4.采用抑制剂SHAM阻断乙醇酸-醌氧化还原酶系统或MOA阻断甘氨酸脱羧酶后,莱茵衣藻细胞内Ser含量明显降低,Gly含量明显升高,这表明其光呼吸途径的正常运转已受到明显影响。在NaCl胁迫条件下,经抑制剂处理的细胞所产生的ROS均明显少于未用抑制剂处理的细胞,其中SHAM处理后ROS含量最低,这表明SHAM阻断的反应即乙醇酸生成乙醛酸可能为光呼吸途径中ROS的产生位点。由于MOA处理阻断了甘氨酸向丝氨酸的转化,因此也影响了乙醇酸转化为乙醛酸,所以其ROS产量低于对照,但高于SHAM处理。采用NaCl胁迫SGAT敲减效果较强的A株系,由于丝氨酸向甘氨酸的转化被阻断,所以其ROS产生量也明显低于对照株系CW-Arg。这些结果表明,藻类植物的光呼吸途径也会导致ROS产生,其产生位点是叶绿体中乙醇酸经乙醇酸-醌氧化还原酶系统催化形成乙醛酸的反应。
     5.莱茵衣藻不能直接吸收利用外源L-Ser和L-Lys,而是通过胞外脱氨氧化的方式进行利用,并且此种脱氨过程依赖于氮饥饿,同时乙酸能促进此过程的进行。莱茵衣藻可利用L-Cys作为唯一氮源,其吸收量随胞外浓度增加或饲喂时间延长而增加,并且其被动扩散吸收过程不影响细胞对L-Leu的被动扩散吸收。
     6. pH5.0乙酸胁迫莱茵衣藻30min后,其DNA开始降解,在胁迫6h时DNA降解为150-350bp的片段。ZnSO_4处理对此降解过程具有明显的抑制作用,并且1mM ZnSO_4的抑制作用明显强于0.5mM。在pH5.0乙酸胁迫1h和2h时,分别有10%和95%的莱茵衣藻细胞内出现呈TUNEL阳性染色的细胞核,在胁迫4h时所有的细胞内均出现此细胞核,这表明pH5.0乙酸可诱导莱茵衣藻细胞发生PCD。
     7.乙酸(34.3mM)在pH5.0时可诱导莱茵衣藻细胞发生PCD,而H_2SO_4、HCl、H_3PO_4、磷酸缓冲液和乳酸在pH_3.0时才能诱导细胞死亡,这表明溶液酸度不是诱导PCD的主要原因,而与乙酸自身的性质有关。当溶液中含有50mM乙酸,pH为6.0时,细胞死亡;然而当乙酸浓度增加至150mM,pH为7.0时,细胞则不死亡,在此情况下,溶液中的乙酸主要以乙酸根离子形式存在,因此,细胞死亡与溶液中的乙酸根离子浓度无关,而与溶液的pH值和乙酸分子浓度同时相关。
     8.在pH5.0乙酸诱导莱茵衣藻发生PCD的过程中,VOCs大量释放,其中在2h时释放量最大,并且成分最多,主要包括有烷烃类、烯烃类、醛类、醇类、酮类、酯类和萜烯类等34种化合物。此外,300mM NaCl和150mM Na_2CO_3胁迫莱茵衣藻2h也可诱导其释放大量的VOCs。乙酸和NaCl胁迫均可诱导己醛(GLVs)释放,其峰面积分别为23.49×10~7和3.14×10~7;而Na_2CO_3胁迫则不能诱导己醛释放,其诱导的特异性成分是3,4-二甲基-己烷和5-甲基-2-庚烯。长叶烯是此三种胁迫诱导释放的主要萜烯类化合物,其峰面积分别为5.82×10~7(乙酸)、3.11×10~7(NaCl)和4.00×10~7(Na_2CO_3)。
     9.将乙酸、NaCl和Na_2CO_3胁迫诱导的莱茵衣藻VOCs通入正常生长的莱茵衣藻溶液中,其细胞生长受到明显抑制,而其叶绿素含量、Fv/Fm、H_2O_2含量和抗氧化酶活性均不同程度增加,这表明非生物胁迫诱导的VOCs可能具有在藻类植物间进行信息传递的作用。
At present, water body acidification is one of the most dramaticallyenvironmental problems in the world. Besides inorganic acids, organic acids are otherreasons for the acidification, and acetic acid is the dominant component of organicacids. It widely spreads in nature, and its content can accumulate up to millimolarconcentrations, so it is a tremendous potential danger for the growth of algae. Besidesthat, water body in arid and semi-arid regions is becoming salinization mainly causedby high evaporation, so the algae often face this stress. As the acidification andsalinization are seriously affecting the ecosystem balance and environment safety inwater body, we investigated the effects of acetic acid, NaCl and Na_2CO_3stresses onthe growth of Chlamydomonas reinhardtii, a model organism of single cell, and therelationship between those stresses and photorespiration of the alga. We furtherstudied the induction of PCD by acetic acid in C. reinhardtii cells and release ofVOCs during the cell death. The possible role of VOCs as a signal was alsoinvestigated. Meanwhile, we investigated the VOCs from the cells stressed by NaCland Na_2CO_3, too. We finally tried to find whether ROS could be produced by theoperation of photorespiration under NaCl stress. The results are summarized asfollows:
     1. The degradation of photosynthetic pigments in C. reinhardtii cells was foundunder the stress of acetic acid at pH5.0, of NaCl at300mM, and of Na_2CO_3at25mM,50mM or150mM, and the degradation was independent of light condition. Thephotosynthetic characters were also changed by acetic acid, NaCl and Na_2CO_3stresses, and the Fv/Fm, Y(II) and ETR were declined in some degree. The qP wasincreased under lower strength stresses, but was decreased under stronger stresses.The NPQ was increased under all stresses in a certain time.
     2. The stresses of acetic acid, NaCl and Na_2CO_3induced the burst of O_2ˉ.andH_2O_2in C. reinhardtii cells, and the burst happened at10min under acetic acid stressand at30min under NaCl and Na_2CO_3stresses. The activities of SOD, POD and CATwere also changed with the increase of ROS content, and all raised in some degree under lower strength stresses.
     3. In both the cell line of control (CW-Arg) and the SGAT gene knocked downcell lines of C. reinhardtii (line T and A), the SGAT activity, as well as the content ofSer and Gly were increased under salt stress, and the increase was accompanied withthe stress strengthening. The growth rate of T and A cell lines was lower than that ofCW-Arg (control) under normal and stress conditions, however, the stress effects ofacetic acid, NaCl and Na_2CO_3on the growth of T and A was stronger than that ofCW-Arg. Those indicated that alga photorespiration closely related with its capabilityof anti-stress. The stress promoted the photorespiration in algae, and their capabilityof stress resistance was markedly declined after the photorespiration was affected.
     4. When the glycolate-quinone oxidoreductase system was inhibited by SHAMor glycine decarboxylase was inhibit by MOA, the content of Ser in C. reinhardtiicells was significantly reduced, but Gly was significantly increased, indicating thatthe photorespiration was markedly affected. Under NaCl stress, ROS content in thecells treated with the two inhibitors was dramatically lower than that in the untreatedcells, with the SHAM treated cells being the lowest. This suggested that the reactioninhibited by SHAM might be the ROS production site. Thus, the decrease in ROScontent after inhibition of glycine decarboxylase by MOA might also result from thereduction of the conversion of glycolate to glyoxylate, which was caused by theinhibition of its downstreem reaction, the conversion of glycine to serine. Because thephotorespiration pathway in A cell line was markedly inhibited in the conversion ofserine to glycine, its ROS content was also significantly lower than that in CW-Arg(cell line of control) under NaCl stress. Those results demonstrated that ROS was alsoproduced during the operation of photorespiration in this alga, and that the productionsite was the conversion of glycolate to glyoxylate catalyzed by glycolate-quinoneoxidoreductase system.
     5. The usage of extracellular L-Ser and L-Lys by C. reinhardtii cells was not viadirect absorption, but via extracellular deamination. The deamination was dependenton nitrogen starvation, and acetic acid can promote this process. C. reinhardtii cellscan use L-Cys as the sole nitrogen source, and its intracellular content was increasedwith the increase of extracellular content and prolonging the feeding time, indicating that L-Cys was taken up via passive diffusion. The uptake of L-Cys was not affectedby Leu, indicating that their absorptions are independent.
     6. Acetic acid at pH5.0induced DNA degradation after30min treatment, and thedegradation was strengthened gradually during the treatment and finally resulted infragments of about150-350bp after6h treatment. The degradation of DNA can bedelayed by ZnSO_4treatment, and the pretreatment with1mM had greater inhibitioneffect on DNA degradation than with0.5mM. The cells treated with pH5.0aceticacid had TUNEL positive nuclei, and the positive nuclei appeared in10%,95%and100%cells after1h,2h and4h treatment, respectively. Those results suggested thatpH5.0acetic acid induced PCD in C. reinhardtii cells.
     7. Acetic acid (34.3mM) at pH5.0induced PCD in C. reinhardtii cells, whileH_2SO_4, HCl, H_3PO_4, phosphate buffer and propionic acid did not, but killed the cellsat pH_3.0, indicating that the induction of PCD did not mainly relate with the mediumacidity, but related with its chemical property of acetic acid. When the cells were keptin the culture medium containing50mM acetic acid and at pH6.0, they were alsokilled. However, the cells could survive in the medium containing150mM acetic acidand at pH7.0, at which most of the acetic acid molecules are in ionic form. Thisdemonstrated that there was no relationship between the cell death and the CH_3COOˉform in the medium. The results showed that PCD induced by acetic acid was mostprobably related with both pH and CH_3COOH form.
     8. Lots of VOCs were released from the C. reinhardtii cells in PCD induced byacetic acid, and their components and content reached the highest level after2htreatment. At least34different compounds were determined and are among thealdehydes, alcohols, esters, ketones, alkanes, alkenes and terpenoids. Besides aceticacid,300mM NaCl or150mM Na_2CO_3stress also induced VOCs release from C.reinhardtii cells. Hexanal (GLVs) was induced by both acetic acid and NaCl stresses,with the peak areas of23.49×10~7and3.14×10~7, respectively. However, Na_2CO_3stressdid not induce hexanal, but induced special components of3,4-dimethyl-hexane and5-methyl-2-heptene. Longifolene was the main terpenoid under the3kinds of stresses,with peak areas of5.82×10~7,3.11×10~7and4.00×10~7, respectively, for acetic acid,NaCl and Na_2CO_3.
     9. When normal C. reinhardtii cells were exposed to those VOCs from the cellsstressed by acetic acid, NaCl or Na_2CO_3, the cell growth was significantly inhibited,but the chlorophyll content, Fv/Fm, H_2O_2content and antioxidant enzyme activitieswere significantly increased, indicating that VOCs from algae under abiotic stress cantransfer information between algae.
引文
[1] Heil M, Bueno J C S. Within-plant signaling by volatiles leads to induction and priming ofan indirect plant defense in nature. Proc Natl Acad Sci USA,2007,140:5467~5472.
    [2] Kost C, Heil M. The Defensive Role of Volatile Emission and Extrafloral Nectar Secretionfor Lima Bean in Nature. J Chem Ecol,2008,34:2~13.
    [3] De Lacy Costello B P J, Evans P, Ewen R J, et al. Gas chromatography–mass spectrometryanalyses of volatile organic compands from potato tubers inoculated with Phytophthorainfestans or Fusarium coeruleum. Plant Pathol,2001,50:489~496.
    [4] Affenzeller M J, Darehshouri A, Andosch A, et al. Salt stress-induced cell death in theunicellular green alga Micrasterias denticulate. J Exp Bot,2009,60(3):939~954.
    [5] Shao N, Beck C F, Lemaire S D, et al. Photosynthetic electron flow affects H2O2signaling byinactivation of catalase in Chlamydomonas reinhardtii. Planta,2008,228:1055~1066.
    [6] Mishra1S, Heckathorn S A, Barua D, et al. Interactive effects of elevated CO2and ozone onleaf thermotolerance in field-grown Glycine max. J Integr Plant Biol,2008,50(11):1396~1405.
    [7] Byun Y J, Kim H J, Lee D H. Long SAGE analysis of the early response to cold stress inArabidopsis leaf. Planta,2009,229:1181~1200.
    [8] Wang J, Li X R, Liu Y B, et al. Salt stress induces programmed cell death in Thellungiellahalophila suspension-cultured cells. J Plant Physiol,2010,167:1145~1151.
    [9] Zuo Z J, Zhang R M, Gao P J, et al. Allelopathic effects of Artemisia frigida Willd. ongrowth of pasture grasses in Inner Mongolia, China. Biochem Syst and Ecol,2011,39,377~383.
    [10] Pinto E, Sigaud-Kutner T C S, Leitao M A S, et al. Heavy metal-induced oxidative stress inalgae. J Phycol,2003,39:1008~1018.
    [11] Tipathi B N, Bhatt I, Dietz K J. Peroxiredoxins: a less studied component of hydrogenperoxide detoxification in photosynthetic organisms. Protoplasma,2009,235:3~15.
    [12] De Pinto M C, Paradiso A, Leonetti P, et al. Hydrogen peroxide, nitric oxide and cytosolicascorbate peroxidase at the crossroad between defence and cell death. Plant J,2006,48:784~795.
    [13] Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species duringplant stress responses. Cell Mol Life Sci,2000,5:779~795.
    [14] Miller G, Mittler R. Could heat shock transcription factors function as hydrogen peroxidesensors in plants? Ann Bot,2006,98:279~288.
    [15] Müller F W, Igloi G L, Beck C F. Structure of a gene encoding heat-shock protein HSP70from the unicellular alga Chlamydomonas reinhardtii. Gene,1992,111:165~173.
    [16]柯德森,孙谷畴,王爱国,等.低温诱导绿豆黄化幼苗乙烯产生过程中活性氧的作用.植物生理与分子生物学学报,2003,29(2):127~132.
    [17] Sokolov S, Knorre D, Smirnova E, et al. Ysp2mediates death of yeast induced byamiodarone or intracellular acidification. Biochimica et Biophysica Acta,2006,1757:1366~1370.
    [18] Shao N, Liszkay A K, Schroda M, et al. A reporter system for the individual detection ofhydrogen peroxide and singlet oxygen: its use for the assay of reactive oxygen speciesproduced in vivo. Plant J,2007,50:475~487.
    [19]晏斌,戴秋杰.紫外线对水稻叶组织中活性氧代谢及膜系统的影响.植物生理学报,1996,22(4):373~378.
    [20]柳永强,张武,王一航,等.斑地锦入侵对马铃薯实生苗生长和活性氧代谢的影响.种子,2009,28(9):63~65.
    [21] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,2002,7:405~410.
    [22] Scandalios J G. Oxidative stress: molecular perception and transduction of signals triggereingantioxidant gene defenses. Braz J Med Biol Res,2005,38:995~1014.
    [23] Costa V, Moradas-Ferreira P. Oxidative stress and signal transduction in Saccharomycescerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med,2001,22:217~246.
    [24] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signaltransduction. Annu Rev Plant Biol,2004,55:373~399.
    [25] Mazel A, Leshem Y, Tiwari BS, et al. Induction of salt and osmotic stress tolerance byoverexpression of an intracellular vesicle trafficking protein AtRab7(AtRabG3e). PlantPhysiol,2004,134:118~128.
    [26] Boka K, Orban N, Kristof Z. Dynamics and localization of H2O2production in elicited plantcells. Protoplasma,2007,230:89~97.
    [27] Chen S, Olbrich A, Langenfeld-Heyser R, et al. Quantitative X-ray microanalysis ofhydrogen peroxide within plant cells. Microsc Res Tech,2009,72:49~60.
    [28]胡文玉,谢甫绨,李晓苹,等译.植物衰老过程和调控.沈阳:辽宁科技出版社,1990.
    [29]许树成,丁海东,桑建荣.植物细胞活性氧种类、代谢及其信号转导.云南植物研究,2007,29(3):355~365.
    [30]李合生.现代植物生理学.高等教育出版社,北京,2002,416~417.
    [31]林文洁,陈丽晖.植物体中的自由基.海南大学学报,1998,16(4):370~375.
    [32] Karpinski S, Escobar C, Karpinska B. Potosynthetic electron transport regulates theexpression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress.Plant Cell,1997,9:627~640.
    [33] Willekens H, Chamnongpol S, Davey M. Catalase is a sink for and is indispensable for stressdefence in C3plants. EMBO J,1997,16:4806~4816.
    [34] Kato J, Yamahara T, Tanaka K, et al. Characterization of catalase from green algaChlamydomonas reinhardtii. J Plant Physiol,1997,151:262~268.
    [35] Foyer C H, Descourvières P, Kunert K J. Protection against oxygen radicals: an importantdefence mechanism studied in transgenic plants. Plant Cell Environ,1994,17:507~523.
    [36]史庆华,朱祝军,王永传,等.不同辐照度下高浓度锰对黄瓜叶片活性氧产生和抗氧化酶活性的影响.植物生理与分子生物学学报,2006,32(3):325~329.
    [37] Elamin O M, Wilcox G E. Effect of magnesium and manganese utrition on muskmelongrowth and manganese toxicity. J Am Soc Hort Sci,1986,111:323~327.
    [38] Hauck M, Paul A, Gross S, et al. Manganese toxicityinepiphyticlichens: chlorophylldegradation and interaction with iron and phosphorus. Environ Exp Bot,2003,49:181~191.
    [39] Asada K. Molecular properties of ascorbate peroxidase-a hydrogen peroxide-scavengingenzyme in plants. Asada K, Yoshikawa T. Frontiers of Reactive Oxygen Species in Biologyand Medicine. Amsterdam: Elsevier,1994.
    [40] Hideg E, Barta C, Kalai T, et al. Detection of singlet oxygen and superoxide with fluorescentsensors in leaves under stress by photo inhibition or UV radiation. Plant Cell Physiol,2002,43:1154~1164.
    [41] Feierabend J, Engel S. Photoinactivation of catalase in vitro and in leaves. Arch BiochemBiophys1986,251:567~576.
    [42] Grotjohann N, Janning A, Eising R. In vitro photoinactivation of catalase isoforms fromcotyledons of sunflower (Helianthus annuus L.). Arch Biochem Biophys,1997,346:208~218.
    [43] Doke N. The oxidative burst: roles in signal transduction and plant stress.∥Scandalios J G.Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory Press,1997,785~813.
    [44] Dat J F, Delgado H L, Foyer C H. Effects of salicylic acid on oxidative stress andthermotolerance in tobacco. Plant Physiol,2000,156:5~6.
    [45] Dat J F, Foyer C H, Scott I M. Changes in salicylic acid and antioxidants during inducedthermotolerance in mustard seedlings. Plant Physiol,1998,118:1455~1461.
    [46]朱雪梅,柯永培,邵继荣,等.高温胁迫对重穗型水稻品种叶片活性氧代谢的影响.种子,2005,24(3):25~32.
    [47] Smirnoff N. Plant resistance to environmental stress. Curr Opin Biotechnol,1998,9:214~219.
    [48] Sgherri C L M, Pinzino C, Izzo F N. Sunflower seedlings subjected to increasing stress bywater deficit: changes in production related to the composition of thylakoid membranes.Physiol Plant,1996,96:446~452.
    [49]郝福顺,崔香环,赵世领,等.渗透胁迫对黑麦幼苗活性氧和抗氧化酶活性的影响.植物学通报,2007,24(5):603~608.
    [50]时忠杰,杜阿朋,胡哲森,等.水分胁迫对板栗幼苗叶片活性氧代谢的影响.林业科学研究,2007,20(5):683~687.
    [51]谢亚军,王兵,梁新华,等.干旱胁迫对甘草幼苗活性氧代谢及保护酶活性的影响.农业科学研究,2008,29(4):19~22.
    [52]周俊国,扈惠灵,朱月林,等.氯化钠胁迫对南瓜根系游离态多胺含量和活性氧水平的影响.应用生态学报,2008,19(9):1989~1994.
    [53]廖汝玉,金光,尹兰香,等.钙胁迫对枇杷小苗叶片活性氧代谢及膜系统的影响.西南大学学报,2009,31(2):74~78.
    [54]高红明,吴晓霞,张彪,等. Na2CO3胁迫下星星草幼苗活性氧及保护酶活性的变化.植物研究,2006,26(3):308~312.
    [55]徐静,王庆成,孙晶,等.碳酸盐胁迫对偃伏木活性氧产生和抗氧化酶系统的影响.东北林业大学学报,2009,37(9):29~32.
    [56] Darehshouri A, Meindl UL. H2O2localization in the green alga Micrasterias after salt andosmotic stress by TEM-coupled electron energy loss spectroscopy. Protoplasma,2010,239:49~56.
    [57]徐勤松,施国新,王学,等.镉、铜和锌胁迫下黑藻活性氧的产生及抗氧化酶活性的变化研究.水生生物学报,2006,30(1):107~112.
    [58]储玲,晋松,吴学峰,等.铜污染对天蓝苜蓿幼苗生长及活性氧代谢的影响.生态学杂志,2006,25(12):1481~1485.
    [59]柯世省.铜对苋菜幼苗光合参数和活性氧代谢的影响.中国农业科学,2008,41(5):1317~1325.
    [60]王慧忠,张新全,何翠屏.镉、铅胁迫对匍匐翦股颖叶片中活性氧的影响.山地农业生物学报,2006,25(1):17~22.
    [61]赵士诚,孙静文,马有志,等.镉对玉米幼苗活性氧代谢、超氧化物歧化酶和过氧化氢酶活性及其基因表达的影响.中国农业科学,2008,41(10):3025~3032.
    [62]王学.精胺对氯化钠胁迫下黄瓜幼苗根系活性氧代谢的影响.北方园艺,2009,4:12~14.
    [63]段九菊,郭世荣,康云艳,等.外源亚精胺对盐胁迫下黄瓜(Cucumis sativus L.)叶绿体活性氧清除系统和结合态多胺含量的影响.生态学报,2009,29(2):653~661.
    [64]王罗霞,赵志光,王锁民.一氧化氮对水分胁迫下小麦叶片活性氧代谢及膜脂过氧化的影响.草业学报,2006,15(4):104~108.
    [65]刘建新,胡浩斌,王鑫.外源NO对盐胁迫下黑麦草幼苗活性氧代谢、多胺含量和光合作用的影响.植物研究,2009,29(3):313~319.
    [66] Ashmore M R, Bell J N B. The role of ozone in global change. Ann Bot,1991,67:37~48.
    [67] Wang X, Mauzerall L. Characterizing distributions of surface ozone and its impact on grainproduction in China, Japan, and South Korea:1990and2020. Atmos Environ,2004,38:4383~4402.
    [68] He X Y, Ruan Y N, Chen W, et al. Responses of the antioxidative system in leaves of Ginkgobiloba to elevated ozone concentration in an urban area. Bot Stud,2006,47:409~416.
    [69] Zhao T H, Shi Y, Huang G H, et al. Respective and interactive effects of doubled CO2and O3concentration on membrane lipid peroxidation and antioxidative ability of soybean. SciChina Ser C,2005,48(1):136~41.
    [70] Wohlgemuth H, Mittelstrass K, Kschieschan S, et al. Activation of an oxidative burst is ageneral feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ,2002,25(6):717~726.
    [71] Caldiera K, Wickett ME. Anthropogenic carbon and ocean pH. Nature,2003,425:365.
    [72] Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-firstcentury and its impact on calcifying organisms. Nature,2005,437:681~686.
    [73]宋玉芝,秦伯强,杨龙元,等.太湖沿岸湿沉降的化学特性及水体酸化的趋势.南京气象学院学报,2005,28(5):593~600.
    [74]王莉霞,陈同斌,宋波,等.广西环江流域硫污染农田的土壤酸化与酸性土壤分布.地理学报,2008,63(11):1179~1188.
    [75] Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands.Science,2010,327:1008~1010.
    [76]曹磊.全球十大环境问题.环境科学,1995,16(4):86~88.
    [77] Guldberg OH, Mumby PJ, Hooten AJ, et al. Coral reefs under rapid climate change andocean acidification. Science,2007,318:1737~1742.
    [78] Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants. Plant Physiol,1995,107:315~321.
    [79] Morita M, Suwa1R, Iguchi A, et al. Ocean acidification reduces sperm flagellar motility inbroadcast spawning reef invertebrates. Zygote,2009,18:103~107.
    [80]况琪军,夏宜睁,坂本充.酸化水体中的藻类研究.中国环境科学,1994,14(5):350~355.
    [81]童贯和,梁惠玲.模拟酸雨及其酸化土壤对小麦幼苗体内可溶性糖和含氮量的影响.应用生态学报,2005,16(8):1487~1492.
    [82] Kim K S, Min J Y, Dickman MB. Oxalic acid is an elicitor of plant programmed cell deathduring Sclerotinia sclerotiorum disease development. Mol Plant Microbe In,2008,21(5):605~612.
    [83] Monshausen G B, Bibikova T N, Weisenseel M H, Gilroya S. Ca2+regulates reactiveoxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell,2009,21:2341~2356.
    [84] Zolla L, Rinalducci S. Involvement of active oxygen species in degradation oflight-harvesting proteins under light stresses. Biochemistry,2002,41(48):14391~14402.
    [85]季宇彬,何相晶,曲中原,等.活性氧诱导细胞凋亡的研究进展.中草药,2009,40:19~21.
    [86] Wu G, Shortt B J, Lawrence E B, et al. Disease resistance conferred by expression of a geneencoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell,1995,7:1357~1368.
    [87] Huckelhoven R, Koge K H. Reactive oxygen intermediates in plant-microbe interactions:who is who in powdery mildew resistance. Planta,2003,216(6):891~902.
    [88] Pennell R I, Lamb C. Programmed cell death in plants. Plant Cell,1997,9:1157~1168.
    [89] Jabs T, Dietrich R A, Dangl J L. Initiation of runaway cell death in an Arabidopsis mutant byextracellular superoxide. Science,1996,273:1853~1856.
    [90] Alvarez M E, Pennell R I, Meiker P J, et al. Reactive oxygen intermediates mediate asystemic signal network in the establishment of plant immunity. Cell,1998,92:773~784.
    [91] Cardenas M O, Ryan CA. Hydrogen peroxide is generated systemically in plant leaves bywounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA,1999,96:6553~6557.
    [92] Mullineaux P, Karpinski S. Signal transduction in response to excess light: getting out of thechloroplast. Curr Opin Plant Biol,2002,5:43~48.
    [93] Pei ZM, Benning G, Thomine S, et al. Calcium channels activated by hydrogen peroxidemediate abscisic acid signalling in guard cells. Nature,2000,406:731~734.
    [94] Kovtun Y, Chiu W L, Guillaume T, et al. Functional analysis of oxidative stress activatedmitogen2activated protein kinase cascade in plants. Proc Natl Acad Sci USA,2000,97:2940~2945.
    [95] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signaltransduction. Annu Rev Plant Biol,2004,55:373~399.
    [96] Chamnongpol. Defense activat ion and enhanced pathogen to lerance induced by H2O2intransgenic tobacco. Proc Natl Acad Sci USA,1998,95:5818~5823.
    [97] Verslues P E, Kim Y S, Zhu J K. Altered ABA, proline and hydrogen peroxide in anArabidopsis glutamate: glyoxylate aminotransferase mutant. Plant Mol Biol,2007,64:205~217.
    [98] Pitzschke A, Hirt H. Mitogen-activated protein kinases and reactive oxygen species signalingin plants. Plant Physiol,2006,141:351~356.
    [99] Desikan R, Hancock J T, Ichimura K. Harp in induces activation of the Arabidopsismitogen-activated protein kinases AtMPK4and AtMPK6. Plant Physiol,2001,126:1579~1587.
    [100] Moon H, Lee B, Choi G, et al. NDP kinase interacts with two oxidative stressactivatedMAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenicplants. Proc Natl Acad Sci USA,2003,100:358~363.
    [101] Ren D, Yang H, Zhang S. Cell death mediated by MAPK is associated with hydrogenperoxide product ion in Aabidopsis. J Biol Chem,2002,277(1):559~565.
    [102]田敏,饶龙兵,李纪元.植物细胞中的活性氧及其生理作用.植物生理学通讯,2005,41(2):235~241.
    [103] Dat J F, Delgado H L, Foyer C H et al. Parallel changes in H2O2and catalase duringthermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. PlantPhysiol,1998,116:1351~1357.
    [104] Van Camp W, Van Montagu M, Inze D. H2O2and NO: redox signals in disease resistance.Trends Plant Sci,1998,3:330~334.
    [105] Ievinsh G, Tillberg E. Stress-induced ethylene biosynthesis in pine needles: a search for theputative1-aminocyclopropane-1-carboxylic-independent pathway. J Plant Physiol,1995,145:308~314.
    [106] Delledonne M, Xia Y, Dixon R A, et al. Nitric oxide functions as a signal in plant diseaseresistance. Nature,1998,394:585~588.
    [107] Levine A, Pennell R I, Alvarez M E, et al. Calium–mediated apoptosis in a planthypersensitive disease resistance response. Curr Biol,1996,6:427~437.
    [108] Harding S A, Oh S H, Roberts D M. Transgenic tobacco expressing a foreign calmodulingene shows an enhanced production of active oxygen species. EMBO J,1997,16:1137~1144.
    [109] Panavas T. Oxidative events during programmed cell death in dayliy petals. Plant Physiol,1997,114(3):278.
    [110] Dempsey D A, Klessig F. Signals in plant resistance. Bull Inst Pasteur,1995,93:167~186.
    [111] Mittler R, Lam E, Shulaev V, et al. Signal controlling the expressing of cytosolic ascorbateperoxidase during pathogen induced programmed cell death in tabacco. Plant Mol Biol,1999,39(5):1025~1035.
    [112] Chen Y, Sliva H, Klessing D F. Active oxygen species in the in duction of plant systemacquired resistance by salicylic acid. Science,1993,263:1883~1886.
    [113] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signaltransduction. Annu Rev Plant Biol,2004,55:373~399.
    [114] Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interfacebetween stress perception and physiological responses. Plant Cell,2005,17:1866~1875.
    [115]杜秀敏,殷文璇,张慧,等.超氧化物歧化酶(SOD)研究进展.中国生物工程杂志,2003,23(1):48~50.
    [116] Baum J A, Scandalios J G. Developmental expression and intracellular localization ofsuperoxide dismutases in maize. Differentiation,1979,13:133~140.
    [117] Ogawa K, Kanematsu S, Adada K. Intra-and extra-cellular localization of “cytosolic”Cu/Zn-superoxide dismutase in spinach leaf and hypocotyls. Plant Cell Physio,1996,37(6):790~799.
    [118] Miller R, Zilinskas B A. Molecular cloning and characterization of a gene encoding peacytosolic ascorbate peroxidase. J Biol Chem,1992,267:21802~21807.
    [119] Betella M A, Quesada M A, Konowicz A K. Characterization and in situlocalization of asalt induced tomato peroxidaze mRNA. Plant Mol Biol,1994,25:105~114.
    [120] Chittoor J M, Leach J E, White F F. Differential induction of peroxidase gene family duringinduction of rice by Xanthomonas oryzae pv. oryzae. Mol Plant Microbe In,1997,10:861~871.
    [121] Espelie K E, Kolattukudy P E. Purification and characterization of an abscisic acidinducible anionic POD as sociated with suberization in potato. Arch Biochem Biophys,1985,240:539~545.
    [122] Svalhein Ф, Robertsen B. Induction of peroxidases in cucumber hypocopyls by woundingand fungal infection. Physiol Plant,1990,78:261~267.
    [123] Foyer C H, Hailiwell B. The presence of glutathione and glutathione reductase inchloroplasts: proposedrolein ascorbic acid metabolism. Planta,1976,133:21~25.
    [124] Asada K. Ascorbate peroxidase—a hydrogen peroxide scavenging enzyme in plants.Physiol Plant,1992,85:235~241.
    [125] Chen G X, Asada K. Asorbate peroxidase in tea leaves occurrence of two isoenzymes andtheir differences in enzymatic and molecular properties. Plant Cell Physiol,1989,30:987~998.
    [126] Chen Z, Young T E, Ling J, et al. Increase vitamin C content of plant through enhancedascorbate recycling. Proc Natl Acad Sci USA,2003,100:3525~3530.
    [127]靳月华,陶大利,郝占庆,等.环境胁迫和抗坏血酸的氧化还原状态.植物学报,2003,45(7):795~801.
    [128] Criqui M C, Jamet E, Parmentier Y, et al. Isolation and characterization of a plant cDNAshowing homology to animal glutathione peroxidases. Plant Mol Biol,199218:623~627.
    [129] Milla M A R, Maurer A, Huete A R, et al. Glutathione peroxidase genes in Arabidposis areubiquityous and regulated by abiotic stresses though diverse signaling pathways. Plant J,2003,36:602~615.
    [130] Doulis A G. Seasonal changes in antioxidants of red spruce (Picea rubens Sarg) at two sitein the eastern united states. New Phytol,1993,123:365~374.
    [131] Foyer C H, Souriau N, Perret S, et al. Over expressing of glutathione reductase but notglutathione synthetase leads to increases in antioxidant capacity and resistance tophotoinhibition in poplar trees. Plant Physiol,1995,109:1047~1057.
    [132]冯蕾,白志英,路丙社,等.氯化钠胁迫对枳椇和皂荚生长、叶绿素荧光及活性氧代谢的影响.应用生态学报,2008,19(11):2503~2508.
    [133]徐静,王庆成,孙晶,等.碳酸盐胁迫对偃伏木活性氧产生和抗氧化酶系统的影响.东北林业大学学报,2009,37(9):29~32.
    [134] López U P, Robredo A, Lacuesta M, et al. The oxidative stress caused by salinity in twobarley cultivars is mitigated by elevated CO2. Physiol Plantarum,2009,135:29~42.
    [135]刘建新,胡浩斌,王鑫.外源NO对盐胁迫下黑麦草幼苗活性氧代谢、多胺含量和光合作用的影响.植物研究,2009,29(3):313~319.
    [136]于肇端,王丽娜,曹辰兴,等.外源一氧化氮对镉胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响.云南植物研究,2009,31(6):486~492.
    [137]郝福顺,崔香环,赵世领,等.渗透胁迫对黑麦幼苗活性氧和抗氧化酶活性的影响.植物学通报,2007,24,603~608.
    [138]吴建华,张汝民,高岩.干旱胁迫对冷蒿保护酶活性及膜脂过氧化作用的影响.浙江林学院学报,2010,27(3):329~333.
    [139] Fu J M, Huang B R. Involvement of antioxidants and lipid peroxidation in the adaptation oftwo cool-season grasses to localized drought stress. Environ Exp Bot,2001,45:105~114.
    [140]赵天宏,孙加伟,赵艺欣,等. CO2和O3浓度升高及其复合作用对玉米(Zea mays L.)活性氧代谢及抗氧化酶活性的影响.生态学报,2008,28(8):3644~3643.
    [141] Tom L, Ollerenshaw J H, Barnes J D. Impacts of ozone on Plantago major: apoplastic andsymplastic antioxidant status. New Phytol,1999,141(2):253~263.
    [142] Pasqualini S, Batini P, Ederli L, et al. Effects of short term ozone fumigation on tobaccoplants: response of the scavenging system and expression of the glutathione reductase. PlantCell Environ,2001,24(2):245~252.
    [143] Foyer C, Rowell J, Walker D. Measurements of the ascorbate content of spinach leafprotoplasts during illumination. Planta.1983,157,239~244.
    [144] Noctor G, Foyer C A. Ascorbate and glutathione: keeping active oxygen under control.Annu Rev Plant Physiol Plant Mol Biol.1998,49,249~279.
    [145] Smirnoff N. Antioxidant systems and plant response to the environment. In: EnvironmentAnd Plant Metabolism (Smirnoff N). BIOS Scientific Publishers, Oxford, UK.1995,217~243.
    [146] Bunkelmann J R, Trelease R N. Ascorbate peroxidase, aprominent membrane protein inoilseed glyoxysomes. Plant Physiol,1996,110,589~598.
    [147] Karpinsk S. Photosynthetic elctrontransport regulates the expression of cytosolic ascorbateperoxidase genes in Arabidopsis during excess light stress. Plant Cell,1997,19:627~640.
    [148] May M J, Leaver C J. Oxidative stimulation of glutathione synthesis in Arabidopsisthaliana suspension cultures. Plant Physiol,1993,103:1155~1163.
    [149]张艳,林莺,刘永慧,等. NaCl对海滨锦葵活性氧清除能力的影响.山东师范大学学报,2007,22(4):117~119.
    [150]孙锦,贾永霞,郭世荣,等.海水胁迫对菠菜(Spinacia olerancea L.)叶绿体活性氧和叶绿素代谢的影响.生态学报,2009,29(8):4361~4371.
    [151] Mahalingam R, Jambunathan N, Gunjan S K, et al. Analysis of oxidative signalling inducedby ozone in Arabidopsis thaliana. Plant Cell Environ,2006,29(7):1357~1371.
    [152]阮亚男,何兴元,陈玮,等.臭氧浓度升高对油松抗氧化系统活性的影响.应用生态学报,2009,20(5):1032~1037.
    [153]马彦霞,张国斌,颉建明,等.外源谷胱甘肽对自毒作用下辣椒幼苗叶片活性氧清除系统的影响.西北植物学报,2009,29(7):1380~1386.
    [154]段九菊,郭世荣,康云艳,等.外源亚精胺对盐胁迫下黄瓜(Cucumis sativus L.)叶绿体活性氧清除系统和结合态多胺含量的影响.生态学报,2009,29(2):654~661.
    [155] Lal A, Edwards G E. Analysis of inhibition of photosynthesis under water stress in the C4species Amaranthus cruentus and Zea mays electron transport CO2fixation andcarboxylation capacity. Aust J Plant Physiol,1966,23(4):403~412.
    [156] Tewari A K, Tripathy B C. Temperature-stress-induced impairment of chlorophyllbiosynthetic reactions in cucumber and wheat. Plant Physiol,1998,117(3):851~858.
    [157] Guo S K, Tang C Q, Yang Z L, et al. Effects of acid and alkali on the light absorption,energy transfer and protein secondary structures of core antenna subunits CP43and CP47ofPhotosystem II. Photochem Photobiol,2004,79:291~296.
    [158] Strain H H, Svec W A. Extraction, separation, estimation, and isolation of the chlorophylls.The Chlorophylls. Academic Press, New York,1966,21~66.
    [159] Mosquera M I M, Rojas B G. High-performance liquid chromatographic study of alkalinetreatment of chlorophyll. J Chromatogr A,1995,690:161~176.
    [160] Bressan R A, Hasegawa P M, Kononowicz A K. Cell cycle duration in tobacco cellsadapted to NaCl. Environ Exp Bot,1992,32(2):1~9.
    [161]郑文菊,张承烈.盐生和中生环境中宁枸杞叶显微和超微结构的研究.草业科学,1998,7(3):72~76.
    [162]姜超强,李杰,刘兆普,等.盐胁迫对转AtNHX1基因杨树光合特性与叶绿体超微结构的影响.西北植物学报,2010,30(2):301~308.
    [163]韩志平,郭世荣,焦彦生,等. NaCl胁迫对西瓜幼苗生长和光合气体交换参数的影响.西北植物学报,2008,28(4):745~751.
    [164]金清,江洪,余树全,等.酸雨胁迫对亚热带典型树种幼苗生长与光合作用的影响.生态学报,2009,29(6):3322~3327.
    [165] Berry J A, Downton W J S. Environmental regulation of photosynthesis. Govind J, ed.Photosynthesis (volumeⅡ). New York, Academic Press,1982,263~343.
    [166] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev PlantPhysiol,1982,33:317~345.
    [167]王景艳,刘兆普,刘玲,等. NaCl胁迫对长春花幼苗离子分布和光合作用的影响.生态学杂志,2008,27(10):1680~1684.
    [168] Havaux M, Canaani O, Malkin S. Inhibition of photosynthetic activities underslow waterstress measured in vivo by photoacoustic method. Plant Physiol,1987,70:503~510.
    [169]李敦海,宋立荣,刘永定.念珠藻葛仙米叶绿素荧光与水分胁迫的关系.植物生理学通讯,2000,36(3):205~208.
    [170]寇伟锋,刘兆普,陈铭达,等.不同浓度海水对油葵幼苗光合作用和叶绿素荧光特性的影响.西北植物学报,2006,26(1):73~77.
    [171]付士磊,周永斌,何兴元,等.干旱胁迫对杨树光合生理指标的影响.应用生态学报,2006,17(11):2016~2019.
    [172]韩瑞宏,卢欣石,高桂娟,等.紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应.生态学报,2007,27(12):5229~5237.
    [173]李志军,罗青红,伍维模,等.干旱胁迫对胡杨和灰叶胡杨光合作用及叶绿素荧光特性的影响.干旱区研究,2009,26(1):45~52.
    [174] Chris R S,2001. An early Arabidopsis demonstration. Resolving a few issues concerningphotorespiration. Plant Physiol,125:20~24.
    [175] Osmond C B. Photorespiration and photoinhibition. Some implications for the energetics ofphotosynthesis. Biochim Biophys Acta,1981,639:77~98.
    [176] Wu J, Neimanis S, Heber U. Photorespiration is more effective than the Mehler reaction inprotecting the photosynthetic apparatus against photoinhibition. Bot Acta,1991,104:283~291.
    [177] Osmond C B, Grace S C. Perspectives on photoinhibition and photorespiration in the field:quintessential ine¤ciencies of the light and dark reactions of photosynthesis? J Exp Bot,1995,46:1351~1362.
    [178] Kozaki A, Takeba G. Photorespiration protects C3plants from photooxidation. Nature,1996,384,557~560.
    [179] Osmond C B, Badger M, Maxwell K, et al. Too many photons: photorespiration,photoinhibition and photooxidation. Trends Plant Sci,1997,2:119~121.
    [180]左照江,朱晔荣,白艳玲,等.光呼吸途径中两种转氨酶的研究进展.植物生理学通讯,2010,46(8):767~772.
    [181] Herting S H, Fock H P. Oxygen exchange in relation to carbon Assimilation inwater-stressed leaves during photosynthesis. Ann Bot,2002,89:851~859.
    [182] Herting S H, Klug K, Fock H P. A new approach to measure gross CO2fluxes in leaves.Gross CO2assimilation, photorespiration, and mitochondrial respiration in the light in tomatounder drought stress. Plant Physiol,2001,126:388~396.
    [183] Rodríguez J S, Pérez P, Carrasco R M. Photosynthesis, carbohydrate levels and chlorophyllfuorescence estimated intercellular CO2in water-stressed Casuarina equisetifolia Forst.&Forst. Plant Cell Environ,1999,22:867~873.
    [184] Wingler A, Quick W P, Bungard R A, et al. The role of photorespiration during droughtstress: an analysis utilising barley mutants with reduced activities of photorespiratoryenzymes. Plant Cell Environ,1999,22,361~373.
    [185] Wingler A, Lea P J, Quick W P, et al. Photorespiration: metabolic pathways and their role instress protection. Phil Trans R Soc Lond B,2000,355:1517~1529.
    [186] Cramer G R, Ergül A, Grimplet J, et al. Water and salinity stress in grapevines: early andlate changes in transcript and metabolite profiles. Funct Integr Genomics,2007,7:111~134.
    [187] P tter E, Beator J, Kloppstech K. The expression of mRNAs for light-stress proteins inbarley: Inverse relationship of mRNA levels of individual genes within the leaf gradient.Planta,1996,199:314~320.
    [188] Wang Z Q, Yuan Y Z, Ou J Q, et al. Glutamine synthetase and glutamate dehydrogenasecontribute differentially to proline accumulation in leaves of wheat (Triticum aestivum)seedlings exposed to different salinity. J Plant Physiol,2007,164:695~701.
    [189] Martinelli T, Whittaker A, Daubresse C M, et al. Evidence for the presence ofphotorespiration in desiccation-sensitive leaves of the C4‘resurrection’ plant Sporobolusstapfianus during dehydration stress. J Exp Bot,2007,58(14):3929~3939.
    [190] Silva A E C, Powers S J, Keys A J, et al. Photorespiration in C4grasses remains slow underdrought conditions. Plant Cell Environ,2008,31:925~940.
    [191] Jeong M L, Jiang H Y, Chen H S, et al. Metabolic profiling of the sink-to-source transitionin developing leaves of quaking aspen. Plant Physiol,2004,136:3364~3375.
    [192] Kozak I A, Ktakeka G. Photorespiration protects C3plants from photooxidation. Nature,1996,384:557~560.
    [193] Streb P, Shan G W, Feibraberd J, et al. Divergent strategies of photo protection in highmountain plants. Planta,1998,207:313~324.
    [194] Medrano H, Bota J, Abadia A, et al. Effects of drought on light-energy dissipationmechanisms in high-light-acclimated, field-grown grapevines. Funct Plant Biol,2002,29:1197~1207.
    [195] Hoshida H, Tanaka Y, Hibino T, et al. Enhanced tolerance to salt stress in transgenic ricethat overexpresses chloroplast glutamine synthetase. Plant Mol Biol,2000,43:103~111.
    [196]孟庆伟,赵世杰,许长成,等.田间小麦叶片光合作用的光抑制和光呼吸的防御作用.作物学报,1996,22(4):470~475.
    [197] Muraoka H, Tang Y H, Terashima I, et al. Contribution of diffusional limitation,photoinhibition and photorespiration to midday depression of photosynthesis in Arisaemaheterophyllum in natural high light. Plant Cell Environ,2000,23(3):235~250.
    [198] Katona E, Neimais S, Schonknechst G, et al. Photosystem I-dependent cyclic electrontransport is important in controlling photosystem II activity in leaves under conditions ofwater stress. Photosynth Res,1992,34:449~469.
    [199] Noctor G,Arisia C M, Jouanin L, et al. Manipulation of glutathione and amino acidsynthesis in the chloroplast. Plant Physiol,1998,118:471~482.
    [200] Noctor G, Arisia C M, Jouanin L, et al. Photorespiratory glycine enchances glutathionaccumulation in both the chloroplastic and cytosolic compartments. J Exp Bot,1999,50(336):1157~1167.
    [201] Noctor G, Arisi A C M, Jouanin L, et al. The role of glycine in determining the rate ofglutathione synthesis in poplar. Possible implications for glutathione production during stress.Physiol Plantarum,1997,100(2):255~263.
    [202] Kunert K J, Rennenberg H, Foyer C H. Glutatjhione: biosynthesis, metabolism andrelationship to stress to lerance explored in transformed plants. J Exp Bot,1998,49:623~647.
    [203] Fedina I S, Popova A V. Photosynthesis, photorespiration and proline accumulation inwater-stressed pea leaves. Photosynthetica,1996,32(2):213~220.
    [204] Taler D, Galperin M, Benjamin I, et al. Plant eR genes that encode photorespiratoryenzymes confer resistance against disease. Plant Cell,2004,16(1):172~184.
    [205] Pennell R I, Lamb C. Programmed cell death in plants. Plant Cell,1997,9:1157~1168.
    [206] Greenberg J T. Programmed cell death: a way of life for plants. Proc Natl Acad Sci USA,1996,93:12094~12097.
    [207] Kuriyama H, Fukuda H. Developmental programmed cell death in plants. Curr Opin PlantBiol,2002,5:568~573.
    [208] Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the planthypersensitive response. Nature2001,411:848~853.
    [209] Balk J, Leaver C J, Mc Cabe P F. Translocation of cytochrome c from the mitochondria tothe cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBSLett,1999,463:151~154.
    [210] Huh G H, Damsz B, Matsumoto T K, et al. Salt causes ion disequilibrium-inducedprogrammed cell death in yeast and plants. Plant J,2002,29:649~659.
    [211] Love A J, Milner J J, Sadanandom A. Timing is everything: regulatory overlap in plant celldeath. Trends Plant Sci,2008,13(11):589~595.
    [212] Berry D L, Baehrecke E H. Autophagy functions in programmed cell death. Autophagy,2008,4:359~360.
    [213] Reape T J, Molony E M, Mc Cabe P F. Programmed cell death in plants: distinguishingbetween different modes. J Exp Bot,2008,59:435~444.
    [214] Hofius D, Tsitsigiannis D I, Jones J D C. Inducible cell death in plant immunity. SeminCancer Biol,2007,17:166~187.
    [215] Danial N N, Kormeyers S J. Cell death: Critical control points. Cell,2004,116:205~219.
    [216] De Jong, Yakimova E T, Kapchina V M, et al. A critical role for ethylene in hydrogenperoxide release during programmed cell death in tomato suspension cells. Planta,2002,214,537~545.
    [217] Overmyer K, Tuominen H, Kettunen R, et al. Ozone-sensitive Arabidopsis rcd1mutantreveals opposite roles for ethylene and jasmonate signaling pathways in regulatingsuperoxide-dependent cell death. Plant Cell,2000,12:1849~1862.
    [218] Van Breusegem F.&Dat J F. Reactive oxygen species in plant cell death. Plant Physiol,2006,141:384~390.
    [219] Tang D, Christiansen K M, Innes R W, et al. Regulation of plant disease resistance, stressresponses, cell death, and ethylene signaling in Arabidopsis by the EDR1protein kinase.Plant Physiol,2005,138:1018~1026.
    [220] Moeder W, Barry C S, Tauriainen A A, et al. Ethylene synthesis regulated by biphasicinduction of1-aminocyclopropane-1-carboxylic acid synthase and1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and celldeath in ozone-exposed tomato. Plant Physiol,2002,130:1918~1926.
    [221] van Doorn W G, Woltering E J. Many ways to exit? Cell death categories in plants. TrendsPlant Sci,2005,10:117~122.
    [222] Havel L, Durzan D J. Apoptosis during diploid parthenogenesis and early somaticembryogenesis of Norway spruce. Int J Plant Sci,1996,157:8~16.
    [223] Havel L, Durzan D J. Apoptosis in plants. Bot Acta,1996,109:268~277.
    [224] León Y, Sánchez-Galiano S, Gorospe I. Programmed cell death in the development of thevertebrate inner ear. Apoptosis,2004,9,255~264.
    [225] Huckelhoven R. BAX Inhibitor-1, an ancient cell death suppressor in animals and plantswith prokaryotic relatives. Apoptosis,2004,9:299~307.
    [226] Lorrain S, Vailleau F, Balagué C, et al. Lesion mimic mutants: keys for deciphering celldeath and defense pathways in plants? Trends Plant Sci,2003,8:263~271.
    [227] Franklin-Tong V E, Hackett G, Hepler P K, et al. Ratio-imaging of Ca2+in theselfincompatibility response in pollen tubes of Papaver rhoeas. Plant J,1997,12:1375~1386.
    [228] Franklin-Tong V E, Holdaway-Clarke T L, Straatman K R, et al. Involvement ofextracellular calcium influx in the self-incompatibility response of Papaver rhoeas. Plant J,2002,29:333~345.
    [229] Franklin-Tong V E, Ride J P, Read N D, et al. The self-incompatibility response in Papaverrhoeas is mediated by cytosolic-free calcium. Plant J,1993,4:163~177.
    [230] Zhang S L, Tang H. Autophagy: type II programmed cell death. Prog Biochem Biophys,2005,32:1011~1015.
    [231] Yoshimori T. Autophagy: a regulated bulk degradation process inside cells. BiochemBiophys Res Commun,2004,313:453~458.
    [232] Otto G P, Wu M Y, Kazgan N, et al. Macroautophagy is required for multicellulardevelopment of the social amoeba Dictyostelium discoideum. J Biol Chem,2003,278:17636~17645.
    [233] Csala M, Banhegyi G, Benedtti A. Endoplasmic reticulum: A metabolic compartment.FEBS Lett,2006,580:2160~2165.
    [234] Winter J, Jacob U. Beyond transcription—New mechanisms for the regulation of molecularchaperones. Crit Rev Biochem Mol Biol2004,39:297~317.
    [235] Schr der M, Kaufman R J. ER stress and the unfolded protein response. Mutat Res2005,569:29~63.
    [236] Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: a matter of life ordeath. Cell Death Differ,2006,13:363~373.
    [237] Richberg M H, Aviv D H, Dangl J L. Dead cells do tell tales. Curr Opin Plant Biol,1998,1:480~485.
    [238] McCabe P F, Leaver C J. Programmed cell death in cell cultures. Plant Mol Biol,2000,44:359~368.
    [239] McCabe P F, Levine A, Meijer P J, et al. A programmed cell death pathway activated incarrot cells cultured at low cell density. Plant J,1997,12:267~280.
    [240] Peitsch MC, Mannherz HG, Tschopp J. The apoptosis endonucleases: cleaning up after celldeath. Trends Cell Biol,1994,4:37~41.
    [241] Peitsch M C, Müller C, Tschopp J. DNA fragmentation during apoptosis is caused byfrequent single-strand cuts. Nucl Acids Res,1993,21:4206~4209.
    [242] Bortner C D, Oldenburg N B, Cidlowski J A. The role of DNA fragmentation in apoptosis.Trends Cell Biol,1995,5:21~26.
    [243] Mittler R, Lam E. Characterization of nuclease activities and DNA fragmentation inducedupon hypersensitive response cell death and mechanical stress. Plant Mol Biol,1997,34:209~221.
    [244] Wyllie A H, Morris R G, Smith A L, et al. Chromatin cleavage in apoptosis: associationwith condensed chromatin morphology and dependence on macromolecular synthesis. JPathol,1984,142:67~77.
    [245] Van der Kop D A M, Ruys G, Dees D, et al. Expression of defender against apoptotic death(DAD-1) in Iris and Dianthus petals. Physiol Plant,2003,117:256~263.
    [246] Wagstaff C, Malcolm P, Rafiq A, et al. Programmed cell death (PCD) processes beginextremely early in Alstroemeria petal senescence. New Phytol,2003,160:49~59.
    [247] Yamada T, Ichmura K, van Doorn WG. DNA degradation and nuclear degeneration duringprogrammed cell death in petals of Antirrhinum, Argyranthemum, and Petunia. J Exp Bot,2006,57:3543~3552.
    [248] Ito J, Fukuda H. ZEN1is a key enzyme in the degradation of nuclear DNA duringprogrammed cell death of tracheary elements. Plant Cell,2002,14:3201–3211.
    [249] Domínguez F, Moreno J, Cejudo F J. A gibberellin-induced nuclease is localized in thenucleus of wheat aleurone cells undergoing programmed cell death. J Biol Chem,2004,279:11530–11536.
    [250] Stein J C, Hansen G. Mannose induces an endonuclease responsible for DNA laddering inplant cells. Plant Physiol,1999,121:71~79.
    [251] Domínguez F, Cejudo F J. Identification of a nuclear localized nuclease from wheat cellsundergoing programmed cell death that is able to trigger DNA fragmentation and apoptoticmorphology on nuclei from human cells. Biochem J,2006,397:529~536.
    [252] Jiang A L, Cheng Y W, Li J Y, et al. A zinc-dependent nuclear endonuclease is responsiblefor DNA laddering during salt-induced programmed cell death in root tip cells of rice. J PlantPhysiol,2008,165:1134~1141.
    [253] Pérez-Amador M A, Abler M L, Rocher E J D, et al. Identification of BFN1, a bifunctionalnuclease induced during leaf and stem senescence in Arabidopsis. Plant Physiol,2000,122:169~179.
    [254] Mittler R, Lam E. Identification, characterization, and purification of a tobaccoendonuclease activity induced upon hypersensitive response cell death. Plant Cell,1995,7(11):1951~1962.
    [255] Reed J C. Cytochrome c: Can't live with it-Can't live without it. Cell,1997,91:559~562.
    [256] Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation ofApaf-1/Caspase-9complex initiates an apoptotic protease cascade. Cell,1997,91:479~489.
    [257] Johnson C R, Jarvis W D. Caspase-9regulation: an update. Apoptosis,2004,9:423~427.
    [258] Slee E A, Harte M T, Kluck R M, et al. Ordering the cytochrome c-initiated caspase cascade:hierarchical activation of caspases-2,-3,-6,-7,-8, and-10in a caspase-9-dependent manner.J Cell Biol,1999,144:281~292.
    [259] Guerrero A D, Chen M, Wang J. Delineation of the caspase-9signaling cascade. Apoptosis,2008,13:177~186.
    [260] Riedl S J, Salvesen G S. The apoptosome: signaling platform of cell death. Nat Rev MolCell Biol,2007,8:405~414.
    [261] Fulda S, Meyer E, Friesen S, et al. Cell type specific involvement of death receptor andmitochondrial pathways in drug-induced apoptosis. Oncogene,2001,20:1063~1075.
    [262] Andronis E A, Angelakis K A R. Short-term salinity stress in tobacco plants leads to theonset of animal-like PCD hallmarks in planta in contrast to long-term stress. Planta,2010,231:437~448.
    [263] Qu G Q, Liu X, Zhang Y L, et al. Evidence for programmed cell death and activation ofspecific caspase-like enzymes in the tomato fruit heat stress response. Planta,2009,229:1269~1279.
    [264] Doyle S M, Diamond M, Mc Cabe P F. Chloroplast and reactive oxygen speciesinvolvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. JExp Bot,2010,61(2):473~482.
    [265] Marsoni M, Cantara C, de Pinto M C, et al. Exploring the soluble proteome of tobaccobright yellow-2cells at the switch towards different cell fates in response to heat shock. PlantCell Environ,2010,33:1161~1175.
    [266] Lésniewicza K, Pieńkowskab J, Por ba E. Characterization of nucleases involved inseedling development of cauliflower. Journal of Plant Physiology,2010,167:1093~1100.
    [267] Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the planthypersensitive response. Nature,2001,411:848~853.
    [268] Ning S B, Guo H L, Wang L, et al. Salt stress induces programmed cell death in prokaryoticorganism Anabaena. J Appl Microbiol,2002,93:15~28.
    [269] Dunn S R, Thomason J C, Le Tissier M D A, et al. Heat stress induces different forms ofcell death in sea anemones and their endosymbiotic algae depending on temperature andduration. Cell Death Differ,2004,11:1213~1222.
    [270] Pontier D, Tronchet M, Rogowsky P, et al. Activation of HSR203, a plant gene expressedduring incompatible plant-pathogen interactions, is correlated with programmed cell death.Mol Plant-Microbe In,1998,11:544~554.
    [271] Nakashima T, Sekiguchi T, Kuraoka A, et al. Molecular cloning of a human cDNAencoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamsterBHK21cells. Mol Cell Biol,1993,13:6367~6374.
    [272] Apte S S, Mattei M G, Seldin M F, et al. The highly conserved defender against the death(DAD1) gene maps to human chromosome14q11-q12and mouse chromosome14and hasplant and nematode homologs. FEBS Lett,1995,363:304~306.
    [273] Gallois P, Makishima T, Hechtt V, et al. An Arabidopsis thaliana cDNA complementing ahamster apoptosis suppressor mutant. Plant J,1997,11:1325~1331.
    [274] Orzaez D, Granell A. The plant homologue of the defender against apoptotic death gene isdown-regulated during senescence of flower petals. FEBS Lett,1997,404:275~278.
    [275] Watanabe N, Lam E. BAX Inhibitor-1modulates endoplasmic reticulum stress-mediatedprogrammed cell death in Arabidopsis. J Biol Chem,2008,283:3200~3210.
    [276] Bidle K D, Bender S J. Iron starvation and culture age activate metacaspases andprogrammed cell death in the marine diatom Thalassiosira pseudonana. Eukaryot Cell,2008,7(2):223~236.
    [277] Wan C X, Li S Q, Wen L, et al. Damage of oxidative stress on mitochondria duringmicrospores development in Honglian CMS line of rice. Plant Cell Rep,2007,26:373~382.
    [278] Lina J S, Wang Y, Wang G X. Salt stress-induced programmed cell death in tobaccoprotoplasts is mediated by reactive oxygen species and mitochondrial permeability transitionpore status. J Plant Physiol,2006,163:731~739.
    [279] Ko odziejek I, Kozio Lipińska J, Wa eza M, et al. Aspects of programmed cell death duringearly senescence of barley leaves: possible role of nitric oxide. Protoplasma,2007,232:97~108.
    [280] Delledonne M, Xia Y, Dixon R A, et al. Nitric oxide functions as a signal in plant diseaseresistance. Nature,1998,394:585~588.
    [281] Azad A K, Ishikawa T, Ishikawa T, et al., Intracellular energy depletion triggersprogrammed cell death during petal senescence in tulip. J Exp Bot,2008,59(8):2085~2095.
    [282] Jones A. Does the plant mitochondrion integrate cellular stress and regulate programmedcell death? Trends Plant Sci,2000,5:225~230.
    [283] Yao N, Eisfelder B J, Marvin J, et al. The mitochondrion–an organelle commonly involvedin programmed cell death in Arabidopsis thaliana. Plant J,2004,40:596–610.
    [284] Tiwari B S, Belenghi B, Levine A. Oxidative stress increased respiration and generation ofreactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeabilitytransition, and programmed cell death, Plant Physiol,2002,128:1271~1281.
    [285] Vacca R A, de Pinto M C, Valenti D, et al. Production of reactive oxygen species, alterationof cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are earlyevents in heat shockinduced programmed cell death in tobacco bright-yellow2cells, PlantPhysiol,2004,134:1100~1112.
    [286] Kroemer G, Zamzami N, Susin S A. Mitochondrial control of apoptosis. Immunol Today,1997,18:44~51.
    [287] Arpagaus S, Rawyler A, Braendle R. Occurrence and characteristics of the mitochondrialpermeability transition in plants. J Biol Chem,2002,277:1780~1787.
    [288] Scorrano L, Oakes S A, Opferman J T, et al. BAX and BAK regulation of endoplasmicreticulum Ca2+: a control point for apoptosis. Science,2003,300:135–139.
    [289] Yu X H, Perdue T D, Heimer Y M, et al. Mitochondrial involvement in tracheary elementprogrammed cell death. Cell Death Differ,2002,9:189~198.
    [290] Lemasters J J. Mechanisms of hepatic toxicity. V. Necroapoptosis and the mitochondrialpermeability transition: shared pathways to necrosis and apoptosis. Am J PhysiolGastrointest Liver Physiol,1999,276:1~6.
    [291] Casolo V, Petrussa E, Krajnakova J, et al. Involvement of the mitochondrial K(+)ATPchannel in H2O2-or NO-induced programmed death of soybean suspension cell cultures. JExp Bot,2005,56:997~1006.
    [292] Tiwari B S, Belenghi B, Levine A. Oxidative stress increased respiration and generation ofreactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeabilitytransition, and programmed cell death. Plant Physiol,2002,128:1271~1281.
    [293] Mlejnek P, Dolezel P, Prochazka S. Intracellular phosphorylation of benzyladenosine isrelated to apoptosis induction in tobacco BY-2cells, Plant Cell Environ,2003,26:1723~1735.
    [294] Valenti D, Vacca R A, de Pinto MC, et al. In the early phase of programmed cell death intobacco bright yellow2cells the mitochondrial adenine nucleotide translocator, adenylatekinase and nucleoside diphosphate kinase are impaired in a reactive oxygenspecies-dependent manner. Biochim Biophys Acta,2007,1767:66~78.
    [295] Mullineaux P, Karpinski S. Signal transduction in response to excess light: getting out ofthe chloroplast. Curr Opin Plant Biol,2002,5:43~48.
    [296] Genoud T, Buchala A J, Chua N H, et al. Phytochrome signalling modulates theSA-perceptive pathway in Arabidopsis. Plant J,2002,31:87~95.
    [297] Danon A, Rotari V I, Gordon A, et al. Ultraviolet-c overexposure induces programmed celldeath in Arabidopsis, which is mediated by caspase-like activities and which can besuppressed by caspase inhibitors, p35and Defender against Apoptotic Death. J Biol Chem,2004,279:779~787.
    [298] Zeier J, Pink B, Mueller M J, et al. Light conditions influence specific defence responses inincompatible plant-pathogen interactions: uncoupling sytemic resistance from salicylic acidand PR-1accumulation. Planta,2004,219:673~683.
    [299] Dzyubinskaya E V, Kiselevsky D B, Bakeeva L E, et al. Programmed cell death in plants:effect of protein synthesis inhibitors and structural changes in pea guard cells. Biochemistry,2006,71:395~405.
    [300] Seo S, Okamoto M, Iwai T, et al. Reduced levels of chloroplast FtsH protein in tobaccomosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. Plant Cell,2000,12:917~932.
    [301] Mur L A J, Kenton P, Lloyd A J, et al. The hypersensitive response; the centenary is upon usbut how much do we know? J Exp Bot,2008,59:501~520.
    [302] Zapata J M, Guéra A, Esteban-Carrasco A, et al. Chloroplasts regulate leaf senescence:delayed senescence in transgenic ndhF-defective tobacco. Cell Death Differ,2005,12:1277~1284.
    [303] Gray J, Janick-Buckner D, Buckner B, et al. Light-dependent death of maize lls1cells ismediated by mature chloroplasts. Plant Physiol,2002,130:1894~1907.
    [304] Chen S, Dickman M B. Bcl-2family members localize to tobacco chloroplasts and inhibitprogrammed cell death induced by chloroplast-targeted herbicides. J Exp Bot,2004,55:2617~2623.
    [305] Chae H J, Kim H R, Xu C, et al. BI-1regulates an apoptosis pathway linked to endoplasmicreticulum stress. Mol Cell,2004,15:355~366.
    [306] Bailly-Maitre B, Fondevila C, Kaldas F, et al. Cytoprotective gene bi-1is required forintrinsic protection from endoplasmic reticulum stress and ischemiareperfusion injury. ProcNatl Acad Sci USA,2006,103:2809~2814.
    [307] Lee G H, Kim H K, Chae S W, et al. Bax inhibitor-1regulates endoplasmic reticulumstress-associated reactive oxygen species and heme oxygenase-1expression. J Biol Chem,2007,282:21618~21628.
    [308] Ihara-Ohori Y, Nagano M, Muto S, et al. Cell death suppressor Arabidopsis Bax inhibitor-1is associated with calmodulin binding and ion homeostasis. Plant Physiol,2007,143:650~660.
    [309] Costa M D L, Reis P A B, Valente M A S, et al. A new branch of endoplasmic reticulumstress signaling and the osmotic signal converge on plant-specific Asparagine-rich proteins topromote cell death. J Biol Chem,2008,283(29):20209~20219.
    [310] Mroczek S, Kufel J. Apoptotic signals induce specific degradation of ribosomal RNA inyeast. Nucleic Acids Res,2008,36(9):2874~2888.
    [311] Watanabe N, Lam E. Arabidopsis Bax inhibitor-1functions as an attenuator of biotic andabiotic types of cell death. Plant J,2006,45:884~894.
    [312] Bolduc N, Brisson L F. Antisense down regulation of NtBI-1in tobacco BY-2cells inducesaccelerated cell death upon carbon starvation. FEBS Lett,2002,532:111~114.
    [313] Bolduc N, Ouellet M, Pitre F, et al. Molecular characterization of two plant BI-1homologues which suppress Bax-induced apoptosis in human293cells. Planta,2003,216:377~386.
    [314] Eichmann R, Holger S, Kogel K H, et al. The barley apoptosis suppressor homologue Baxinhibitor-1compromises nonhost penetration resistance of barley to the inappropriatepathogen Blumeria graminis f. sp. tritici. Mol Plant Microbe In,2004,17:484~490.
    [315] Hückelhoven R, Dechert C, Kogel K H. Overexpression of barley BAX inhibitor1inducesbreakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc Natl Acad SciUSA,2003,100:5555~5560.
    [316] Kawai M, Pan L, Reed J C, et al. Evolutionally conserved plant homologue of the Baxinhibitor-1(BI-1) gene capable of suppressing Bax-induced cell death in yeast. FEBS Lett,1999,464:143~147.
    [317] Kawai-Yamada M, Jin U, Yoshinaga K, et al. Mammalian Bax-induced plant cell death canbe down-regulated by overexpression of Arabidopsis Bax inhibitor-1(AtBI-1). Proc NatlAcad Sci USA,2001,98:12295~12300.
    [318] Kawai-Yamada M, Ohmori Y, Uchimiya H. Dissection of Arabidopsis Bax inhibitor-1suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell,2004,16:21~32.
    [319] Matsumura H, Nirasawa S, Kiba A, et al. Over expression of Bax inhibitor suppresses thefungal elicitorinduced cell death in rice (Oryza sativa L.) cells. Plant J,2003,33:425~434.
    [320] Sanchez P, de Torres Zebala M., Grant M. AtBI-1, a plant homologue of Bax inhibitor-1,suppresses Bax-induced cell death in yeast and is rapidly upregulated during wounding andpathogen challenge. Plant J,2000,21:393~399.
    [321] Xu Q, Reed J C. Bax inhibitor-1, a mammalian apoptosis suppressor identified byfunctional screening in yeast. Mol Cell,1998,1:337~346.
    [322] Chae H J, Ke N, Kim H R, et al. Evolutionarily conserved cytoprotection provided by Baxinhibitor-1homologs from animals, plants, and yeast. Gene,2003,323:101~113.
    [323] Watanabe N, Lam E. Arabidopsis Bax inhibitor-1, a rheostat for ER stress-inducedprogrammed cell death. Plant Signal Behav,2008,3(8):564~566.
    [324]魏明,邓晓军,胡文利,等.应用固相微萃取技术分析番茄与天竺葵活体植株的挥发物.生态学杂志.2004,23(4):184~187.
    [325] Paré P W, Tumlinson J H. Denovo biosynthesis of volatiles induced by insect herbivory incotton plants. Plant Physiol,1997,114:1161~1167.
    [326]沈应柏,高海波.植株间伤害信息的传递:信号分子及感受机制.福建林学院学报,2006,26(1):92~96.
    [327] Bodnaryk RP. Potent effect of jasmonate on indo leglucosino lates in oilseed rape andmustard. Phytochemistry,1994,35:301~305.
    [328] Mattiacci L, Dicke M, Posthumus M A. Inuction of parasitoid attracting synomone inBrussels sprouts plants by feeding of Pieris brassicae larvae: Role of mechanical damage andherbivore elicitor. J Chem Ecol,1994,20:2229~2247.
    [329] Vuorinen T, Nerg A M, Ibrahim M A, et al. Emission of Plutella xylostella-inducedcompounds from cabbages grown at elevated CO2and orientation behavior of the naturalenemies. Plant Physiol,2004,135,1984~1992.
    [330] Turlings T C J, Benrey B. Effects of plant metabolites on the behavior and development ofparasitic wasps. Ecoscience,1998,5:321~333.
    [331] Dicke M. Are herbivore inuced plant volatiles reliable indicators of herbivore indentity toforaging carnivorous arthropods. Entomo Exp App,1999,91:131~142.
    [332] Pàre P W, Tumlinson J H. Plant volatiles as a defense against insect herbivores. PlantPhysiol,1999,121:325~331.
    [333]左照江,张汝民,高岩.植物间挥发物信号的研究进展,植物学报,2009,44(2):245~252.
    [334] Ping L Y, Shen Y B, Jin Y J, et al. Leaf volatiles induced by mechanical damage fromdiverse taxonomic tree species. Acta Bot Sin,2001,43(3):261~266.
    [335] Kuzma J, Fall R. Leaf isoprene emission rate is dependent on leaf development and thelevel of isoprene syntheses. Plant Physiol,1993,101:435~440.
    [336]赵福庚,何龙飞,罗庆云.植物逆境生理生态学,北京:化学工业出版社,2004.
    [337] Knoester M, Van Loon L C, Heuvel J, et al. Ethylene-insensitive tobacco lacks non hostresistance against soil-borne fungi. Proc Natl Acad Sci USA,1998,95(4):1933~1937.
    [338] Farmer E E. Surface-to-air signals. Nature,2001,411(6839):854~856.
    [339] Desikan R, Last K, Harrett-Williams R, et al. Ethylene-induced stomatal closure inArabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J,2006,47:907~916.
    [340] De Lacy Costello BPJ, Evans P, Ewen RJ, et al. Chromatography–mass spectrometryanalyses of volatile organic compands from potato tubers inoculated with Phytophthorainfestans or Fusarium coeruleum. Plant Pathol,2001,50(4):489~496.
    [341] Huang J, Cardoza Y J, Schmelz E A, et al. Differential volatile emissions and salicylic acidlevels from tobacoo plants in response to different strains of Pseudorronas syringae. Planta,2003,217(5):767~775.
    [342] Hampden J Z J R. Chang in cotton leaf chemistry induced by volatile elicitors. Phytochem,1987,26:1357~1360.
    [343] Lerdau M, Tansley G D. Review: The ecology and evolution of light-dependent andlight-independent volatile organic carbon emission by plants. New Phytol,2003,157:199~211.
    [344] Loreto F, Sharkey T. On the relationship between isoprene emission and photosyntheticmetabolites under different environmental conditions. Planta,1993,189:420~424.
    [345]白建辉,王庚辰,任丽新,等.内蒙古草原挥发性有机物排放通量的研究.环境科学,2003,24(6):16~24.
    [346]白建辉, Baker B.热带人工橡胶林异戊二烯排放通量的模式研究.环境科学学报,2004,24(2):197~203.
    [347] Sharkey T D, Loreto F. Water stress, temperature, and light effects on the capacity forisoprene emission and photo synthesis of Kudzu leaves. Oecologia,1993,95:328~333.
    [348]左照江,张汝民,王勇,等.冷蒿挥发性有机化合物主要成分分析及其地上部分结构研究.植物生态学报,2010,34(4):462~468.
    [349] Guenther A B, Monson R K, Fall R. Isoprene and monoterpene emission rate variability:observations with eucalyptus and emission rate algorithm development. J Geophys Res,1991,96:10799~10808.
    [350] Lerdau M, Dilts S B, Westberg H, et al. monoterpene emission from Ponderosa pine. JGeophys Rse,1994,99:16609~16615.
    [351] Tingey D T, Turner D P, Weber J A. Factors controlling the emission of monoterpenes andother volatile organic compounds. In Sharkey T D, Holland E A, Mooney H A, eds, TraceGas Emissions by Plants. San Diego, CA: Academic Press,1991:93~119.
    [352] Pe uelas J, Llusià J. BVOCs: plant defense against climate warning? Trends Plant Sci,2003,8,105~109.
    [353] Singsaas L. Terpenes and the thermotolerance of photosynthesis. New Phytol,2000,146:1~16.
    [354] Sharkey T D, Chen X, Yeh S. Isoprene increase thermotolerance of fosmidomycin fedleaves. Plant Physiol,2001,125:2001~2006.
    [355] Rosenstiel T N, Ebbets A L, Khatri W C, et al. Induction of poplar leaf nitrate reductase: atest of extrachloroplastic control of isoprene emission rate. Plant Biol,2004,6:12~21.
    [356] Loreto F, Sharkey T D. A gas-exchange study of photosynthesis and isoprene emission inQuercus rubru L. Planta,1990,182:523~531.
    [357] Loreto F, Delfine S. Emission of isoprene from saltstressed Eucalyptus globules leaves.Plant Physiol,2000,123:1605~1610.
    [358] Fall R, Karl T, Hansel A, et al. Volatile organic compounds emitted after leaf wounding:on-line analysis by proton-transfer-reaction mass spectrometry. J Geophys Res Atmos,1999,104(13):15963~15974.
    [359]平立岩,沈应柏,金幼菊,等.几个树种机械损伤诱导挥发物的比较初报.植物学报,2001,43(3):261~266.
    [360] Dicke M, Sabelis M W, Takabayashi J, et al. Plant strategies of manipulating predator preyinteractions through allelo chemicals: prospects for application in pest control. J Chem Ecol,1990,16(11):3091~3118.
    [361]张瑛,严福顺.虫害诱导的植物挥发性次生物质及其在植物防御中的作用.昆虫学报,1998,41(2):203~214.
    [362] Schmelz E A, Alborn H T, Engelberth J, et al. Nitrogen deficiency increasesvolicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity inmaize. Plant Physiol,2003,133:295~306.
    [363]娄永根,程家安.水稻品种和稻虱缨小蜂对褐飞虱协同作用的模拟分析.生物数学学报,1999,14(4):470~478.
    [364] Bernasconi M L, Turlings T C J, Ambrosetti L, et al. Herbivore-induced emissions of maizevolatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl,1998,87:133~142.
    [365]张风娟,金幼菊,陈华君,等.光肩星天牛对4种不同槭树科寄主植物的选择机制.生态学报.2006,26(3):870~877.
    [366] Quiroz A, Pettersson J, Pickett J A, et al. Semiochemicals mediating spacing behavior ofbird cherryoat aphid, Rhopalosip humpadi feeding on cereals. J Chem Ecol,1997,23:2599~2607.
    [367] Du J W. Status of insect chemical ecology on exploring new controlling technology ofagriculture and forest. Chem Ecol,1998,2:1~4.
    [368] Harro J B, Francel W A, Maarten A P, et al. Spider mite-induced (3S)-(E)-nerolidolsynthase activity in cucumber and lima bean.The first dedicated step in acyclicC11-homoterpene biosynthesis. Plant Physiol,1999,121:173~174.
    [369] Turlings T C J, Fritzsche M E. Attraction of parasitic wasps by caterpillar-damaged plants.In:(Goode ed.) Insect-plant interactions and induced plant defence. Novart Fdn Symp,1999,223:21~38.
    [370]赵冬香,高景林,陈宗懋,等.假眼小绿叶蝉对茶树挥发物的定向行为反应.华南农业大学学报,2002,23(4):27~30.
    [371]李欣,刘树生.植物挥发物及寄生经历在半闭弯尾姬蜂寄主搜索行为中的作用.浙江大学学报,2002,28(3):293~297.
    [372] Gols R, Posthummus M A, Dicke M, et al. Jasmonic acid induces the production of gerberavolatiles that attract the bio logical control agent Phytoseiulus persimilis. Entomol Exp Appl,1999,93:77~86.
    [373] Hopke J, Donath J, Blechert S, et al. Herbivore-induced volatiles: the emissions of acyclichomoterpenes from leaves of Phaseolus lunatus and Zea may scan be triggered by aB-glucosidase and jasmonic acid. FEBS Lett,1994,352:146~150.
    [374] Thaler J S. Jasmonate-inducible plant defences cause increased parasitism herbivores.Nature,1999,399:68~688.
    [375] Watson S B. Cyanobacterial and eukaryotic algal odour compounds: signals or by-products?A review of their biological activity. Phycologia,2003,42:332~350.
    [376] Jüttner F. Evidence that polyunsaturated aldehydes of diatoms are repellents for pelagiccrustacean grazers. Aquat Ecol,2005,39:271~282.
    [377] Pohnert G. Wound-activated chemical defense in unicellular planktonic algae. Angew ChemInt E2000,39:4352~4354.
    [378] Pohnert G, Lumineau O, Cueff A, et al. Are volatile unsaturated aldehydes from diatoms themain line of chemical defence against copepods? Mar Ecol Prog Ser,2002,245:33~45.
    [379] Ianora A, Miralto A, Poulet S A, et al. Aldehyde suppression of copepod recruitment inblooms of a ubiquitous planktonic diatom. Nature,2004,429:403~407.
    [380]白雪芳,张宝琛.细叶亚菊挥发油主要化学成分对垂穗披碱草初期生长抑制机理的研究.生态学报,1994,14(2):223~224.
    [381]马瑞君,王明理,朱学泰等.高帚橐吾挥发物的化感作用及其主要成分分析.应用生态学报,2005,10:1826~1829.
    [382]左照江,张汝民,朱金胡,等.冷蒿VOCs对4种植物种子萌发和幼苗生长的影响.浙江林学院学报,2009,26(1):76~82.
    [383] Zhang R M, Zuo Z J, Gao P J, et al. Allelopathic effects of VOCs from Artemisia frigidaWilld. on regeneration of pasture grasses in Inner Mongolia, China. J Arid Environ,2012.
    [384]孔垂华,徐涛,胡飞.胜红蓟化感作用研究Ⅱ.主要化感物质的释放途径和活性.应用生态学报,1998,9(3):257~260.
    [385] Runyon J B, Mescher M C, de Moraes C M. Volatile chemical cues guide host location andhost selection by parasitic plants. Science,2006,313:1964~1967.
    [386]李今,冯斌.杂草对濒危植物长喙毛茛泽泻他感作用的研究.湖北师范学院学报,2000,20(2):9~11.
    [387]江贵波,曾任森.艾的挥发性物质化感作用研究.生态科学,2006,25(2):106~108.
    [388]左照江,张汝民,王勇,等.损伤冷蒿VOCs成分分析及其对牧草根系生长发育的影响.生态学报,2010,30(19):5131~5139.
    [389] Ninkovic V. Volatile communication between barley plants affects biomass allocation. JExp Bot,2003,54(389):1931~1939.
    [390]黎华寿,黄京华,张修玉,等.香茅天然挥发物的化感作用及其化学成分分析.应用生态学报,2005,4:763~767.
    [391] Baldwin I T, Halitschke R, Paschold A, et al. Volatile signaling in plant-plant interactions:“talking trees”in the genomics era. Science,2006,311:812~815.
    [392] Baldwin I T, Schultz C J. Rapid changes in tree leaf chemistry induced by damage:evidence for communication between plants. Science,1983,221:277~279.
    [393] Rhoades D F. Responses of alder and willow to attack by tent caterpillars and webworms:Evidence for pheromonal sensitivity of willows. ACS Sym Ser,1983,208:55~68.
    [394] Baldwin I T, Kessler A, Halitschke R. Volatile signaling in plant-plant-herbivoreinteractions: what is real? Curr Opin Plant Biol,2002,5(4):351~354.
    [395] Farmer E E, Ryan C A. Interplant communication: airborne methyl jasmonate inducessynthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA,1990,87:7713~7716.
    [396] Wignall B. In shrubs and trees of the southwest deserts. Western National Parks Association,1993,19.
    [397] Karban R, Baldwin I T, Baxter K J, et al. Communication between plants: inducedresistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia,2000,125:66~71.
    [398] Karban R, Maron J. The fitness consequences of interspecific eavesdropping betweenplants. Ecology,2002,83:1209~1213.
    [399] Karban R, Huntzinger M, Mc Call A C. The specificity of eavesdropping on sagebrush byother plants. Ecology,2004,85:1846~1852.
    [400] Kost C, Heil M. Increased availability of extrafloral nectar reduces herbivory in Lima beanplants (Phaseolus lunatus Fabaceae). Basic Appl Ecol,2005,6:237~248.
    [401] Ruther J, Kleier S. Plant-plant signaling: ethylene synergizes volatile emission in Zea maysinduced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol,2005,31(9):2217~2221.
    [402] Choh Y, Shimoda T, Ozawa R, et al. Exposure of lima bean leaves to volatiles fromherbivore-induced conspecific plants results in emission of carnivore attractants: active orpassive process? J Chem Ecol,2004,30:1305~1317.
    [403] Van den Boom C E, van Beek T A, Posthumus M A, et al. Qualitative and quantitativevariation among volatile profiles induced by Tetranychus urticae feeding on plants fromvarious families. J Chem Ecol,2004,30(1):69~89.
    [404] Arimura G, Ozawa R, Horiuchi J, et al. Plant–plant interactions mediated by volatilesemitted from plants infested by spider mites. Biochem Syst Ecol,2001,29:1049~1061.
    [405] Ament K, Kant M R, Sabelis M W, et al. Jasmonic acid is a key regulator of spidermite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol,2004,135(4):2025~2037.
    [406] Heil M, Baldwin I T. Fitness costs of induced resistance: emerging experimental support fora slippery concept. Trends Plant Sci,2002,7:61~67.
    [407] Dicke M, van Loon J J A. Multitrophic effects of herbivore-induced plant volatiles in anevolutionary context. Entomol Exp Appl,2000,97:237~249.
    [408] Ballare C L. Keeping up with the neighbours: phytochrome sensing and other signalingmechanisms. Trends Plant Sci,1999,4:97~102.
    [409] Knoester M, Van Loon L C, Heuvel J, et al. Ethylene-insensitive tobacco lacks non hostresistance against soil-borne fungi. Proc Natl Acad Sci USA,1998,95(4):1933~1937.
    [410] Pierik R, Visser E J W, De Kroon H, et al. Ethylene is required in tobacco to successfullycompete with proximate neighbours. Plant Cell Environ,2003,26(4):1229~1234.
    [411] Willias M W, Yang D, Liu F, et al. Controls on the major ion chemistry of the Wulumuqiriver, Tian Shan PR China. J Hydrol,1995,172:209~229.
    [412] Larssen T, Xiong J, Vogt R D, et al. Studies of soils, soil water and stream water at a smallcatchment near Guiyang, China. Water Air Soil Pollution,1998,101:137~162.
    [413] Liao B, Seip H M, Larssen T. Response of two Chinese forest soils to acidic input:Leaching experiment. Geoderma,1997,(75):53~73.
    [414] Zhao D, Seip H M, Zhao D W, et al. Pattern and cause of acidic deposition in the chongqingregion,Sichuan province, China. Water Air and Soil Pollution,1994,(77):27~48.
    [415] Wang Z, Zhang X, Zhang Y, et al. Accumulation of different sulfur fractions in Chineseforest soil under acid deposition. J Environ Monitor,2011,13:2463~2470.
    [416] NRCC. Acidification in the Canadian aquatic environemt: scientific criteria for assessingthe effects of deposition on aquatic ecosystems. Nal Res Council of Canada, Ottawa, Canada,1981.
    [417] Wright R F. SNSF report TN34/77, Oslo, Norway,1977.
    [418] Duan L, Ma X, Larssen T, et al. Response of surface water acidification in upper YangtzeRiver to SO2emissions abatement in China. Environ Sci Technol,2011,45(8):3275~3281.
    [419] Grosjean D. Formic acid and acetic acid: Emissions, atmospheric formation and drydeposition at two southern California locations, Atmos Environ,1992,26:3279~3286.
    [420] Sanhueza E, Figueroa L, Santana M. Atmospheric formic and acetic acids in Venezuela.Atmos Environ,1996,30:1861~1873.
    [421] Fornaro A, Gutz I G R. Wet deposition and related atmospheric chemistry in the Sao Paulometropolis, Brazil: Part2-contribution of formic and acetic acids. Atmos Environ,2003,37:117~128.
    [422] King G M, Klug M J. Glucose metabolism in sediments of a eutrophic lake: tracer analysisof up take and product formation. Appl Environ Microbiol,1982,44:1308~1317.
    [423] Graf G, Schulz R, Peinert R, et al. Benthic response to sedimentation events during autumnto spring at a shallow-water station in the Western Kiel Bight I: Analys is of processes on acommunity level. Mar Biol,1983,77:235~246.
    [424] Spencer D F, Ksander G G. Differential effects of the microbial metabolite, acetic acid, onsprouting of aquatic plant propagules. Aquat Bot,1995,52:107~119.
    [425] Lynch J M. Phytotoxicity of acetic acid produced in the anaerobic decomposition of wheatstraw. J Appl Microbiol,1977,42:81~87.
    [426] Lynch J M. Production and phytotoxicity of acetic acid in anaerobic soils containing plantresidues. Soil Biol Biochem,1978,10:131~135.
    [427] Chidthaisong A, Rosenstock B, Conrad R. Measurement of monosaccharides andconversion of glucose to acetate in anoxic rice field soil. Appl Environ Microb,1999,65:2350~2355.
    [428] Inubushi K, Wada H, Takai Y. Easily decomposable organic matter in paddy soil. IV.Relationship between reduction process and organic matter decomposition. Soil Sci PlantNutr,1984,30:189~198.
    [429] Sugimoto A, Wada E. Carbon isotopic composition of bacterial methane in a soil incubationexperiment: contribution of acetate and CO2/H2. Geochim Cosmochim Ac,1993,57:4015~4027.
    [430] Krylova N I, Janssen P H, Conrad R. Turnover of propionate in methanogenic paddy soil.FEMS Microbiol Ecol,1997,23:107~117.
    [431] Klüber H D, Conrad R. Effect of nitrate, NO, and N2O on methanogenesis and other redoxprocesses in anoxic rice field soil. FEMS Microbiol Ecol,1998,25:301~318.
    [432] Shen Y, Cai Z, Han Y, et al. Organic acid accumulation under flooded soil conditions inrelation to the incorporation of wheat and rice straws with different C: N ratios. Soil SciPlant Nutr,2008,54:46~56.
    [433] Kawamura K, Kaplan I R. Determination of organic acids (C1-C10) in the atmosphere,motor exhausts and engine oils. Environ Sci Technol,1985,19:1082~1086.
    [434] Talbot R W, Beecher K M, Harris R C, et al. Atmospheric geochemistry of formic andacetic acids at a mid latitude temperate site. J Geophys Res1988,93:1638~1652.
    [435] Grosjean D. Organic acids in southern California air: Ambient concentrations, mobilesource emissions, insitu formation and removal processes. Environ Sci Technol,1989,23:1506~1514.
    [436] Chebbi A, Carlier P. Carboxylic acids in the troposphere, occurrence, sources and sinks: Areview. Atmos Environ,1996,30:4233~4249.
    [437] Khare P, Satsangi G S, Kumar N, et al. HCHO, HCOOH, CH3COOH in air and rain waterat a rural tropical site in north central India. Atmos Environ,1997,31:386~3875.
    [438] Zervas E, Montagne X, Lahaye J. C1-C5Organic acid emissions from an SI engine:Influence of fuel and air/fuel equivalence ratio. Environ Sci Technol,2001,35:2746~2751.
    [439] Fornaro A, Gutz I G R. Wet deposition and related atmospheric chemistry in the Sao Paulometropolis, Brazil: Part2-contribution of formic and acetic acids. Atmos Environ2003,37:117~128.
    [440] Keene W C, Galloway J N. Organic acidity in precipitation of North America. AtmosEnviron,1984,18:2491~2497.
    [441] Keene W C, Galloway J N, Holden J D. Measurement of weak organic acidity inprecipitation from remote areas of the world. J Geophys Res,1983,88:5122~5130.
    [442] Willey J D, Glinski D A, Southwell M, et al. Decadal variations of rainwater formic andacetic acid concentrations in Wilmington, NC, USA. Atmos Environ,2011,45:1010~1014.
    [443] Sansone F J, Martens C S. Methane production from acetate and associated methane fluxesfrom anoxic coastal sediments. Science,1981,211:707~709.
    [444] Lovley D R, Klug M J. Intermediary metabolism of organic matter in the sediments of aeutrophic lake. Appl Environ Microbiol,1982,43:552~560.
    [445] Rothfuss F, Conrad R. Thermodynamics of methanogenic intermediary metabolism inlittoral sediment of Lake Constance. FEMS Microbiol Ecol,1993,12:265~276.
    [446] Küsel K, Drake H L. Acetate synthesis in soil from a Bavarian beech forest. Appl EnvironMicrobiol,1994,60:1370~1373.
    [447] Wagner C, Grie hammer A, Drake H L. Acetogenic capacities and the anaerobic turnoverof carbon in a Kansas prairie soil. Appl Environ Microbiol,1996,62:494~500.
    [448] Spencer D F, Ksander G G. Dilute acetic acid exposure enhances electrolyte leakage byHydrilla verticillata and Potamogeton pectinatus tubers. J Aquat Plant Manage,1997,35:20~35.
    [449] Spencer D F, Ksander G G. Influence of dilute acetic acid treatments on survival ofmonoecious hydrilla tubers in the oregon house canal, California. J Aquat Plant Manage,1999,37:67~71.
    [450] Spencer D F, Elmore C L, Ksander G G, et al. Influence of dilute acetic acid treatments onAmerican pondweed winter buds in the Nevada irrigation district, California. J Aquat PlantManage,2003,41:65~68.
    [451] Ludovico P, Sousa M J, Silva M T, et al. Saccharomyces cerevisiae commits to aprogrammed cell death process in response to acetic acid. Microbiology,2001,147:2409~2415.
    [452] Ludovico P, Rodrigues F, Almeida A, et al. Cytochrome c release and mitochondriainvolvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae.Mol Biol Cell,2002,13:2598~2606.
    [453] Guaragnella N, Antonacci L, Passarella S, et al. Hydrogen peroxide and superoxide anionproduction during acetic acid-induced yeast programmed cell death. Folia Microbiol,2007,52:237~240.
    [454] Guaragnella N, Antonacci L, Giannattasio S, et al. Catalase T and Cu, Zn-superoxidedismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae.FEBS Letters,2008,582:210~214.
    [455] Munns R. Comparative physiology of salt and water stress. Plant Cell Environ,2002,25:239~250.
    [456] Zhu J K. Plant salt tolerance. Trends Plant Sci,2001,6:66~71.
    [457] Nativa R, Adarb E, Dahana O, et al. Water salinization in arid regions-observations fromthe Negev desert, Israel. J Hydrol,1997,196:271~296.
    [458] Zalidis G. Management of river water for irrigation to mitigate soil salinization on a coastalwetland. J Environ Manage,1998,54:161~167.
    [459] Dos Santosa J S, de Oliveirab E, Brunsc R E, et al. Evaluation of the salt accumulationprocess during inundation in water resource of Contas river basin (Bahia–Brazil) applyingprincipal component analysis. Water Res,2004,38:1579~1585.
    [460] Yu R, Liu T, Xu Y, et al. Analysis of salinization dynamics by remote sensing in HetaoIrrigation District of North China. Agr Water Manage,2010,97:1952~1960.
    [461] Sereda J, Bogard M, Hudson J, et al. Climate warming and the onset of salinization: Rapidchanges in the limnology of two northern plains lakes. Limnologica,2011,4:1~9.
    [462] Bérubé K A, Dodge J D, Ford T W. Effects of chronic salt stress on the ultrastructure ofDunaliella bioculata (Chlorophyta, Volvocales): mechanisms of response and recovery. Eur JPhycol,1999,34:117~123.
    [463] Demetriou G, Neonaki C, Navakoudis E, et al. Salt stress impact on the molecular structureand function of the photosynthetic apparatus: the protective role of polyamines. Biochimicaet Biophysica Acta,2007,1767:272~280.
    [464] Takagi M, Yoshida T K. Effect of salt concentration on intracellular accumulation of lipidsand triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng,2006,101:223~226.
    [465] Goyal A. Osmoregulation in Dunaliella. II. Photosynthesis and starch contribute carbon forglycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiol Bioch,2007,45:705~710.
    [466] Yoshida K, Igarashi E, Wakatsuki E, et al. Mitigation of osmotic and salt stresses byabscisic acid through reduction of stress-derived oxidative damage in Chlamydomonasreinhardtii. Plant Sci,2004,167:1335~1341.
    [467] Guan B, Zhou D, Zhang H, et al. Germination responses of Medicago ruthenica seeds tosalinity, alkalinity, and temperature. J Arid Environ,2009,73:135~138.
    [468] Shi D C, Sheng Y M. Effect of various salt–alkaline mixed stress conditions on sunflowerseedlings and analysis of their stress factors. Environ Exp Bot,2005,54:8~21.
    [469] Shi D C, Yin L J. Difference between salt (NaCl) and alkaline (Na2CO3) stresses onPuccinellia tenuiflora (Griseb.) Scribn. et Merr. plants. Acta Bot Sin,1993,35:144~149.
    [470] Manivannan P, Jaleel C A, Sankar B, et al. Mineral uptake and biochemical changes inHelianthus annuus under treatment with different sodium salts. Colloid Surface B:Biointerfaces,2008,62:58~63.
    [471] Yang C W, Jianaer A, Li C Y, et al. Comparison of the effects of salt-stress and alkali-stresson photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata.Photosynthetica,2008,46:273~278.
    [472] Yang C W, Wang P, Li C Y, et al. Comparison of effects of salt and alkali stresses on thegrowth and photosynthesis of wheat. Photosynthetica,2008,46:107~114.
    [473] Yang C W, Xu H H, Wang L L, et al. Comparative effects of salt-stress and alkali-stress onthe growth, photosynthesis, solute accumulation, and ion balance of barley plants.Photosynthetica,2009,47:79~86.
    [474] Sun G, Peng Y, Shao H, et al. Does Puccinelia tenuiflora have the ability of salt exudation?Colloid Surface B: Biointerfaces,2005,46:197~203.
    [475] Chen W C, Cui P J, Sun H Y, et al. Comparative effects of salt and alkali stresses on organicacid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). Ind CropProd,2009,30:351~358.
    [476] Jin H, Kim H R, Plaha P, et al. Expression profiling of the genes induced by Na2CO3andNaCl stresses in leaves and roots of Leymus chinensis. Plant Sci,2008175:784~792.
    [477] Goyal A, Tolbert N E. Association of glycolate oxidation with photosynthetic electrontransport in plant and algal chloroplasts. Proc Natl Acad Sci USA,1996,93,3319~3324.
    [478] Goyal A. Glycolate metabolism in algal chloroplasts: inhibition by salicylhydroxamic acid(SHAM). Physiol Plantarum,2002,116:264~270.
    [479] Gorman, D. S. and Levine, R. P.1965. Cytochrome f and plastocyanin: their sequence inthe photosynthetic electron transport chain of Chlamydomonas reinhardii. Proc Natl AcadSci USA.54:1665~1669.
    [480] Pettersson J, Ninkoxic V, Ahmed F E. Volatiles from different barley cultivars affect aphidacceptance of neighbouring plants. Acta Agr Scand B-S P,1999,49:152~157.
    [481] Bors W, Lengfelder E, Saran M. Oxidation of hydroxylamine to nitrite as an assay for thecombined presence of superoxide anions and hydroxyl radicals. Biochem Bioph Res Co,1977,75:973~979.
    [482] Jianga Z Y, Woollarda A C S, Wolff S P. Hydrogen peroxide production duringexperimental protein glycation. FEBS Lett,1990,268:69~71.
    [483] Lichtenthaler H K, Welburn A. Determination of total carotenoids and chlorophylls a and bof lef extracts in different solvents. Biochem Soc T,1983,603,591~592.
    [484] Peers G, Truong T B, Ostendorf E, et al. An ancient light-harvesting protein is critical forthe regulation of algal photosynthesis. Nature,2009,462:518~522.
    [485] Nedelcu A M. Evidence for p53-like-mediated stress responses in green algae. FEBS Lett,2006,580:3013~3017.
    [486] Lin J, Wang Y, Wang G. Salt stress-induced programmed cell death in tobacco protoplasts ismediated by reactive oxygen species and mitochondrial permeability transition pore status. JPlant Physiol,2006,163:731~739.
    [487] Gao Y, Jin Y J, Li H D, et al. Volatile organic compounds and their roles in bacteriostasis infive conifer species. J Integr Plant Biol,2005,47:499~507.
    [488]李东,孙家义.2,4-二硝基氟苯柱前衍生高效液相色谱法测定18种氨基酸.化学分析计量,2004,13(1):18~20.
    [489]朱晔荣,吕宪禹,王秀玲,等.高效液相色谱法测定丝氨酸:乙醛酸转氨酶的活性.色谱,2003,21(6):584~586.
    [490] Williamson G B, Richardson D. Bioassays for allrlopathy: measuring treatment responseswith independent controls. J Cheml Ecol,1988,14:181~187.
    [491] Guldfeldt L U, Arneborg N. Measurement of the effects of acetic acid and extracellular pHon intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells byfluorescence microscopy. Appl Environ Microbiol,1998,64:530~534.
    [492] Davidson J F, Schiestl R H. Mitochondrial respiratory electron carriers are involved inoxidative stress during heat stress in Saccharomyces cerevisiae. Mol Cell Biol,2001,21:8483~8489.
    [493] Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants.Trends Plant Sci,2004,9:490~498.
    [494] Gross W, Beevers H. Subcellular distribution of enzymes of glycolate metabolism in thealga cyanidium caldarium. Plant Physiol,1989,90(3):799~805.
    [495] Brookes P S, Yoon Y, Robotham J L, et al. Calcium, ATP, and ROS: a mitochondriallove-hate triangle. Am J Physiol Cell Physiol,2004,287:817~833.
    [496] Saran M. To what end does nature produce super oxide? NADPH oxidase as an autocrinemodifier of membrane phospholipids generating paracrine lipid messengers. Free RadicalRes,2003,37:1045~1059.
    [497] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signaltransduction. Annu Rev Plant Biol,2004,55:373~399.
    [498] Sayed OH. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica,2003,41:321~330.
    [499] Fedina I S, Grigorova I D, Georgieva K M. Response of barley seedlings to UVB radiationas affected by NaCl. J Plant Physiol,2003,160:205~208.
    [500] Kahn N A. NaCl inhibited chlorophyll synthesis and associated changes in ethyleneevolution and antioxidative enzyme activities in wheat. Biol Plant,2003,47:437~444.
    [501] Garnier F, Dubacq J P, Thomas J C. Evidence for a transient association of new proteinswith the Spirulina maxima phycobilisomes in relation to light intensity. Plant Physiol,1994,106:747~754.
    [502] Sudhir P R, Pogoryelov D, Kovacs L, et al. The effects of salt stress on photosyntheticelectron transport and thylakoid membrane proteins in the cyanobacterium Spirulinaplatensis. J Biochem Mol Biol,2005,38:481~485.
    [503] Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cells. Biochim BiophysActa,2000,1465:140~151.
    [504] Shabala S, Demidchik V, Shabala L, et al. Extracellular Ca2+ameliorates NaCl-induced K+loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeablechannels. Plant Physiol,2006,141:1653~1665.
    [505] Viegas R A, Silverira J A G. Ammonia assimilation and proline accumulation in youngcashewplants during long term exposure to NaCl-salinity. Revista Brasileira de FisiologiaVegetal,1999,11(3):153~159.
    [506] Graham N, Ana C M, Arisi L J, et al. Photorespiratory glycine enchances glutathionaccumulation in both the chloroplastic and cytosolic compartments. J Exp Bot,1999,50(336):1157~1167.
    [507] Waditee R, Bhuiyan N H, Hirata E, et al. Metabolic engineering for betanine accumulayionin microbes and plants. J Biol Chem,2007,282:34185~34193.
    [508] Zhu Y R, Tao H L, Lv X Y, et al. High level of endogenous L-serine initiates senescence inSpirodela polyrriza. Plant Sci,2004,166:1159~1166.
    [509] Blanco J M, Martinez J H, Cárdenas J. Extracellular deamination of L-amino acids byChlamydomonas reinhardtii cells. Planta,1990,182:194~198.
    [510] Piedras P, Pineda M, Munoz J, et al. Purification and characterization of an l-amino-acidoxidase from Chlamydomonas reinhardtii. Planta,1992,188:13~18.
    [511] Vallon O, Wollman F. cDNA Sequence of M (Alpha), the catalytic subunit of theChlamydomonas reinhardtii L-amino acid oxidase (Accession No. U78797): a new sequencemotifshared by a wide variety of flavoproteins. Plant Physiol,1997,115:1729.
    [512] Vallon O, Bulté L, Kuras R, et al. Extensive accumulation of an extracellular L-amino-acidoxidase during gametogenesis of Chlamydomonas reinhardtii. Eur J Biochem,1993,215:351~360.
    [513] Kirk D L, Kirk M M. Carrier-mediated uptake of arginine and urea by Chiamydomonasreinhardtii. Plant Physiol,1978,61:556~560.
    [514] Loppes R, Strijkert P. J. Arginine metabolism in Chlamydomonas reinhardii. Conditionalexpression of arginine-requiring mutants. Mol Gen Genet,1972,116:248~257.
    [515] Fernández E, Llamas á, Galván A. Nitrogen assimilation and its regulation. In Stern, D. B.(Ed.) The Chlamydomonas sourcebook,2nd edition, Vol.2. Academic Press, New York,2009, pp.71~72.
    [516] Ford C, Wang W Y. Temperature-sensitive yellow mutants of Chlamydomonas reinhardtii.Mol Gen Genet,1980,180:5~10.
    [517] Cahoon A B, Timko M P. Yellow-in-the-dark mutants of Chlamydomonas lack the ChlLsubunit of light-independent protochlorophyllide reductase. Plant Cell,2000,12:559~568.
    [518] Danon A, Delorme V, Mailhac N. et al. Plant programmed cell death: a common way to die.Plant Physiol Biochem,2000,38:647~655.
    [519] Giannattasio S, Guaragnella N, Real M C, et al. Acid stress adaptation protectsSaccharomyces cerevisiae from acetic acidinduced programmed cell death. Gene,2005,354:93~98.
    [520] Loreto F, Barta C, Brilli F, et al. On the induction of volatile organic compound emissionsby plants as consequence of wounding or fluctuations of light and temperature. Plant CellEnviron,2006,29:1820~1828.
    [521] Teuber M, Zimmer I, Kreuzwieser J, et al. VOC emission of Grey poplar leaves as affectedby salt stress and different N sources. Plant Biol,2008,10:86~96.
    [522] Watson S B, Ridal J. Periphyton: a primary source of widespread and severe taste and odour.Water Sci Technol,2004,49:33~39.
    [523] Kessler A, Halitschke R, Diezel C, et al. Priming of plant defense responses in nature byairborne signaling between Artemisia tridentata and Nicotiana attenuate. Oecologia,2006,148:280~292.
    [524] Ikawa M, Sasner J J, Haney J F. Activity of cyanobacterial and algal odor compounds foundin lake waters on green alga Chlorella pyrenoidosa growth. Hydrobiologia,2001,443:19~22.
    [525] Fink P, Von Elert E, Jüttner F. Volatile foraging kairomones in the tittoral zone: attraction ofan herbivorous freshwater gastropod to algal odors. J Chem Ecol,2006,32:1867~1881.
    [526] Wang J, Zhu J, Liu S, et al. Generation of reactive oxygen species in cyanobacteria andgreen algae induced by allelochemicals of submerged macrophytes. Chemosphere,2011,85(6):977~982.
    [527] Yordanova Z P, Iakimova E T, Cristescu S M, et al. Woltering, Involvement of ethylene andnitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii.Cell Biol Int,2010,34:301~308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700