用户名: 密码: 验证码:
R1234yf汽车空调系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前汽车空调系统中普遍采用的R134a制冷剂具有很高的温室效应指数(GWP),会对环境带来不利影响。汽车空调系统中制冷剂替代问题已经迫在眉睫,成为了工业界及学术界共同关注的焦点,然而作为R134a的世界范围内的替代物目前仍未完全明确。除了不破坏臭氧层及使用安全以外,下一代汽车空调制冷剂的最大要求为低GWP值。基于这种要求,目前世界范围内可供选择的制冷剂主要有R1234yf, C02以及R32等,这其中又以R1234yf制冷剂的替代可行性最高。本文对R1234yf制冷剂在汽车空调典型工况下的理论循环进行热力学分析,并进行了该制冷剂汽车空调系统的直接替代性能测试,将理论分析与实验测试的结果与C02及R32的结果进行对比,论证了R1234yf是目前替代性最好的汽车空调制冷剂。在此基础上建立R1234yf制冷剂的系统及部件仿真模型,进行系统性能优化实验研究及生命周期环境影响(LCCP)分析。研究结果表明,R1234yf制冷剂作为最有希望的下一代汽车空调制冷剂,其系统性能可以经过优化达到与现有R134a系统相当的水平,采用优化的R1234yf系统,可以大幅度降低汽车空调系统的LCCP指数,符合人们对汽车工业发展的要求。本文的研究内容及主要成果如下:
     一、从热力学性质及安全性等方面比较了R1234yf与CO2以及R32等低GWP值制冷剂在汽车空调系统中使用的可行性,并在汽车空调典型工况下建立上述几种制冷剂的理论循环,对其各自性能进行定性的分析及比较,并讨论了运行参数变化对各种制冷剂理论循环性能的影响。
     二、对R1234yf在汽车空调系统中直接替代的情况进行实验研究,并与R32及C02汽车空调系统的性能进行对比。结果表明,R1234yf在现有汽车空调系统中可以直接替代,性能与原有R134a系统相比略有不足。R32制冷剂系统需要采用小排量的压缩机,各部件的耐压特性也需重新设计。R32本身的单位容积制冷量很大,系统性能与R134a系统相当。CO:系统压力非常高,需要对现有汽车空调系统完全重新设计,在环境温度不高时,可以得到与原有R134a系统相当的性能。从系统性能及运行状态等方面综合考虑,结果表明R1234yf具有最好的替代可行性,并且直接替代系统存在优化空间。
     三、在上述研究的基础上,选取R1234yf系统做重点研究,建立了R1234yf制冷剂的蒸发器及冷凝器的仿真模型,比较研究现有的管内两相传热关联式对R1234yf制冷剂的适用性。结果表明Kandlikar的沸腾传热关联式及Cavallini的冷凝传热关联式对于R1234yf制冷剂具有最好的适用性。在部件模型研究的基础上,开发了精度优良的R1234yf系统仿真模型,并借助模型研究了R1234yf系统性能优化方向。
     四、R1234yf系统性能优化的实验研究。采用调节弹簧预紧力及充注介质的方法对R1234yf系统中的热力膨胀阀进行优化设计,更好的控制R1234yf系统中蒸发器出口过热度,使系统性能得到明显改善。在R1234yf系统中引入中间换热器,使系统制冷量得到明显提高,达到与R134a系统基本相当的水平。讨论了R1234yf制冷剂应用于变排量压缩机的情况,并对采用变排量压缩机的R1234yf系统进行了实车性能环模测试。
     五、研究了汽车空调环境影响的不同评判标准,认为汽车空调生命周期环境影响指数(LCCP)是目前最完善的评价指标。结合GREEN-MAC-LCCP模型对R1234yf汽车空调系统的LCCP指数进行计算,结果表明在不同城市气象条件下,汽车空调系统中应用R1234yf制冷剂都可以显著降低对环境的不利影响。
At present, the refrigerant used in the automotive air conditioning system is R134a,which has a high GWP value. Refrigerant R134a is harmful to the environment and is restrictto use in the automotive air conditioning system. Finding the substitute of R134a in future’sautomotive air conditioning system is very urgent and it has become a focus in the industryand academic. However, the next generation of refrigerant for automotive air conditioningsystem has not been decided until now. It is widely accepted that the next generation ofrefrigerant for automotive air conditioning system should has low GWP value. According tothis requirement, the probable candidate refrigerants for automotive air conditioning systemare CO2, R1234yf and R32. According to the recent years’ studies, R1234yf is considered asthe most probable replacement of R134a among these cndidants. In the present study, thethermodynamic analysis of the theoretical cycle of R1234yf under typical automotive airconditioning system working condition is investigated. The performances of R1234yf“drop-in” system are experimentally studied. The results are compared to other candidants,such as CO2and R32, and the conclusion is obtained that the system with R1234yf is themost probable candidate from the standpoints of system performance and operation condition.Hence the simulation models of components and system with R1234yf are developed andverified. It is found that the performance of R1234yf system could be optimized and becomecomparable to that of R134a system. The LCCP value of the R1234yf system is alsocalculated and compared to that of R134a system. In general, using R1234yf in theautomotive air conditioning system can decrease the impact to the environment.The maincontents and results of this study are as below:
     1) The thermodynamic and safety-related properties of R1234yf were compared withother low GWP refrigerants, such as CO2and R32. The theoretical cycles of these refrigerantsunder typical working condition of automotive air conditioning system were studied and theirperformances were compared. The effects of operation parameters to the performance oftheoretical cycles were investigated.
     2) The performances of R1234yf “drop-in” system were experimentally investigated. Thesystem performance and operation condition were compared with those of systems withCO2and R32. R1234yf “drop-in” system obtained a little lower performance compared withR134a system. A compressor with small displacement should be employed when R32used inthe automotive air conditioning system. The pressure resistant requirement of eachcomponent in R32system should be higher. The system with R32had an acceptableperformance compared to R134a. The working pressure of CO2is extremely high and theredesign of the whole system is needed. The CO2system has a comparable performanceunder low heat load conditions. These results demonstrated that R1234yf system had the bestcharacteristics of replacement and it had the potential of optimization
     3) The system with R1234yf was considered as the most probable candidate for theR134a system. Hence the simulation models of evaporator and condenser using R1234yfwere developed and verified by experimental data. The suitability of different two-phase heattransfer correlations to R1234yf was investigated. It was found that Kandlikar’s boiling heattransfer correlation and Cavallini’s condensing heat transfer correlation had the bestsuitability to R1234yf. Moreover, the simulation model of R1234yf system was developedbased on the component models. The optimization of the R1234yf system was studied usingthe system model.
     4) The optimization of the R1234yf system was experimentally investigated. Theexpansion valve for R1234yf system was optimized by changing the charged fluid andadjusting the spring force. The optimized expansion valve could control the super heat ofR1234yf at a proper value and improve the system performance. Internal heat exchanger wasintroduced in the R1234yf system. It could improve the cooling capacity of R1234yf system.The performance of the optimized R1234yf system could be comparable to that of R134asystem. Besides, the performance of R1234yf system with variable displacement compressorwas investigated by bench test and practical vehicle wind tunnel test.
     5) The different criterions on the effects of automotive air conditioning system to theenvironment were investigated. The LCCP (life cycle climate performance) value ofautomotive air conditioning system was considered as the most comprehensive criterion. TheLCCP value of R1234yf system was calculated based on the GREEN-MAC-LCCP model. Itshowed that using R1234yf could obviously decrease the LCCP value of automotive airconditioning system.
引文
[1]中国汽车工业协会,http://www.caam.org.cn/
    [2]吴业正,韩宝琦,制冷原理及设备,西安交通大学出版社,1997
    [3]陈江平,施骏业,赵宇.国内外汽车空调系统发展动向.化工学报,2008(12),S2:9-13
    [4]Global Environmental Change Report (GECR), A Brief Analysis Kyoto Protocol, vol. Ⅸ (1997), p.24.
    [5]Official Journal of the European Union (OJEU), Directive2006/40/EC of the European Parliament and of the Council,2006.
    [6]G. Lorentzen, Revival of carbon dioxide as a refrigerant, International Journal of Refrigeration,17(1994)292-301
    [7]Tomoichiro Tamura, Yuuichi Yakumaru, Fumitoshi Nishiwaki, Experimental study on automotive cooling and heating air conditioning system using CO2as a refrigerant, International Journal of Refrigeration,2005(8):1302-1307
    [8]J. Steven Brown, Samuel F. Yana-Motta, Piotr A. Domanski, Comparitive analysis of an automotive air conditioning systems operating with CO2and R134a, International Journal of Refrigeration,2002(1):19-32
    [9]Hongsheng Liu, Jiangping Chen, Zhijiu Chen, Experimental investigation of a CO2automotive air conditioner, International Journal of Refrigeration,2005(8):1293-1301
    [10]Sung Chul Kim, Jong Phil Won, Min Soo Kim, Effects of operating parameters on the performance of a CO2air conditioning system for vehicles, Applied Thermal Engineering,2009(11-12):2408-2416
    [11]M. Ghodbane, An investigation of R152a and hydrocarbon refrigerants in mobile air conditioning, International Congress and Exposition, Warrendale, PA (1999).
    [12]L. Dentis, A. Mannoni, M. Parrino, HC refrigerants:an ecological solution for automotive a/c systems, Vehicle Thermal Management of Systems Conference Proceedings (1999)133-147, London, UK
    [13]M. Ghodbane, On vehicle performance of a secondary loop a/c system, SAE2000World Congress, Detroit, Michigan
    [14]B. Minor, M. Spatz, HFO-1234yf low GWP refrigerant update, International Refrigeration and Air Conditioning Conference at Purdue(2008), West Lafayette, IN, USA, Paper No.2349.
    [15]C. Zilio, S. S. Brown, A. Cavallini, Simulation of R-1234yf performance in a typical automotive system, Proceedings of the3rd Conference on Thermophysical Properties and Transfer Processes of Refrigeration (2009), Boulder, CO, USA, Paper No.128. V
    [16]Summary of SAE CRP1234Refrigerant Evaluation and Risk Assessment, SAE2010Automotive Alternate Refrigerant Systems Symposium, Scottsdale, Arizona, USA, July15
    [17]http://www.sae.org/mags/aei/NEWS/10663
    [18]Comparative Performance of R1234yf with R134a in Mobile AC systems, Report by Honeywell, November19th,2007
    [19]曹霞,HFO-1234yf——新一代汽车空调制冷剂,制冷与空调,2008(12):55-61
    [20]杨刚,杨会娥,李惠黎等,新型制冷剂HFO-1234yf和HFO-1234ze,有机氟化工,2009(3):16-20
    [21]Katsuyuki Tanaka, Yukihiro Higashi. Thermodynamic properties of HFO-1234yf (2,3,3,3-tetrafluoropropene). International Journal of Refrigeration,2010(33):474-479
    [22]Giovanni Di Nicola, Fabio Polonara, Giulio Santori. Saturated Pressure Measurements of2,3,3,3-Tetrafluoroprop-l-ene (HFO-1234yf), J. Chem. Eng. Data2010,55,201-204
    [23]R. Akasaka, K. Tanaka, Thermodynamic property modeling for2,3,3,3-tetrafluoropropene (HFO-1234yf), Int. J. Refrigeration33(2010)52-60.
    [24]Thomas J. Leck, Evaluation of HFO-1234yf as a Potential Replacement for R-134a in Refrigeration Applications,3rd IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants, Boulder, CO,2009
    [25]J. Steven Browna, Claudio Zilio, Alberto Cavallini, Thermodynamic properties of eight fluorinated olefins, International Journal of Refrigeration,2010(33):235-241
    [26]E.W. Lemmon, M.L. Huber, M.O. McLinden, Reference fluid thermodynamic and transport properties (REFPROP).Version8.0, NIST Standard Reference Database23, National Institute of Standard and Technology, Gaithersburg (MD, USA)(2007)
    [27]Ngoc Anh Lai, Jadran Vrabec, Gabriele Raabe, et al., Description of HFO-1234yf with BACKONE equation of state, Fluid Phase Equilibria305(2011):204-211
    [28]K. Srinivasan, K.C. Ng, S. Velasco, J.A. White, A corresponding states treatment of the liquid-vapor saturation line, J. Chem. Thermodynamics44(2012)97-101
    [29]Jaime Sieres a, Fernando Varas, Jose Antonio Martmez-Suarez, A hybrid formulation for fast explicit calculation of thermodynamic properties of refrigerants, International Journal of Refrigeration,2012(35):1021-1034
    [30]Rin Yun, Yongchan Kim, Min Soo Kim, Convective boiling heat transfer characteristics of CO2in microchannels, International Journal of Heat and Mass Transfer,2005(2):235-242
    [31]Rin Yun, Yunho Hwang, Reinhard Radermacher, Convective gas cooling heat transfer and pressure drop characteristics of supercritical CO2/oil mixture in a minichannel tube, International Journal of Heat and Mass Transfer,2007(23-24):4796-4804
    [32]J. Wu, T. Koettig, Ch. Franke, D. Helmer, T. Eisel, F. Haug, J. Bremer, Investigation of heat transfer and pressure drop of CO2two-phase flow in a horizontal minichannel, International Journal of Heat and Mass Transfer,2011(9-10):2154-2162
    [33]D Jung, R Radermacher, Prediction of evaporation heat transfer coefficient and pressure drop ofrefrigerant mixtures, International Journal of Refrigeration,1993(5):330-338
    [34] B.O. Bolaji, Experimental study of R152a and R32to replace R134a in a domestic refrigerator,Energy,2010(9):3793-3798
    [35] Ki-Jung Park, Dongsoo Jung, Nucleate boiling heat transfer coefficients of R1234yf on plain and lowfin surfaces, International Journal of Refrigeration,2012(33):553-557
    [36] S. Mortada, A. Zoughaib, C. Arzano-Daurelle, D. Clodic, Boiling heat transfer and pressure drop ofR-134a and R-1234yf in minichannels for low mass fluxes, International Journal of Refrigeration,2012(35):962-973
    [37] Shizuo Saitoh, Chaobin Dang, Yoshitaka Nakamura, Eiji Hihar, Boiling heat transfer of HFO-1234yfflowing in a smooth small-diameter horizontal tube, International Journal of Refrigeration,2011(8):1846-1853
    [38] Giovanni A. Longo, Vaporisation of the low GWP refrigerant HFO1234yf inside a brazed plate heatexchanger, International Journal of Refrigeration,2012(35):952-961
    [39] Cooper, M.G.,1984. Heat flows rates in saturated pool boiling-a wide ranging examination usingreduced properties. In: Advanced in Heat Transfer. Academic Press, Orlando, Florida, pp.157-239.
    [40] Gorenflo, D.,1993. Pool boiling. In: VDI Heat Atlas, Dusseldorf, Germany, Ha1-25
    [41] Ki-Jung Park, Dong Gyu Kang, Dongsoo Jung, Condensation heat transfer coefficients of R1234yf onplain, low fin, and Turbo-C tubes, International Journal of Refrigeration,2011(34):317-321
    [42] D. Del Col, D. Torresin, A. Cavallini, Heat transfer and pressure drop during condensation of the lowGWP refrigerant R1234yf, International Journal of Refrigeration,2010(33):1307-1318
    [43] Cavallini, A., Censi, G., Del Col, D., Doretti, L., Matkovic, M., Rossetto, L., Zilio, C.,2006.Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design.HeatTransf. Eng.27(8),31-38.
    [44] Linlin Wang, Chaobin Dang, Eiji Hihara, Experimental study on condensation heat transfer andpressure drop of low GWP refrigerant HFO1234yf in a horizontal tube, International Journal ofRefrigeration,2012(35):1418-1429
    [45] Tandon, T.N., Varma, H.K., Gupta, G.P.,1982. A new flow regimes map for condensation insidehorizontal tubes. Int. J. Heat Transfer104,763-768
    [46] Haraguchi, H., Koyama, S., Fujii, T.,1994a. Condensation of refrigerants HCFC22, HFC134a andHCFC123in a horizontal smooth tube (1st report, proposals of empirical expressions for the localfrictional pressure drop). Trans. Jpn. Soc. Mech. Engrs.60,2117-2124
    [47] Miguel Padilla, Rémi Revellin, Philippe Haberschill, Flow regimes and two-phase pressure gradientin horizontal straight tubes: Experimental results for HFO-1234yf, R-134a and R-410A, ExperimentalThermal and Fluid Science35(2011)1113–1126
    [48] L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: part I–anew diabatic two-phase flow pattern map, Int. J. Heat Mass Transfer48(2005)2955–2969.
    [49] H. Müller-Steinhagen, K. Heck, A simple friction pressure drop correlation for two-phase flow pipes,Chem. Eng. Proc.20(1986)297–308.
    [50] Miguel Padilla, Rémi Revellin, Jocelyn Bonjour, Two-phase flow visualization and pressure dropmeasurements of HFO-1234yf and R-134a refrigerants in horizontal return bends, ExperimentalThermal and Fluid Science39(2012)98–111
    [51] ANSI/ASHRAE34, Designation and Safety Classification of Refrigerants;2007
    [52] Paul Schuster, Rüdiger Bertermann et al., Biotransformation of2,3,3,3-tetrafluoropropene(HFO-1234yf), Toxicology and Applied Pharmacology233(2008)323–332
    [53] Paul Schuster, Rüdiger Bertermann, Georg M. Rusch, Wolfgang Dekant, Biotransformation of2,3,3,3-tetrafluoropropene (HFO-1234yf) in rabbits, Toxicology and Applied Pharmacology244(2010)247–253
    [54] Kenji Takizawa, Kazuaki Tokuhashi, Shigeo Kondo, Flammability assessment of CH2CFCF3:Comparison with fluoroalkenes and fluoroalkanes, Journal of Hazardous Materials172(2009)1329–1338
    [55] Shigeo Kondo, Kenji Takizawa, Kazuaki Tokuhashi, Effects of temperature and humidity on theflammability limits of several2L refrigerants, Journal of Fluorine Chemistry, In Press,
    [56] Jifeng Jin, Jiangping Chen, Zhijiu Chen, Development and validation of a microchannel evaporatormodel for a CO2air-conditioning system, Applied Thermal Engineering,2011(2-3):137-146
    [57] Fadil Ayad, Riad Benelmir, Ali Souayed, CO2evaporators design for vehicle HVAC operation,Applied Thermal Engineering,2012(36):330-344
    [58] James A. Baker, Mahmoud Ghodbane, R-152a Refrigeration System for Mobile Air Conditioning,SAE paper,2003-01-0731
    [59] Lawrence P. Scherer, Mahmoud Ghodbane, On-Vehicle Performance Comparison of an R-152a andR-134a Heat Pump System, SAE paper,2003-01-0733
    [60] Yohan Lee, Dongsoo Jung. A brief performance comparison of R1234yf and R134a in a bench testerfor automobile applications. Applied Thermal Engineering,2012(35):240-242
    [61] Sad Jarall, Study of refrigeration system with HFO-1234yf as a working fluid, International Journal ofRefrigeration,2012(35):1668-1677
    [62] Claudio Zilio, J. Steven Brown, Giovanni Schiochet, Alberto Cavallini, The refrigerant R1234yf in airconditioning systems,2011(36):6110-6120
    [63] Pamela Reasor, Vikrant Aute, Reinhard Radermacher, Refrigerant R1234yf Performance ComparisonInvestigation, International Refrigeration and Air Conditioning Conference at Purdue, July12-15,2010
    [64] Gursaran D. Mathur Enhancing AC System Performance with a Suction Line Heat Exchanger with Refrigerant HFO-1234yf, SAE paper,2011-01-0133
    [65]Lothar Seybold, William Hill, Christian Zimmer, Internal Heat Exchanger Design Perfornance Criteria for R134a and HFO-1234yf, SAE paper,2010-01-1210
    [66]Fischer, S., P. Hughes, P. Fairchild, C. Kusick, J. Dieckmann, E. McMahon, and N. Hobday, Energy and Global Warming Impacts of CFC Alternative Technologies, AFEAS and DOE, December,1991
    [67]M. S. Bhatti, Enhancement of R134a Automotive Air conditioning System, SAE paper,1999-01-0870
    [68]J. M. Yin, J. Pettersen, R. McEnaney and A. Beaver, TEWI Comparison of R744and R134a Systems for Mobile Air Conditioning, SAE paper,1999-01-0582
    [69]J.R. Sand, S.K. Fischer, and Van D. Baxter. Energy and Global Warming Impacts of HFC Refrigerants and Emerging Technologies. Alternative Fluorocarbons Environmental Acceptability Study (AFEAS), U.S. Department of Energy,1997.
    [70]Christophe Petitjean, Gwenael Guyonvarch, Mohamed Benyahia and Regis Beauvis, TEWI Analysis for Different Automotive Air Conditioning Systems, SAE paper,2000-01-1561
    [71]Philip R. Barnes and Clark W. Bullard, Minimizing TEWI in a compact chiller for unitary applications,2004Annual Meeting-Technical and Symposium Papers, American Society of Heating, Refrigerating and Air-Conditioning Engineers:285-294
    [72]马一太,杨昭等,温室效应和TEWI值,工程热物理学报,1998(5):271-274
    [731贺建鑫,卢耀麟,制冷剂对环境影响的综合评价指标TEWI及在冷热源选择中的应用,制冷,2000(12):26-28
    [74]Orfeo S R. A history of the TEWI process. In:Procs. of Int. Conf. on Ozone Protection Technologies. Washington D C,1996.441-447
    [75]William Hill and Stella Papasavva, Life Cycle Analysis Framework; A Comparison of HFC-134a, HFC-134a Enhanced, HFC-152a, R744, R744Enhanced, and R290Automotive Refrigerant Systems, SAE paper,2005-01-1511
    [76]W. Chen, A comparative study on the performance and environmental characteristics of R410A and R22residential air conditioners, Applied Thermal Engineering28(2008)1-7
    [77]Mark W. Spatz, Samuel F. Yana Motta, An evaluation of options for replacing HCFC-22in medium temperature refrigeration systems, International Journal of Refrigeration27(2004)475-483
    [78]Yunho Hwang, Dae-Hyun Jin, Reinhard Radermacher, Comparison of R-290and two HFC blends for walk-in refrigeration systems, International Journal of Refrigeration30(2007)633-641
    [79]Bjorn Palm, Refrigeration systems with minimum charge of refrigerant, Applied Thermal Engineering27(2007)1693-1701
    [80]Stella Papasavva, William R. Hill and Ryan O. Brown, GREEN-MAC-LCCP(?):A Tool for Assessing Life Cycle Greenhouse Emissions of Alternative Refrigerants, SAE paper,2008-01-0828,
    [81]Bing Li, William Hill, A Study on Refrigerant Irregular Emission from China Mobil Air Conditioning Vehicles Based on JD Power Result, SAE paper,2010-01-0479
    [82]Stella Papasavva, William Hill, Roberto Monforte, Comparison of GREEN-MAC-LCCP(?) based Indirect CO2-eq. Emissions from MACs and Vehicle Measured Data, SAE paper,2010-01-1208
    [83]Moffat R. J.,1998. Describing the Uncertainties in Experimental Results. Experimental Thermal and Fluid Science,1(1):3-17
    [84]汽车空调制冷装置实验方法,中华人民共和国汽车行业标准QC/T657—2000
    [85]Procedure for Measuring System COP [Coefficient of Performance] of a Mobile Air Conditioning System on a Test Bench, SAE standard J2765-2008
    [86]Zhaogang Qi, Jiangping Chen, Reinhard Radermacher, Investigating performance of new mini-channel evaporators, Applied Thermal Engineering,2009(17-18):3561-3567
    [87]Wiebke Brix, Martin Ryhl Kaern, Brian Elmegaard, Modelling refrigerant distribution in microchannel evaporators, International Journal of Refrigeration,2009(7):1736-1743
    [88]Vladimir Stevanovic, Stojan Cucuz, Waldemar Carl-Meissner, A numerical investigation of the refrigerant maldistribution from a header towards parallel channels in an evaporator of automotive air conditioning system, International Journal of Heat and Mass Transfer,2012(13-14):3335-3343
    [89]Kays W.M., London A.L.,1984, Compact heat exchanger.3rd ed., New York:McGraw-Hill
    [90]Chang Y.J., Wang C.C.,1997A generalized heats transfer correlation for louver fin geometry. Int. J. Heat Mass Tran.,40(3),533-544
    [91]Chang Y.J., Wang C.C.,2000. A generalized friction correlation for louver fin geometry. Int. J. Heat Mass Tran.,43:2237-2243
    [92]Kim M. H., Bullard C. W.,2002. Air-side performance of brazed aluminum heat exchangers under dehumidifying conditions. Int. J. Refrig.,25,924-934
    [93]Gnielinski V,1976. New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng.,16,359-368
    [94]Bao Z.Y, Fletcher D.F., Haynes B.S.,2000. Flow boiling heat transfer of Freon Rll and HCFC123in narrow passages, Int. J. Heat Mass Tran.43,3347-3358
    [95]Zhang W., Hibiki T., Mishima K.,2004. Correlation for flow boiling heat transfer in mini-channels, Int. J. Heat Mass Tran.47,5749-5763
    [96]Park C.Y., Hrnjak P.S.,2005. Flow boiling heat transfer of CO2at low temperatures in a horizontal smooth tube, ASME Trans.127,1305-1312
    [97]Dittus F.W., Boelter M.L.K.,1930. Heat transfer in automobile radiators of the tubular type, University of California. Publications on Engineering, Berkeley, CA2(13):443
    [98]Chen J.C.,1963. A correlation for boiling heat transfer to saturated fluid in convective flow, ASME Paper,63-HT-34, pp.1-11
    [99]Saitoh S., Dang C., Nakamura Y., Hihara E.,2011. Boiling heat transfer of HFO-1234yf flowing in asmooth small-diameter horizontal tube, Int. J. Refrig.,34,1846-1853
    [100] Kandlikar S. G., Steinke M. E.,2003Predicting Heat Transfer During Flow Boiling in Minichannelsand Microchannels. ASHRAE Trans.,109(1):1-9
    [101] Gungor K.E., Winterton H.S.,1987. Simplified general correlation for saturated flow boiling andcomparisons of correlations with data, Chem. Eng. Res.65,148-156.
    [102] Shah M.M.,1982. Chart correlation for saturated boiling heat transfer: equations and further study,ASHRAE Trans.2673,185-196
    [103] Liu Z., Winterton H. S.,1991. A general correlation for saturated and subcooled ow boiling in tubesand annuli, based on a nucleate pool boiling equation, Int. J. Heat Mass Tran.34,2759–2766
    [104] V.P. Carey. Liquid–Vapor Phase-Change Phenomena, Taylor&Francis, London,1992
    [105] Friedel L.,1979. Improved friction pressure drop correlation for horizontal and vertical two-phasepipe flow. In: European Two-Phase Flow Group Meeting, Ispra, Italy.
    [106] Ming Zhang, R.L. Webb. Correlation of two-phase friction for refrigerants in small-diameter tubes.Experimental Thermal and Fluid Science,2001,25(1):131-139.
    [107] Shah, M.M.,1978. A general correlation for heat transfer during film condensation insides pipes. Int.J. Heat Mass Transfer22,547-556.
    [108] Cavallini, A., Censi, G., Del Col, D., Doretti, L., Longo, G.A., Rossetto, L.,2001. Experimentalinvestigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125,R32, R410A, R326ea) in a horizontal smooth tube. Int. J. Refrigeration24,73-87
    [109] Cavallini, A., Censi, G., Del Col, D., Doretti, L., Matkovic, M., Rossetto, L., Zilio, C.,2006.Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design. HeatTransfer Eng.27,31-38
    [110] Dobson, M.K., Chato, J.C.,1998. Condensation in smooth horizontal tubes. Int. J. Heat Transfer120,193-213
    [111] Haraguchi, H., Koyama, S., Fujii, T.,1994a. Condensation of refrigerants HCFC22, HFC134a andHCFC123in a horizontal smooth tube. Trans. Jpn. Soc. Mech. Engrs.60,2117-2124.
    [112] Churchill, S. W.,“Comprehensive correlating equations for heat, mass, and momentum transfer infully developed flow in smooth tubes,” Ind. Eng. Chem. Fundam.,1977(16):109-116.
    [113] Andrey Rozhentsev, Chi-Chuan Wang, Some design features of a CO2air conditioner, AppliedThermal Engineering,2001(8):871-880
    [114] Y.B. Tao, Y.L. He, W.Q. Tao, Z.G. Wu, Experimental study on the performance of CO2residentialair-conditioning system with an internal heat exchanger, Energy Conversion and Management,2010(1):64-70
    [115] Honghyun Cho, Changgi Ryu, Yongchan Kim, Cooling performance of a variable speed CO2cyclewith an electronic expansion valve and internal heat exchanger, International Journal of Refrigeration, 2007(4):664-671
    [116]严诗杰,带回热器的R134a汽车空调系统开发,上海交通大学硕士论文
    [117]汽车空调整车降温性能实验方法.中华人民共和国汽车行业标准QC/T658-2000
    [118]史琳,朱明善.LCCP,一种全球气候变暖的评价指标.暖通空调,2004(10):33-38
    [119]Sand J R, Fisher S K, Baxter V D. Energy and global warming impacts of HFC refrigerants and emerging technologies. In:Oak Ridge National Laboratory. U S DOE and the alternative fluorocarbon environmental acceptability study.1997
    [120]Lakeman J A. Climate change1995the science of climate change. Cambridge:Cambridge Univ Press,1995
    [121]World Meteorological Organization. Scientific assessment of stratospheric ozone. Report No44, WMO Global Ozone Research and Monitoring Project,1999
    [122]联合国环境规划署.冷水机组及制冷剂管理培训手册.1994
    [123]Little Arthur D. Global comparative analysis of HFC and alternative technologies for refrigeration, air conditioning, foam, solvent, aerosol propellant and fire protection application.1999
    [124]http://www.epa.gov/cppd/mac/compare.htm
    [125]Papasavva S., Tai S., Illinger K., Kenny J."Infrared radiative forcing of CFC substitutes and their atmospheric reaction products", J. of Geophysical Research Vol.102, No. D12, pp.13,643-13650, June27,1997.
    [126]Papasavva S., Moomaw W. R.,"Life-Cycle Global Warming Impact of CFC-substitutes for Refrigeration", J. of Industrial Ecology, Vol.1, No.4, pp.71-91,1998.
    [127]Hill W. R., Expert Engineering Feedback, GM HVAC,2007
    [128]A. McCulloch, A.A. Lindley,"From mine to refrigeration:a life cycle inventory analysis of the production of HFC-134a", International Journal of Refrigeration26865-872,2003.
    [129]T. M. Krieger, D. J. Bateman, R. W. Sylvester,"Life Cycle Analysis for Production of HFC-134a and HFC-152a". Paper presented at MAC Summit, Washington DC, April13-15,2004.
    [130]C. Johnson,"(R-744) as an Adjustment to Global Warming Potential". Paper presented at MAC Summit, Washington DC, April13-15,2004.
    [131]GaBi Life cycle analysis software, http://www.gabisoftware.com/
    [132]The "Boustead Model", Life cycle analysis software, http://www.boustead-consulting.co.uk/
    [133]Life Cycle Inventory Analysis of a Generic Vehicle, prepared by Ecobalance and University of Michigan, National Pollution Prevention Center for USAMP (U.S. Automotive Materials Partnership), October,1998.
    [134]U.S Department of Energy, Buildings Technologies Program, found on the DOE internet site under: http://www.eere.energy.gov/buildings/energyplus/weatherdata_sources.html
    [135]Johnson V H.,"Fuel Used for Vehicle Air Conditioning:A State-by-State Thermal Comfort-BasedApproach”, SAE paper2002-01-1957, SAE Technical Series Paper,2002.
    [136] Ward’s Automotive statistics, http://wardsauto.com/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700